Applied Soft Computing Journal 188 (2026) 114384

Contents lists available at ScienceDirect

Applied Soft Computing

4
L

I.SEVIER journal homepage: www.elsevier.com/locate/asoc

Identification of Bitcoin volatility drivers using statistical and machine
learning methods

Piotr Fiszeder "®, Witold Orzeszko *®, Radostaw Pietrzyk “®,

Grzegorz Dudek "

& Faculty of Economic Sciences and Management, Nicolaus Copernicus University in Torun, ul. Gagarina 13a, Torun 87-100, Poland

Y Faculty of Finance and Accounting, Prague University of Economics and Business, nam. W. Churchilla 1938/4, Prague 3, 130 67, Czech Republic
¢ Faculty of Economics and Finance, Wroclaw University of Economics and Business, ul. Komandorska 118-120, Wroclaw 53-345, Poland

d Faculty of Electrical Engineering, Czestochowa University of Technology, AL AK 17, Czestochowa 42-201, Poland

€ Faculty of Mathematics and Computer Science, University of £od%, ul. Banacha 22, £6dz 90-238, Poland

f CAMINO - Centre for Data Analysis, Modelling and Computational Sciences, University of £od%, ul. Narutowicza 68, £odz 90-136, Poland

HIGHLIGHTS

e Analysis of 62 variables reveals key drivers of Bitcoin volatility.

e BMA, LASSO, and RF assess exogenous variable importance in forecasting.

o Selected exogenous variables significantly enhance Bitcoin variance predictions.
e Outlier replacement and standardization boost daily forecast accuracy.

e Top factors: lagged variances, trading volume, Google search intensity.

ARTICLE INFO ABSTRACT
Keywords: This study advances the understanding of Bitcoin volatility forecasting by analysing an extensive set of 62
Cryptocurrency volatility explanatory variables, including cryptocurrency market behaviour, Google search trends, financial indices, and

Market and policy uncertainty
Random forest

LASSO

Bayesian model averaging

economic indicators. We employ Bayesian Model Averaging (BMA), Least Absolute Shrinkage and Selection
Operator (LASSO), and Random Forest (RF) methods to assess variable importance and forecast accuracy. Our
research demonstrates that LASSO and RF models incorporating exogenous variables significantly improve both

HAR daily and weekly Bitcoin variance forecasts compared to models using only lagged Bitcoin volatilities. Key factors
Google trends attention influencing Bitcoin volatility include lagged realised variances, trading volume, and Google search intensity. The
Trading volume study reveals that the impact of these variables on Bitcoin volatility is time-varying, reflecting its evolving

relationship with broader economic indicators and market sentiment. Our findings contribute to the literature by
providing a comprehensive analysis of Bitcoin volatility drivers, evaluating the effectiveness of variable trans-
formations, and comparing the performance of advanced forecasting methods in handling the cryptocurrency’s
extreme volatility. These insights are valuable for researchers, investors, portfolio managers, and policymakers
navigating the dynamic cryptocurrency market.

1. Introduction has been the approval by the U.S. Securities and Exchange Commission
on January 10, 2024, of the introduction of BTC exchange-traded funds,

Since the emergence of Bitcoin (BTC) in 2009, the crypto assets which has made it easier for small investors to invest in BTC. However,
market has grown dynamically, reaching a market capitalization of over investing in cryptocurrencies involves high investment risk, which is a
USD 3.5 trillion." Another stimulus for the development of this market result of their high volatility. For this reason, effective volatility
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forecasting becomes crucial in the context of investment and hedging
strategies, and for facilitating cryptocurrency payments. As a result,
both in academia and among practitioners, there is a growing interest in
various methods of volatility forecasting. In recent years, machine
learning (ML) has been gaining increasing importance in the literature
on this subject. The growing popularity of ML techniques in the context
of financial market forecasting is, among other things, a result of their
effectiveness in applying to nonlinear, non-stationary, and noisy data. In
addition, they demonstrate strong robustness to missing data and can
produce reliable results even when the number of observations is rela-
tively small compared to the number of variables in the model (see, e.g.,
[1,2]). A review of the extensive literature on the application of these
methods in various areas of finance can be found, for example in [3-9].
Recent advances in ML-based forecasting for Bitcoin markets are
exemplified by the works [10-13].

Volatility forecasting models can generally be classified into two
groups based on the nature of their regressors: those that rely solely on
historical volatility data and those that incorporate additional exoge-
nous variables. A prominent example from the first group is the linear
heterogeneous autoregressive model (HAR) [14], which employs as re-
gressors three lagged volatility components — daily, weekly, and
monthly. Previous studies have shown that among the most commonly
used statistical and ML models, no single method consistently provides
the most accurate volatility forecasts based solely on historical volatility
[15]. However, the accuracy of these models can be enhanced by inte-
grating additional determinants that affect cryptocurrency variance (see
Section 2). Peng, Prentice, Shams, and Sarker [16] present a systematic
literature review of studies aimed at identifying factors influencing
cryptocurrency pricing. It is worth noting that nearly all of these studies
focus on the prices and returns of cryptocurrencies rather than on their
volatility. Conversely, Gunnarsson, Isern, Kaloudis, Risstad, Vigdel, and
Westgaard [17] review the literature on forecasting volatility using ML
methods. However, this review encompasses all financial time series and
cites only three studies specifically addressing BTC volatility.

As a starting point, we provide a comprehensive review of existing
studies on the determinants of Bitcoin volatility (see Section 2). This
review summarizes the explanatory variables and methodological ap-
proaches employed in prior research, thereby helping to contextualize
our work and position it within the current state of the literature. The
determinants of BTC volatility have been analysed in numerous studies.
Some of these studies are reviewed by Kyriazis [18], Wang, Ma, Bouri,
and Guo [19], and Benhamed, Messai, and El Montasser [20]. The most
commonly examined factors include stock indices, fiat currencies, oil,
gold, attention and sentiment measures, uncertainty indices, and trading
volume. However, many of these studies do not demonstrate that the
variables considered lead to improved ex-post volatility forecasts. Since
investors and risk managers are primarily concerned with out-of-sample
forecasting performance, such analyses are of critical importance. Based
on the literature review presented in Section 2, we identify a research
gap that we aim to address in this study. Existing work lacks a
comprehensive approach to out-of-sample forecasting daily and weekly
BTC volatility using a broad set of factors, including stock indices, cur-
rencies, commodities, bonds, volatility indices, risk and uncertainty
indices, BTC-specific variables, and sentiment indicators, analysed with
both linear and non-linear statistical and ML models.

The main goal of this work is to identify the primary drivers of Bit-
coin volatility using various predictive models and to assess their
effectiveness in improving ex-post volatility forecasts. The study em-
ploys a variety of statistical and ML models, which are compared in
terms of both their ability to identify key volatility drivers and their
forecasting accuracy for daily and weekly BTC volatility. Additionally,
an analysis was conducted to determine whether data preprocessing,
namely outlier replacing and standardisation, improves forecast accu-
racy. Our paper makes four significant contributions to the field of Bit-
coin volatility analysis.
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1) Unprecedented Range of Volatility Drivers: We develop the most
extensive framework to date for out-of-sample forecasting of daily
and weekly Bitcoin volatility, incorporating not only lagged BTC
variances but also 33 diverse exogenous factors. These include BTC-
specific market variables, broader financial market indicators, policy
and uncertainty indices, and Google search trends. This scope sub-
stantially exceeds that of prior studies, which typically focused on a
narrow set of predictors.

Enhanced Variable Representation and Preprocessing: We propose a
systematic approach to representing each factor in multiple trans-
formed forms (e.g., logarithms and differences, variances and
returns) and evaluate the impact of two preprocessing techniques —
standardisation and winsorisation — on forecasting accuracy. This
process yields a total of 62 explanatory variables, offering a more
comprehensive representation of potential drivers of BTC volatility.
The combination of dual representation and preprocessing assess-
ment, rarely explored in prior research, reveals transformation ef-
fects that materially influence predictive performance.
Multi-Method Variable Importance Assessment: We employ three
complementary and methodologically distinct approaches -
Bayesian model averaging (BMA), LASSO regression, and random
forests (RF) — to identify the most influential determinants of Bitcoin
volatility. This multi-method analysis captures both linear and
nonlinear dependencies, providing a richer and more robust under-
standing than studies relying on a single modelling paradigm.
Empirical Benchmarking of Predictive Models: We present the first
direct out-of-sample comparison of HAR, BMA, LASSO, and RF
models for BTC volatility forecasting using an extensive predictor set.
Our results demonstrate that LASSO and RF, by effectively managing
high-dimensional predictor spaces and capturing extreme volatility,
deliver significantly more accurate forecasts. These findings under-
score the critical role of variable selection and modelling techniques
in capturing the complex dynamics of Bitcoin volatility.
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Our approach is distinctive in that, unlike previous studies which
typically consider only a single time series for each explanatory factor
and apply a single selected transformation, we systematically evaluate
different representations of each variable. This is important, as it is not
evident a priori which transformation of a given series most strongly
influences Bitcoin volatility. Our results show that the choice of repre-
sentation can materially impact the analysis and forecasting
performance.

Furthermore, prior research has typically relied on a single method
to assess variable importance, potentially biasing the identification of
key predictors. An exception is the recent study by Feng, Qi, and Lucey
[21], who employed multiple, albeit methodologically similar, regula-
rization techniques, including LASSO, ridge regression, and elastic net.
In contrast, our study incorporates three fundamentally different
methods: BMA, LASSO, and RF, enabling a more comprehensive and
robust assessment of volatility drivers.

Through these contributions, our paper aims to provide a more
nuanced and thorough understanding of the factors driving Bitcoin
volatility, potentially improving forecast accuracy and informing both
academic research and practical applications in cryptocurrency markets.

For the selection of BTC volatility drivers, we deliberately chose
models that share a key characteristic — a built-in mechanism for feature
selection — while differing fundamentally in their methodological
foundations. BMA offers a principled statistical approach to model
averaging, explicitly accounting for model uncertainty while maintain-
ing interpretability, which is particularly valuable for identifying key
predictors in high-dimensional settings. LASSO provides embedded
variable selection, effectively handling large sets of correlated regressors
and mitigating overfitting, a common challenge in volatility forecasting.
RF captures complex nonlinear relationships and interactions between
predictors without imposing strong parametric assumptions. At each
tree split, RF selects the variable that most effectively reduces impurity,
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Table 1
Studies analysing factors of cryptocurrencies volatility.

Authors Explanatory variables Methods Out-of-
sample
forecasts

Aalborg, Molnar, de Vries Trading volume, transaction volume, number of BTC addresses, VIX, Linear regression model No

[22] Google searches for Bitcoin
Al Guindy [23] Investor attention from Twitter (X platform) Panel regression, HAR, VAR No
Alam, Amendola, Candila, Monthly monetary aggregate M3 for U.S. and South Africa GARCH, GJR, IGARCH, GARCH-MIDAS, structural No
Jabarabadi [24] break GARCH-MIDAS
Aslanidis, Bariviera, Lopez Google Trends uncertainty index, Google Trends cryptocurrency index Shannon and Rényi’s transfer entropy No
[25]
Aysan, Demir, Gozgor, Lau GPR Bayesian graphical VAR, OLS and quantile-on- No
[26] quantile regressions
Babalos, Bouri, Gupta [27] Introduction of Spot Bitcoin ETFs, volatility of Grayscale Bitcoin Trust ETF  GARCH, wavelet coherence No
Bakas, Magkonis, Oh [28] Trading volume, market capitalisation, number of addresses, total Dynamic Bayesian model averaging No
circulation, miners revenue, Google searches for Bitcoin, consumer
sentiment, US consumer confidence, MSCI World Index, S&P 500,
Commodity Price Index, gold, oil, world economic activity, US industrial
production, OECD inflation rate, USD index, US long and short term
interest rate, global and US EPU, geopolitical risk, VIX, iTraxx Europe
Swap Index
Balcilar, Bouri, Gupta, Trading volume Granger causality, nonparametric causality in No
Roubaud [29] quantiles test
Benhamed, Messai, El Trading volume General-to-specific modelling, asymmetric log No
Montasser [20] ARCH specification
Bedowska-Sdjka, Gorka, EPU, GPR, VIX, OVX, GVZ, Emerging Markets ETF Volatility Index, EFA DCC-GARCH, TVP-VAR, network analyses No
Hemmings, Zaremba [30] ETF Volatility Index, 20+ Year Treasury Bond ETF Volatility Index, USD
index

Blau [31] Speculative trading volume Pearson and Spearman correlation, linear No

regression model, probit model
Bleher, Dimpfl [32] Google searches for specific cryptocurrency names Granger causality, VAR Yes
Bourghelle, Jawadi, Rozin Crypto Fear and Greed Index, trading volume Granger causality, linear and threshold VAR No
[33]

Bourghelle, Jawadi, Rozin Crypto Fear and Greed Index, number Granger causality, linear and threshold VAR No
[34] of COVID-19 cases and deaths in the U.S., trading volume

Bouri, Gkillas, Gupta, US-China trade tensions from Google searches HAR, RF Yes
Pierdzioch [35]

Bouri, Kristoufek, Azoury S&P 500, EPU GARCH with skewness and kurtosis, wavelet No
[36] coherence

Bouri, Lau, Lucey, Roubaud Trading volume Copula-Granger-causality in distribution test No
[37]

Brauneis, Sahiner [38] Sentiment from crypto market news data HAR, MLP, LSTM, XGBoost, LightGBM, Yes

CNNBILSTM

Candila [39] Google searches for specific cryptocurrency names Double asymmetric GARCH-MIDAS Yes

Conlon, Corbet, McGee [40] Expected and unexpected trading volume, VIX, EPU Regression models No

Conrad, Custovic, Ghysels Trading volume, volatility for S&P Global Luxury Index and S&P 500; VIX, =~ GARCH-MIDAS No

[41] Variance Risk Premium, Google searches for Bitcoin, Baltic exchange dry
index, Chinese Yuan
Corbet, McHugh, Meegan Monetary policy announcements GARCH No
[42]
Di, Xu [43] BTC implied volatility, VIX, aggregate VAR, generalised No
implied volatility indices for emerging (VXEEM) and developing markets  forecast error variance decomposition
(VXEFA), GVZ, OVX, USD index
Dias, Fernando, Fernando Google searches, Wikipedia page views, daily number of merits shared on ~ PCA, Granger causality, moments quantile Yes
[44] Bitcointalk.org, positivity and negativity from news headlines, Twitter regression
happiness index, VIX, trading volume, returns of Dow Jones Index, EUR/
USD, gold, hash rate
Ding, Wu, Cui, Goodell, Du Climate policy uncertainty GARCH, genetic programming Yes
[45]

Dyhrberg [46] Federal funds rate, gold cash, gold futures, FTSE, USD/EUR, USD/GBP GARCH, EGARCH No

Eom, Kaizoji, Kang, Pichl [47] Google searches for Bitcoin AR-X No

Elsayed, Gozgor, Lau [48] Returns of oil, gold, S&P 500, S&P 500 bond index, USD index, US EPU, TVP-VAR, dynamic connectedness approaches, No

TEU, VIX network analyses, causality-in-variance LM test
Elsayed, Gozgor, Yarovaya Cryptocurrencies CRIX index, policy UCRY, price UCRY, EPU, gold, VIX TVP-VAR No
[49]
Fang, Bouri, Gupta, Roubaud EPU GARCH-MIDAS, DCC-MIDAS No
[501]

Fang, Su, Yin [51] News-based implied volatility index NVIX, global EPU, financial GARCH-MIDAS, DCC-MIDAS No

uncertainty FU

Feng, Qi, Lucey [21] Global and US EPU, GPR, US CPI and PPI, OVX, GVZ, federal funds rate, HAR, LASSO, RR, EN Yes

USD index, WTI and Brent oil, Google searches for Bitcoin, number of
blocks, average transaction fee, difficulty, block size, hash rate, mining
profitability, trading volume
Figé-Talamanca, Patacca [52] Trading volume, Google searches for Bitcoin GARCH, EGARCH No

(continued on next page)
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Authors Explanatory variables Methods Out-of-
sample
forecasts

Gbadebo, Adekunle, Trading volume, BTC market capitalisation, Morgan Stanley Capital ARDL No

Adedokun, Lukman, Akande International All Country World Index, Google searches for Bitcoin
[53]
Ghani, Ghani, Ali, Mustafa, EPU, GPR, TEU, Twitter market uncertainty, trade policy uncertainty GARCH-MIDAS Yes
Kosar [54]
Gkillas, Tantoula, Tzagarakis Number of transactions Hybrid model of HAR and RF Yes
[55]
Giiler [56] Trading volume, Crypto Fear & Greed Index, American Association of GARCH, CGARCH, No
Individual Investors Index EGARCH, GJR-GARCH, and AP-ARCH
Kristjanpoller, Minutolo [57] Seven technical analysis indicators Hybrid MLP-GARCH model, GARCH, EGARCH, Yes
APGARCH
Kristoufek [58] Trading volume, Google searches for Bitcoin and BTC, on-chain transfers ~ Linear regression model No
volume in BTC, number of active addresses, market capitalisation of the
largest fiat-backed stablecoins, amount of emitted BTC, average amount of
hashes being solved, prices of S&P 500 futures and gold futures, VIX

Kufo, Gjeci, Pilkati [59] Trading volume, returns of MSCI All Country World Index, Google GARCH No

searches for specific cryptocurrency names, USD/EUR

Kyriazis, Papadamou, Four TEU and four TMU indices Nonlinear quantile causality in volatility No

Tzeremes, Corbet [60]
Lehrer, Xie, Yi [61] Sentiment index from Twitter LASSO, regression tree, boosted trees, bagged trees, Yes
RF, SVR, least squares SVR, HAR, HAR-J, HAR-CJ,
HAR-RS
Liang, Zhang, Li, Ma [62] GVZ, VIX, Google searches for Bitcoin, EPU, GPR GARCH-MIDAS Yes
Long, Chatziantoniou, Investor sentiment from Reddit Asymmetric TVP-VAR No
Gabauer, Lucey [63]
Long, Xie, Zhou, Lucey, Investor sentiment from Reddit, Twitter Granger causality, TVP-VAR, No
Urquhart [64]
Lépez-Cabarcos, Pérez-Pico, Returns of S&P 500, VIX, investor sentiment from Stocktwits messages GARCH, EGARCH No
Pifieiro-Chousa, Sevi¢ [65]
Lydcsa, Molndr, Plihal, News and sentiment about cryptocurrency regulation, the hacking of HAR, quantile regression HAR No
Siranové [66] cryptocurrency exchanges, scheduled macroeconomic news
announcements
Maghyereh, Abdoh [67] RV of future contracts for S&P 500, USD/EUR, and US 10-year T-note Granger causality connectedness measure, wavelet No
futures, gold and oil. coherence, dynamic frequency-domain
connectedness

Mandaci, Cagli [68] Herding intensity measures Granger causality with a Fourier approximation No

Mokni [69] EPU Symmetric and asymmetric causality in quantiles No

tests

Omura, Cheung, Su [70] RV of natural gas futures HAR Yes

Nguyen, Nguyen, Nguyen, Federal funds rate, Chinese interbank rate, USD/EUR and USD/GBP GARCH, EGARCH, fixed effects models No

Pham, Nguyen [71] exchange rates, returns of FTSE, futures and spot gold returns
Nouir, Hamida [72] Trading volume, US and China EPU and GPR, oil, returns of S&P 500, ARDL, quantile regression No
EUR/USD
Papadamou, Kyriazis, EPU, gold Granger causality, nonparametric causality in No
Tzeremes [73] quantiles test

Sabah [74] Venues that accept cryptocurrencies as a payment method, type of Pearson correlation, linear regression model, No

business, continent of location, market capitalisation, returns, VIX Granger causality, impulse response function

Said, Somasuntharam, Twitter data, Google searches for specific cryptocurrency names Granger causality, impulse response function, VAR No

Yaakub, Sarmidi [75]

Salisu, Ndako, Vo [76] Brent and WTI oil prices Feasible quasi-generalised least square model Yes

Salisu, Ogbonna [77] Google searches for cryptocurrency GARCH-MIDAS Yes

Sapkota [78] Newspaper-based sentiment from the LexisNexis database, Google HAR Yes

searches for Bitcoin

Seo, Kim [79] Google searches for Bitcoin, VIX GARCH, EGARCH, GJR, hybrid models of GARCH Yes

and ANN, HONN

Shen, Urquhart, Wang [80] Tweets for Bitcoin Linear and nonlinear Granger causality, VAR No

Smales [81] Google searches for specific cryptocurrency names, EPU, VIX, UCRY, Panel regression models, panel causality, Granger No

Aruoba-Diebold-Scotti business conditions index, term premium causality
computed from 2- and 10-year yields, Treasury bill — Eurodollar spread

Teterin, Peresetsky [82] Google searches for Bitcoin and keywords related to Bitcoin, uncertainty HAR Yes

and risk

Tzeng, Su [83] S&P 500, P/B and D/Y ratios, 3-months and 10-year yields, federal funds  Linear regression model Yes

rate, commercial paper-Treasury bill spread, term spread, VIX, credit risk

spread, U.S. EPU, TED spread, macroeconomic uncertainty index, M1

money supply, consumer confidence index, leading economic index,

industrial production and its volatility, capacity utilization rate,

Purchasing Managers’ Indices in the manufacturing and services sectors,

nonfarm payrolls, unemployment rate, CPI, volatility of PPI, U.S. exports

and imports, trade balance, retail sales, CRB index, oil, gold, MSCI All

Country World Index, global EPU, Baltic exchange dry index, OECD

export, import values, OECD CPI and M1 growth, OECD G20 leading

indicator, consumer opinion surveys
Urquhart [84] Google searches for Bitcoin Granger causality, VAR No
Uzonwanne [85] FTSE 100, S&P 500, CAC 40, DAX 30, Nikkei 225 VARMA-AGARCH No

(continued on next page)
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Authors Explanatory variables Methods Out-of-
sample
forecasts

Walther, Klein, Bouri [86] Returns and RV for S&P 500, MSCI Emerging Markets 50, Dow Jones GARCH-MIDAS Yes

Precious Metals, oil; VIX, global financial stress index, global and Chinese
EPU, global real economic activity, USD index
Wan, Song, Zhang, Yin [87] Oil, diesel, heating oil, jet fuel, natural gas, propane, conventional Generalised forecast error variance decomposition No
gasoline, regular gasoline based on volatility impulse response function from
block DECO-GARCH
Wang, Andreeva, Martin- Close, open, high, low prices, trading volume, trading count, block size, GARCH, RF, LSTM Yes

Barragan [88]

transactions per block, payments per block, confirmation time, hash rate,

difficulty, price and trading volume for oil, gold, silver, DJI, S&P 500,
Nasdaq, Russell 2000, CNY/USD, USD/Euro, US EPU, Google searches for
Bitcoin, blockchain and cryptocurrency, Crypto Fear & Greed Index

Wang, Ma, Bouri, Guo [19]

Returns and RV of: S&P 500, emerging market index, global commodity

AR-X, PCA, PLS, LASSO, EN forecast combination Yes

index, USD index; VIX, OVX, global and China EPU, global real economic
activity index, GPR, geopolitical threats index, geopolitical acts index,
Google searches for Bitcoin, technical indicators: moving-average,

momentum, on-balance volume.
Wu, Ho, Wu [89]
Wu, Hossain, Zhang [90]
difficulty, hash rate, trading volume, market value
Wu, Yin, Umar, Igbal [91] 0il
Xia, Sang, He, Wang [92] EPU, UCRY
Yen, Cheng [93] Chine, US, Japan, Korea EPU
Yin, Nie, Han [94]

Global EPU, 14 developed and 7 emerging markets EPU
EPU, oil, Nasdaq, gold, number of active addresses, block size, mining

Returns of oil, RV of oil, oil realised skewness, oil supply shocks, global

aggregate demand for industrial commodities, oil market demand shocks,
returns of gold, VIX, macroeconomic uncertainty index, financial market

uncertainty index, EPU

Yousaf, Ali, Marei, Gubareva
[95] zine
Yu [96] EPU

Zhang, Wang [97] Google searches for specific cryptocurrency names

Zhou [98]
number of news from Reuters
Zhou, Xie, Wang, Gong, Zhu

Gold, silver, palladium, platinum, aluminium, copper, lead, nickel, tin,

Trading volume, number of transactions, hash rate, miners’ revenue,

EPU, GPR, VIX, OVX, RV for: S&P 500, U.S. dollar index, U.S. 30-year T-

GARCH-MIDAS No
Liner regression model No
GARCH, CARR, VS-CARR, VS-ACARR Yes
GARCH-MIDAS, asymmetric GARCH-MIDAS Yes
Linear regression model No
GARCH-MIDAS No
DCC-GARCH, TVP-VAR No
HAR, HAR-CJ, HAR-CJ with leverage effect Yes
Linear and nonlinear Granger causality, quantile No
regression

EGARCH, TGARCH, NGARCH, AVGARCH, APARCH  No

AR, ARIMA, HAR, GPR, RF, LightGBM, LSTM, Yes

[99]
Zhu, Zhang, Wu, Zheng,
Zhang [100]

bond, gold, oil, natural gas
Google searches for Bitcoin

LSTNet, MTGNN, EMGNN
Granger causality, VAR, VAR with higher moments
and asymmetrical effects

Yes

RV - realised variance, VIX — CBOE Volatility Index, GVZ - CBOE Gold ETF Volatility Index, OVX - Crude Oil ETF Volatility Index, MSCI - Morgan Stanley Capital
International, EPU - economic policy uncertainty, GPR - global geopolitical risk, UCRY - cryptocurrency uncertainty, TEU - Twitter economic uncertainty, TMU -
Twitter market uncertainty, CPI - consumer price index, CRB - Commodity Research Bureau, TED - Treasury-Eurodollar, AR-X - autoregressive model with exogenous
variables, ARDL - autoregressive distributed lag, VAR - vector autoregression, VARMA - Vector Autoregressive Moving Average, TVP-VAR - time-varying parameter
vector autoregression, GARCH - generalised autoregressive conditional heteroscedasticity, EGARCH - exponential GARCH, TGARCH - threshold GARCH, GJR - Glosten
Jagannathan Runkle GARCH, AGARCH - asymmetric GARCH, CGARCH - component GARCH, APARCH - asymmetric power ARCH, NGARCH - nonlinear GARCH,
AVGARCH - absolute value GARCH, DCC - dynamic conditional correlation, DECO-GARCH - dynamic equicorrelation GARCH, GARCH-MIDAS - GARCH mixed-data
sampling, VS-ACARR - volatility-spillover-asymmetric conditional autoregressive range, HAR - heterogeneous autoregressive, HAR-J - HAR with jump component,
HAR-CJ - HAR with continuous jump component, HAR-RS — HAR with semi-variance component, PCA - principal component, PLS - partial least squares, LASSO - least
absolute shrinkage and selection operator, RR — ridge regression, EN - elastic net, GPR - Gaussian process regression, RF — random forest, ANN - artificial neural
network, HONN - higher order neural network, MLP - Multilayer Perceptron, LSTM - Long Short-Term Memory, MGNN - Multivariate Graph Neural Network EMGNN -
Evolving Multiscale Graph Neural Network, LSTNet - Long- and Short-Term Time-Series Network, XGBoost - Extreme Gradient Boosting, LightGBM - Light Gradient

Boosted Machine, CNNBiLSTM — hybrid CNNbidirectional LSTM.

thereby ranking predictors by importance in a data-driven manner. By
combining these three models, we are able to: (1) benchmark predictive
performance across fundamentally different modelling paradigms, (2)
identify consistent volatility drivers that are robust across linear, regu-
larized, and nonlinear approaches, and (3) evaluate whether nonlinear
ML techniques can outperform or complement traditional statistical
models in terms of forecasting accuracy. This integration of diverse
modelling strategies remains relatively unexplored in the Bitcoin vola-
tility literature, making the comparative analysis itself a novel and
valuable contribution of our study.

The remainder of the paper is organised as follows: Section 2 reviews
the literature on the drivers of cryptocurrency volatility. Section 3
presents the methodologies employed and describes our research pro-
cedure. Section 4 provides a description of the data. Section 5 presents
and discusses the results of empirical research, and Section 5.4 con-
cludes the paper.

2. Literature review

We review studies that aim to explain the volatility of crypto-
currencies, excluding those that focus solely on cryptocurrency returns.
Table 1 summarises 82 papers, detailing the explanatory variables and
methodologies employed. The most commonly analysed potential
drivers of volatility include stock indices, fiat currencies, oil, gold,
attention and sentiment measures, uncertainty indices, and trading
volume. The predominant methods used are the generalised autore-
gressive conditional heteroscedasticity (GARCH) models, the HAR
model, linear regression model, and Granger causality analysis. Notably,
most of these studies (55 papers) assess the impact of explanatory var-
iables on cryptocurrency volatility using in-sample analysis, without
considering out-of-sample forecasts. However, all of these papers
employ only statistical methods. For out-of-sample forecasting, nonliner
ML models are used only in 9 studies, while 18 studies rely solely on
statistical methods.
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Table 2
Description of applied variables.
Variable Abbreviation  Source Economic justification
Realised variance of Bitcoin RVBTC api.kraken.com Explained variable
BTC-specific factors
Trading volume Volume finance.yahoo.com Associated with increased information flow and investor activity
Number of transactions per day transactions data.nasdaqg.com
Average block size per day Block data.nasdaq.com Reflects blockchain usage intensity and potential congestion effects on transaction
costs
Market capitalisation Capital data.nasdaq.com Influences on liquidity and stability and perceived market risk.

Average hash rate per day Hash
Number of unique addresses per day addresses
Google searches for Bitcoin Google
Financial markets

S&P 500 S&P

data.nasdaq.com
data.nasdaq.com
trends.google.com

Refinitiv Eikon

Nasdaq Composite Nasdaq Refinitiv Eikon
Euro STOXX 50 STOXX Refinitiv Eikon
FTSE 100 FTSE Refinitiv Eikon
Nikkei 225 Nikkei Refinitiv Eikon
Shanghai Composite SSE www.investing.com
EUR/USD EUR www.investing.com
JPY/USD JPY www.investing.com
CNY/USD CNY www.investing.com
Nominal broad U.S. dollar index USDX fred.stlouisfed.org
U.S. 2-years bond yield Us2y www.investing.com
U.S. 10-years bond yield Us1oy www.investing.com
NYMEX light sweet WTI crude oil 0il Refinitiv Eikon
Gold spot Gold www.investing.com
NYMEX Henry Hub natural gas Gas Refinitiv Eikon
Bloomberg Commodity Index BCOM Refinitiv Eikon
Market and policy uncertainty
CBOE Volatility Index VIX www.investing.com
EURO STOXX 50 Volatility Index VSTOXX Refinitiv Eikon
CBOE Gold ETF Volatility Index GVZ www.cboe.com
Economic policy uncertainty index based on EPU www.policyuncert
newspapers ainty.com
Twitter-based market uncertainty index TMU-SCA www.policyuncert
ainty.com
Twitter-based economic uncertainty index TEU-SCA www.policyuncert
ainty.com
Geopolitical risk index based on newspapers GPR www.policyuncert
ainty.com
Risk aversion index based on financial variables RA_BEX www.nancyxu.net
Uncertainty index based on financial variables UNC_BEX www.nancyxu.net
Infectious disease equity market volatility tracker  infectious www.policyuncert

based on newspapers ainty.com

Represents network security and miner confidence, affecting long-term trust in BTC
Serves as a proxy for user base growth and diversification of market participants
Serve as a proxy for rising investor attention and uncertainty

Reflect changes in the most important capital markets

Reflect shifts in macroeconomic fundamentals and investor sentiment across global
regions

Express market expectations regarding interest rates and the broader economic
outlook

Reflect shifts in global demand, supply shocks, and inflationary pressures, all of which
can alter risk perceptions.

Measure implied volatility in key equity and commodity markets, serving as
benchmarks for investor fear

Capture macroeconomic, geopolitical, and health-related uncertainty as well as shifts
in investor sentiment and risk aversion

Research on the accuracy of out-of-sample volatility forecasts pre-
dominantly focuses on a single or a very narrow set of selected factors.
The explanatory variables investigated include Google search trends
[32,35,39,77-79,82,100]. Twitter-based sentiment index [61],
newspaper-based sentiment derived from the LexisNexis database [78],
sentiment from crypto market news data [38], VIX [79], economic
policy uncertainty (EPU) [90,96], climate policy uncertainty [45],
cryptocurrency uncertainty (UCRY) [90], the number of BTC trans-
actions [55], RV of natural gas futures [70], and Brent and WTI oil prices
[76,91], technical analysis indicators [57].

Studies that incorporate a wide range of factors influencing Bitcoin
volatility forecasts are relatively rare. Walther, Klein, and Bouri [86]
utilise factors such as the returns and realised variance of the S&P 500,
MSCI Emerging Markets 50, Dow Jones Precious Metals, oil, the VIX
Volatility Index, the global financial stress index, global and Chinese
EPU, global real economic activity, and the USD index. In contrast,
Liang, Zhang, Li, and Ma [62] consider variables including the CBOE
Gold ETF Volatility Index (GVZ), VIX, Google searches for Bitcoin, EPU,
and global geopolitical risk (GPR). Meanwhile, Ghani, Ghani, Ali,
Mustafa, and Kosar [54] incorporate EPU, GPR, Twitter economic un-
certainty (TEU), Twitter market uncertainty, and trade policy uncer-
tainty as regressors. All three studies employ the generalised
autoregressive conditional heteroscedasticity - mixed-data sampling
(GARCH-MIDAS) model. However, rather than including all factors in a
single model, each study builds separate models for each exogenous

variable. Tzeng and Su [83] use a linear regression model and 28 U.S.
and 12 global variables to predict the monthly volatility of BTC, Car-
dano, Dogecoin, Ethereum, Litecoin, and XRP. Similarly to the above
analyses, they apply only one variable per model.

Research that jointly considers a wide range of potential drivers
within a single model is scarce. Zhou, Xie, Wang, Gong, and Zhu [99]
apply EPU, GPR, VIX, OVX, and RV for S&P 500, the U.S. dollar index,
the U.S. 30-year T-bond, gold, oil, natural gas to predict daily volatility
of BTC. They use the following methods: AR, ARIMA, HAR, GPR, RF,
LightGBM, LSTM, LSTNet, MTGNN, and EMGNN. Wang, Ma, Bouri, and
Guo [19] utilise 17 economic variables and 3 technical strategies to
forecast the monthly volatility of BTC. They employ several methods,
including the autoregressive model with exogenous variables (AR-X),
the principal component analysis (PCA), the partial least squares (PLS)
model, LASSO, EN, and forecast combination methods such as mean,
median, trimmed mean, and discounted mean-squared prediction error
(DMSPE). Feng, Qi, and Lucey [21] use 19 economic variables and in-
dicators to forecast daily volatility for BTC and Ethereum, applying four
methods: HAR, LASSO, RR, and EN. The most comprehensive study is
conducted by Wang, Andreeva, and Martin-Barragan [88], who use 27
external and 6 internal determinants to forecast the daily, weekly, and
monthly volatility of BTC, Ethereum, Litecoin, and Ripple. Their anal-
ysis is divided into two parts: one focusing on internal variables (using
lagged and moving averages), and another on external drivers. They
apply GARCH, RF, and long short-term memory (LSTM).
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Fig. 1. The input and output data used in the forecasting models with exoge-
nous variables.

3. Applied methods and forecasting procedure
3.1. Realised variance models

Our models rely on realised variance (RV), which is derived from
intraday price data:

RVy =Y 1o ¢))

where ry, is the intraday return, K is the number of intraday observa-
tions during a day.

We use RV because models based on this measure consistently yield
more accurate forecasts compared to those that rely solely on daily
closing prices [15]. As explanatory variables, we also use weekly and
monthly average realised variances defined as:

RVge 4 +RV4r 3 +RVy 2+ RVye 1 +RVy,

RV, = 5

(2)

_ RV4r 21 +RVge 20+ ... + RVy,

RV = 2 3

Our benchmark model is HAR introduced by Corsi [14]. It combines
three volatility components which describe daily, weekly and monthly
volatility. These components reflect the behaviour of investors with
different time horizons. We use the log transformation of the model
which guarantees positive predictions of volatility:

h'lRVd.t =Y+ YllnRVd.t—l + YzlnRVw,t—l + YslnRVm,t—l + & (€]

Despite its simplicity, the HAR model turns out to be very effective in
forecasting variance of financial returns and is widely used in empirical
research.

To investigate the influence of exogenous variables on RV pre-
dictions, we select three models with built-in mechanisms for variable
selection, allowing us to evaluate variable importance: BMA, LASSO,
and RF. These models predict InRV,, at time t based on the lagged RV
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variables (1)-(3) and exogenous variables (see Table 2). The lagisz =1
for daily horizon predictions, or 7 > 1, for predictions with horizons
longer than one day. In addition to prediction, these models allow us to
determine the relative importance of variables. The general form of
these models can be expressed as:

lnRVd.t = f(lnRVd.tfn lnRVwm—n lnRVm,t—n 21ty ens Zs.t—r) 5 (5)

where z;,_, denotes the value of the i-th exogenous variable at time t — 7,
f represents the functional form specific to each model (BMA, LASSO, or
RF), and s is the number of exogenous variables.

Fig. 1 illustrates the models with exogenous variables for the daily
horizon prediction scenario.

In the empirical part of the work, we also consider BMA, LASSO and
RF models without exogenous variables to assess the overall impact of
these variables on the results.

In the subsequent three subsections, we provide detailed descriptions
of the models.” For clarity, we use the following notation: x represents
the vector of explanatory variables (containing only RV or RV and
exogenous variables depending on the forecasting scenario), and y
represents the scalar dependent variable (InRVy,).

3.2. BMA method

Standard regression models often fail to incorporate the uncertainty
surrounding the model structure and variable selection. Bayesian Model
Averaging (BMA) addresses this limitation by estimating a model for all
possible combinations of explanatory variables and presenting the final
model as a weighted average of these models. The concept, first intro-
duced by Leamer [101], and further developed by Mitchell and Beau-
champ [102], Raftery, Madigan, and Hoeting [103], Hoeting, Madigan,
Raftery, and Volinsky [104], highlights the advantage of accounting for
model uncertainty instead of relying on a single “best” model.

By considering a wide range of model specifications and weighting
them according to their posterior probabilities, BMA improves robust-
ness and reduces the risk of omitting relevant factors or overemphasiz-
ing less important ones. For a linear regression model:

Ye=PBo+BXre+ ... +BXe+ &, & ~N(0,6°) 6)
where fo, f1,..., Px, are the model coefficients, k is the number of po-
tential variables x; s, X2, ..., Xk and & is normal IID error term with
variance o2; there are 2k possible sets of variables (models), denoted as
Mj, forj=1,2,..,2k

The BMA uses posterior probability P(M;|D) as weights, with D
representing the set of all data inputs. It is given by the formula:

P(D|M;)P(M;) _ P(D|M;)P(M))

P(M;D) = PD) % p(D|M; )P(M;)

)

It is, therefore, the ratio of its marginal probability P(D|M; ) multi-
plied by the prior model probability P(Mj), for which M, is the relevant
model, to the sum of the marginal probabilities over the entire model
space. The prior on parameters is commonly set using Zellner’s g-prior
[105], with coefficients drawn from a normal distribution with mean
0 and variance proportional to g.

The main output of BMA is the posterior inclusion probability (PIP)
for each variable, defined as the sum of posterior model probabilities
across all models including that variable. PIPs indicate the relative
importance of variables in prediction, while their total sum reflects the
average model size.

2 The code of our models is available at the following address: https://github.
com/GMDudek/Bitcoin_drivers.
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3.3. LASSO model

LASSO [106] is a regularisation method for linear regression that
enhances the model’s predictability and interpretability. Like other
regularisation techniques, such as ridge regression [107,108], it works
by shrinking the coefficient estimates towards zero, which can consid-
erably reduce their variance [109,110]. This process reduces model
complexity and helps avoid overfitting or collinearity. Unlike ridge
regression, however, LASSO can also perform variable selection by
forcing some coefficients to be exactly zero. LASSO regression achieves

this by adding an L; penalty term Z}‘zl | ﬁj| to the residual sum of squares
(RSS). Thus, the LASSO coefficients minimise the quantity:

N k
RSS, =Y (v—3) +23_ 8] ®)
t=1 j=1

where N is the number of observations and y, are the fitted values.

The hyperparameter 4 > 0 controls the extent of shrinkage: when 1
= 0, LASSO produces the same coefficients as ordinary least squares
(OLS) regression, and when 1 is very large, all coefficients are shrunk to
zero. When 1 is sufficiently large, the L, penalty results in some coeffi-
cient estimates being exactly equal to zero. This feature allows the
LASSO model to select the most important predictors that influence the
response variable.

LASSO has demonstrated good empirical performance across various
contexts. When the true model is sparse (i.e. contains only a few sig-
nificant terms) and the number of predictors (k) is large relative to the
number of observations (N), LASSO often outperforms criteria like AIC
and BIC, as well as stepwise methods and ridge regression, in predictive
metrics such as mean squared error [111].

3.4. Random Forest

The RF model [112] is a robust and widely used ML algorithm for
regression and classification tasks due to its ability to model nonlinear
relationships and complex feature interactions. It constructs an
ensemble of decision trees, each trained on a different bootstrap sample
and using a random subset of predictors (random subspace method).
This combination of bagging and feature randomness mitigates over-
fitting and enhances model generalisation.

The output of the RF is the weighted average of predictions from all
trees, producing a reliable estimate of the conditional mean even under
noisy and uncertain conditions:

fx)= Zwr(x) t) ”
i _Mxeeq()
wi(x) =7 ; SV X € /5(x)) (10)

where p denotes the total number of trees, /j(x) denotes the leaf that is
obtained when dropping x down the j-th tree, and | denotes the indicator
function.

Trees are built by selecting optimal split predictors and thresholds to
minimise a criterion such as mean squared error (MSE). The key
hyperparameters include: number of trees in the forest, p, minimum leaf
size (or equivalent parameter determining the tree size), represented as
g, and the number of predictors randomly chosen for each split, indi-
cated as r. These control the bias-variance trade-off.

RF provides two methods for estimating predictor importance. The
first method, denoted as RF1, involves using out-of-bag observations
(observations not included in the bootstrap sample) and permuted
predictors. For each predictor, the importance is determined by
measuring the increase in prediction error (MSE) when the values of that
predictor are randomly permuted across the out-of-bag observations.
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This calculation is performed for every trained tree, then averaged
across the ensemble and divided by the standard deviation of the entire
ensemble.

The second method, denoted as RF2, calculates importance based on
the improvement in the split criterion (MSE) at each split in each tree.
This measure is then averaged over all trees in the forest separately for
each predictor. Consequently, predictors that effectively decrease data
variability post-splits receive a higher importance score.

3.5. Forecasting procedure

In this section, we apply the predictive models discussed in Sections
3.2-3.4, i.e. BMA, LASSO, and RF. For each model, we consider two
general specifications (without and with exogenous variables):

InRVy4, = f(InRV4; ., InRV,,, ., InRV ;. ,), 1D
and

InRVy4, = f(InRV4, ., InRV,y, -, InNRV e 1,216 1y ovvs Zs1)s (12)
wherer =1,2,...,5is the prediction horizon and 2, ¢, ..., 2;;. denote

s = 59 explanatory variables described in Section 4.

As a baseline model, we use HAR (described in Section 3.1) due to its
relative simplicity and widespread popularity in financial studies for
forecasting volatility. The HAR model is of the form (11), where f is the
simplest, i.e. linear function. The parameters of this model are estimated
by ordinary least squares.

To evaluate the effectiveness of the models, we generate out-of-
sample forecasts for both one-day ahead and one-week ahead vola-
tility. Based on models (12), we examine whether explanatory variables
improve the accuracy of volatility forecasts. Moreover, we identify
which of these variables are the most important determinants of Bitcoin
volatility.

Furthermore, we investigate the effects of data preprocessing on the
forecasting accuracy of our models. Specifically, we consider two types
of data transformations: the replacement of outliers and standardisation.
Both transformations are commonly used in data science to help
enhance the reliability and performance of ML models. The outliers,
defined as data points lower than Q; —1.5 x IQR or higher than
Q3 +1.5 x IQR are replaced by these lower and upper threshold values,
respectively, where Q; and Qs are quartiles and IQR is the interquartile
range. Standardisation is a well-known statistical technique involving
subtracting the mean and dividing by the standard deviation. We also
apply a combination of both transformations: first, we replace outliers,
and then we standardise the resulting data. All the aforementioned
transformations are applied to the exogenous variables.’

Finally, we consider four models without exogenous variables of the
form (11):

HAR, BMA, LASSO and RF,
and twelve models with exogenous variables of the form (12),
denoted as:
e BMA-X, LASSO-X and RF-X (models without any additional
transformations)
e BMA-X_ out, LASSO-X out and RF-X_out (models with outliers
replaced)
BMA-X_st, LASSO-X_st and RF-X_st (models with standardised data)
BMA-X out_st, LASSO-X out_st and RF-X_out_st (models with both
outliers replaced and standardised data).

For the daily forecasts (i.e. for 7 = 1), we utilise a rolling window

3 In addition, we also tried applying the aforementioned transformations to
RV variables as well, but this did not lead to an improvement in forecast
accuracy.
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approach. Our initial training sample covers the period from August 2,
2017, to December 31, 2019 (August 1, 2017 is not included in this
range because in case of first-differenced data first observation comes
from August 2, 2017). We train the models using this training sample
and then generate one-day-ahead forecasts for January 1, 2020. To keep
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The flowchart of our study is depicted in Fig. 2. The algorithm for
generating forecasts with a given prediction horizon 7 is presented in
Algorithm 1.

Algorithm 1. Forecasting framework with prediction horizon 7.

Algorithm 1: Forecasting framework with prediction horizon z.

Input:

e Data: RV, RVy,+, RV ¢, and s = 59 exogenous variables, z; ¢, ...

1, 2017 to March 31, 2023

, Zg ¢, from August

e Models: M’ — with lagged RV variables (11), M"' — with lagged RV and exogenous

variables (12)

e Test period: from T; (January 1, 2020) to T, (March 31, 2023)

e Prediction horizon t

Output:

Forecasts of daily realised variances ITVd‘t for the test period with a prediction horizon t

Procedure:

1. Select transformation method for exogenous variables:

e  No transformation
e Qutliers replacement
e  Standardisation

e Combination of outliers replacement and standardisation

2. ForT=T,toT,do

2.1. Construct training sets using a rolling window approach:

e For model M":

{[InRV4,, InRV,,, ¢, INnRV,y, |, INRVy ¢4 56 =T =Ty + L, T =Ty + 2,...,T — 1})

e For model M

{[InRV4s, INRV,y, ¢, INRVy 1, 21 4, oy Zg | MRV g4 56 =T =Ty + L, T — Ty +

2,...,T—T}

2.2.If T == T, or modulo(T, 25) == 0 then
Optimize hyperparameters for LASSO and RF

2.3. Train predictive models M’ and M’

2.4. Generate 7-day ahead forecast:
e Using model M":

IMRVyri= f(InRVyr_oyIn RV, In RVyyr,)

e Using model M"":

In RVd,T: = f(ln RVd,T—‘L’! in RVW,T—T! In RVm,T—‘L" Z T—1r =

’ Zs,T—r)

the training sample up to date, we add one new observation and remove
the oldest one, thereby maintaining a rolling window. With the updated
training sample, we retrain the models and generate forecasts for
January 2, 2020. This procedure is repeated, providing daily forecasts
from January 1, 2020, to March 31, 2023. This results in a total of 848
daily forecasts for each method.

For the weekly forecasts, we adopt a similar approach but generate
forecasts only once a week on Fridays. Every Friday, we forecast the
volatility for the upcoming Monday through Friday (i.e. for z from 1 to
5), and then calculate the weekly forecast as the sum of these five daily
forecasts. This process results in a total of 169 weekly forecasts for each
method.

We employed distinct approaches to optimise hyperparameters for
the LASSO and RF models. For LASSO, we selected the regularisation
parameter 1 using a 10-fold cross-validation procedure, which helps
balance model complexity and performance. In the case of RF, we
focused on optimising the minimum number of observations per leaf (q)
by minimising the out-of-bag error. This approach ensures that each leaf
contains a sufficient number of samples for reliable predictions without
overfitting. While optimising q, we kept other RF hyperparameters
constant. Specifically, we set the number of predictors randomly chosen
for each split (r) to one-third of the total number of predictors, a com-
mon practice that promotes diversity in tree construction. Additionally,
we fixed the number of trees (p) at 100, striking a balance between
model complexity and computational efficiency. This careful tuning of
hyperparameters for both LASSO and RF models aims to enhance their
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Fig. 2. The flowchart of the study.

predictive power while maintaining generalizability across different
datasets. We perform this optimisation every 25 days (equivalent to five
five-day weeks) on Fridays, starting from January 3, 2020.*

In this research, for the BMA analysis, we use the BMS package for R
[113,114]. We set the g-prior to sample size (unit information prior) and
the model prior (mprior) to the beta-binomial model prior (random). RF
and LASSO forecasting models are implemented in Matlab 2023b using,
respectively, TreeBagger and lasso functions.

To evaluate the accuracy of forecasts, we apply two fundamental
measures: the mean squared error (MSE) and the mean absolute error
(MAE). To further assess the predictive capabilities of our models, we
implement the model confidence set (MCS) procedure, as proposed by
Hansen, Lunde, and Nason [115]. This sophisticated method aims to
identify the set of best-performing models from a larger pool. The MCS
procedure operates iteratively, beginning with the full set of models and

“ For the first forecasts, i.e. for the period from January 1, 2020, to January
3, 2020, we perform the optimization on December 31, 2019.

10

sequentially eliminating those found to be significantly inferior. This
elimination process continues until the null hypothesis of equal forecast
accuracy can no longer be rejected at a specified significance level. The
resulting MCS represents the subset of models that are statistically
indistinguishable from the best model, with a certain probability.

Additionally, we employ the Superior Predictive Ability (SPA) test
[116] to complement our analysis. This test provides a robust method
for comparing the performance of multiple forecasting models against a
benchmark model, further validating our findings.

By combining these diverse evaluation techniques, we aim to provide
a robust and nuanced assessment of our models’ forecasting perfor-
mance, ensuring that our conclusions are well-supported by both
traditional metrics and advanced statistical methodologies.

4. Description of data
We analyse data obtained directly from the cryptocurrency exchange

Kraken. Data sourced from coin-ranking websites may be unreliable due
to the presence of non-traded prices, inaccurate timestamps, the use of
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Table 3

Evaluation of daily variance forecasts using MSE, MAE and the MCS test.
Method MSE Rank P-value MAE Rank P-value
HAR 0.237 9 0.091 0.998 7 0.030
BMA 0.237 8 0.091 0.998 8 0.020
BMA-X 0.380 15 0.078 1.194 16 0.001
BMA-X out 0.233 5 0.091 1.020 11 0.007
BMA-X st 0.273 13 0.091 1.130 15 0.000
BMA-X out_st 0.233 6 0.091 1.019 10 0.014
LASSO 0.251 12 0.091 1.031 13 0.004
LASSO-X 0.525 16 0.078 1.063 14 0.064
LASSO-X_out 0.203 2 0.559* 0.861 2 0.888*
LASSO-X st 0.362 14 0.078 1.013 9 0.086
LASSO-X_out_st 0.195 1 1.000* 0.860 1 1.000*
RF 0.246 11 0.091 1.027 12 0.003
RF-X 0.235 7 0.091 0.945 3 0.064
RF-X_ out 0.231 3 0.091 0.948 4 0.086
RF-X st 0.233 4 0.091 0.953 5 0.064
RF-X_out_st 0.238 10 0.091 0.962 6 0.064

Note: The values of MSE are multiplied by 10%, the values of MAE are multiplied
by 10°, the lowest values of MSE and MAE are in bold, p-value is for the MCS test,
* indicates that models belong to MCS with a confidence level of 0.90. The
evaluation period is January 1, 2020 - March 31, 2023.

non-fiat cross-rates, and potential wash trading (see [117]). We use
15-minute data to estimate RV of Bitcoin (BTC/USD). This data is uti-
lised to calculate daily, weekly, and monthly realised variances for BTC
(see formulas (1—3)). Based on the literature reviewed in Section 2 and
our own experience, we select 33 exogenous variables, which are cat-
egorised into three main groups: (1) BTC-specific factors, (2) financial
markets, and (3) market and policy uncertainty. The first group includes
factors such as trading volume, the number of transactions per day,
average block size per day, market capitalisation, the average hash rate
per day, the number of unique addresses per day, and Google searches
for Bitcoin. The financial markets group is the most extensive and in-
cludes stock indices (S&P 500, Nasdaq Composite, Euro STOXX 50, FTSE
100, Nikkei 225, Shanghai Composite), currency exchange rates
(EUR/USD, JPY,/USD, CNY,/USD), the nominal broad U.S. dollar index,
U.S. 2-year and 10-year bond yields, and commodities (NYMEX light
sweet WTI crude oil, gold spot, NYMEX Henry Hub natural gas, and
Bloomberg Commodity Index). The third group, market and policy un-
certainty, includes the CBOE Volatility Index, EURO STOXX 50 Vola-
tility Index, CBOE Gold ETF Volatility Index, an economic policy
uncertainty index based on newspapers, a Twitter-based market uncer-
tainty index, a Twitter-based economic uncertainty index, a geopolitical
risk index based on newspapers, a risk aversion index based on financial
variables, an uncertainty index based on financial variables, and an in-
fectious disease equity market volatility tracker based on newspapers.

The data comes from various sources, which are detailed in Table 2.
Since we utilise only daily data, we exclude variables with monthly or
quarterly frequency, such as macroeconomic factors. Table 2 also in-
cludes a brief economic explanation of how each group of variables may
affect BTC volatility. The data spans from August 1, 2017, to March 31,
2023.

The cryptocurrency market is active on weekends. However, we
exclude weekend observations (i.e., Saturdays and Sundays) to ensure
temporal alignment with traditional financial market data - particularly
equities - which are used as explanatory variables in our models of BTC
volatility.

For each exogenous factor presented in Table 2, we calculate two
variables. For the variables in the first and third groups, i.e., BTC-
specific factors and market and policy uncertainty, we apply”:

5 The exception is the variable infectious disease equity market volatility
tracker based on newspapers, for which due to numerous zero values, loga-
rithms are not calculated.
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Table 4
Evaluation of daily variance forecasts based on the SPA test.
Compared methods MSE MAE
P-value P-value

BMA vs. BMA-X 0.768 0.917
BMA vs. BMA-X_out 0.019 0.947
BMA vs. BMA-X st 0.766 0.943
BMA vs. BMA-X_out_st 0.017 0.943
BMA-X_out vs. BMA-X st 0.784 0.911
BMA-X out vs. BMA-X out_st 0.773 0.122
LASSO vs. LASSO-X 0.752 0.683
LASSO vs. LASSO-X_out 0.048 0.000
LASSO vs. LASSO-X st 0.753 0.462
LASSO vs. LASSO-X out_st 0.073 0.000
LASSO-X_out vs. LASSO-X st 0.893 0.912
LASSO-X out vs. LASSO-X_out_st 0.232 0.403
RF vs. RF-X 0.073 0.000
RF vs. RF-X out 0.072 0.000
RF vs. RF-X st 0.082 0.000
RF vs. RF-X_out_st 0.045 0.000
RF-X_out vs. RF-X st 0.835 0.799
RF-X_out vs. RF-X_out_st 0.906 0.962

Note: The table presents p-values of the SPA test for pairs of models (displayed at
the left). A p-value lower than a significance level means that the forecasts from
the second model are more accurate than the forecasts from the first model,
which is used as a benchmark model (the p-values lower than 0.1 are in bold).
The evaluation period is January 1, 2020 - March 31, 2023.

the logarithm: Inx;,
o the first difference of logarithms: Ax, = Inx; — Inx,_;.

The logarithmic transformation is commonly used in econometrics
to stabilize variance, whereas the first difference of logarithms is
often used to remove trends.

For financial series, it is common to analyse returns and their
volatility. Therefore, for the variables in the second group, two
measures are calculated:
the logarithmic return: r, = In(x¢/x;_1),

e the Parkinson of
(/L) /(41n2),

estimator variance®  [118]: o3, =

where H; and L, are the high and low prices of the day, respectively.
The Parkinson estimator is utilised because it does not require intraday
data and is more than 4.9 times as efficient as the variance estimator
based on closing prices (see [118]).

We use the following prefixes to denote these transformations: In, A,
r, and v for the logarithm, the first difference of logarithms, the loga-
rithmic return, and the Parkinson estimator of variance, respectively.
Descriptive statistics for all analysed series are presented in Table A.1 in
the Appendix. The data is available at the following address: https://doi.
org/10.18150/SJHAHR.

Before the experimental studies, we tested the stationarity’ of all
exogenous variables using the Dickey-Fuller test.® For the following
seven variables, the null hypothesis of a unit root could not be rejected:
In_volume, In_transactions, In_block, In_capital, In_addresses, In_USDX,
and In_unc_bex. As a result, these series are excluded from the analysis,
and the study is ultimately conducted on 59 stationary time series.

6 The exception is the variable nominal broad U.S. dollar index, for which
due to the lack of daily low and high values, logarithms and logarithmic returns
are calculated.

7 The stationarity of variables is important for volatility modeling (see, e.g.,
[119]).

8 These results are available from the authors upon request.
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5. Empirical evaluation of forecasting models
5.1. Daily forecasts

In this section, we evaluate daily forecasts of BTC volatility. Firstly,
we present results for all considered models (described in Section 5.1)
jointly, based on the MCS test (see Table 3).

According to the both MSE and MAE measures, the most accurate
forecast of variance are based on the LASSO-X_out_st method. However,
the MCS test shows that in the set of best models, there are two kinds of
LASSO models, namely LASSO-X_out_st and LASSO-X out. Both models
incorporate exogenous variables with outlier replaced, highlighting the
effectiveness of this preprocessing step. When the LASSO method is used
to the model with untransformed or only standardised regressors the
forecasting accuracy is much lower.

The third place in the ranking takes RF-X_out for the MSE criterion
and RF-X for the MAE measure. The results show that the RF model with
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exogenous variables predicts volatility of BTC much better than BMA.

Among models that do not incorporate exogenous variables, the HAR
and BMA models demonstrate superior performance. This finding aligns
with the conclusions of Dudek, Fiszeder, Kobus, and Orzeszko [15], who
analysed models without exogenous variables. Their study revealed that
simple linear models perform comparably to, if not better than, more
complex alternatives in predicting volatility.

For robustness, we apply two additional evaluation measures: the
quasi-likelihood loss function (QLIKE) and the coefficient of determi-
nation from the Mincer-Zarnowitz regression (R?). The results of these
measures are reported in Table A.2 in the Appendix. The conclusions
drawn from QLIKE and R? are broadly consistent with those obtained
using MSE and MAE. It is worth noting the relatively high values of the
coefficient of determination for the LASSO-X_out_st and LASSO-X_out
models, which indicate their strong forecasting performance.

To derive more precise conclusions about the performance of indi-
vidual forecasting methods, we employ the SPA test. This test allows us
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Fig. 3. Average importance of BTC volatility drivers.
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to evaluate the models in pairwise comparisons, with the results pre-
sented in Table 4.

Adding untransformed regressors to the model increases the accu-
racy of variance forecasts only in the case of the RF model. It means that
linear models like BMA and LASSO are unable to effectively use the
information contained in the exogenous variables. In contrast, the RF
model handles this quite well probably because it is well-suited to
nonlinear relationships in the data and makes robust predictions.

Next, we check whether transformed exogenous variables influence
the accuracy of predictions for each of the analysed methods separately.
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Firstly, we check the impact of the replacement of outliers in exogenous
variables. For the BMA model such impact is ambiguous. The explana-
tory variables increase the accuracy of forecasts according to the MSE
measure but have no influence under the MAE criterion. In contrast, for
both LASSO and RF, such regressors improve forecasts of BTC variance.

The second transformation of exogenous variables, i.e. stand-
ardisation does not improve forecasts for the BMA and LASSO models
but increases the forecasting accuracy for RF. Moreover, for all analysed
methods, standardisation does not improve forecasts in comparison to
replacing of outliers, regardless of whether it is used as the only

| BN 02
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2022 2023

Fig. 4. Importance of BTC volatility drivers over time based on PIP in the BMA procedure.
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transformation method or in combination with replacing of outliers. It
means that standardisation is not necessary for our explanatory vari-
ables. However, it is important to note that our analysis is restricted to
stationary variables with limited variability, achieved through the
calculation of logarithms and their first differences, or alternatively,
variances and returns. If someone analyses completely raw data,
standardisation may be desirable to improve forecasting accuracy.

To identify the most influential factors explaining BTC variance, we
employ four distinct methods: the posterior inclusion probability in
BMA, the occurrence frequency of variable in LASSO models, and two RF
techniques based on permutation across out-of-bag observations (RF1)
and improvement in the split criterion (RF2). Our estimations utilise a
rolling window, as detailed in Section 5.1. Fig. 3 presents the results of
this analysis, which focuses on the BMA-X_out, LASSO-X out, and RF-
X out models - variants incorporating exogenous variables with out-
liers replaced. We select this variant as it yields superior forecasting
performance across all three types of models, providing a comprehen-
sive and robust assessment of factor importance in BTC variance
explanation.

The most important drivers of BTC variance are: In RVy, In RV,
In RV}, A_volume, In_Google and A_Google which denote, respectively,
logarithms of daily, weekly and monthly realised variances, the first
differences of logarithmised trading volume of BTC, logarithms of
Google searches for Bitcoin and the first differences of logarithmised
Google searches for Bitcoin. Indications of various methods are similar,
however, there are some differences. The method based on PIP in the
BMA model selects the smallest number of crucial factors. The In RV,,,
A_volume and A_Google variables exhibit markedly less impact on Bit-
coin variance when assessed through this approach, contrasting with the
higher influence suggested by alternative methodologies.

Our analysis reveals a subset of explanatory factors that exhibit
limited influence on Bitcoin volatility across certain methodologies. This
group encompasses a diverse array of variables, including market cap-
italisation, the average hash rate per day, returns of the FTSE 100 index,
variance of the JPY/USD currency pair, variance of WTI crude oil, the
VIX Volatility Index, the EURO STOXX 50 Volatility Index, the CBOE
Gold ETF Volatility Index, the economic policy uncertainty index, the
Twitter-based market uncertainty index, the Twitter-based economic
uncertainty index, the risk aversion index based on financial variables,
the infectious disease equity market volatility tracker based on news-
papers. While previous studies have attributed a significant impact to
many of these factors in shaping BTC volatility (as detailed in Section 2),
our comprehensive investigation suggests that their importance is
considerably lower than previously thought, challenging established
notions about the primary drivers of cryptocurrency market dynamics.

Based on the forecasts for successive time points, we also analyse the
influence of the crucial explanatory variables on BTC variance over time.
These results are given in Figs. 4-7.

In_RVBTCd
In_RVBTCw
In_RVBTCm
A_volume
In_hash
In_Google
A_Google
v_JPY
v_oil

r_ BCOM
infectious
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The temporal analysis of explanatory variables’ influence on Bitcoin
variance yields method-dependent results, revealing nuanced dynamics
in cryptocurrency market drivers. Notably, Bitcoin trading volume
exhibited heightened impact in 2020, while the significance of Google
searches for Bitcoin diminished during 2022-23 (illustrated in Figs. 4
and 6-7). Furthermore, PIP in the BMA procedure identifies additional
crucial volatility drivers: WTI crude oil variance emerged as particularly
influential in 2020, while the JPY/USD currency pair variance gained
prominence in 2023. These temporal shifts in factor importance un-
derscore the evolving nature of Bitcoin’s relationship with broader
economic indicators and market sentiment.

5.2. Weekly forecasts

We extend our analysis to weekly volatility forecasts, employing the
MCS test to evaluate all models collectively. Table 5 presents these re-
sults, revealing distinct performance patterns across different evaluation
criteria.

Under the MSE measure, RF models demonstrate superior perfor-
mance, with RF-X_out, RF-X_st, and RF-X occupying the top three posi-
tions, respectively. In contrast, BMA models yield the weakest results.
However, it is worth noting that the inclusion of explanatory variables
with outliers removed significantly improved the accuracy of the BMA
forecasts. Similarly, for both LASSO and RF, the addition of explanatory
variables led to a substantial reduction in MSE. Unlike in the case of
BMA, this improvement holds even when untransformed or merely
standardised regressors are added.

Conversely, the MAE criterion favours LASSO models, with LASSO-X
leading, followed by LASSO-X out_st and LASSO-X out. BMA consis-
tently underperforms, ranking below even the HAR model. As with the
MSE results, the inclusion of explanatory variables substantially en-
hances the performance of both LASSO and RF models under the MAE
criterion.

The MCS test indicates a broad set of best-performing models for
both MSE and MAE, likely due to the limited sample size of 169 weekly
forecasts. For both error measures, BMA-X and BMA-X st are signifi-
cantly outperformed by other models. Additionally, under the MAE
criterion, the HAR, BMA, and RF models are excluded from the MCS set.

To enhance robustness, we also apply two additional evaluation
measures: QLIKE and R2. The results of these measures are reported in
Table A.3 in the Appendix. Overall, the outcomes based on QLIKE and R?
are broadly consistent with those derived from MSE and MAE. More-
over, the values of the coefficient of determination are significantly
lower for weekly forecasts than for daily forecasts, indicating that non-
overlapping weekly data are substantially more challenging to predict.

Similarly to the daily forecasts, we also use the SPA test for pairwise
model comparisons, detailed in Table 6.

The SPA test leads to very similar conclusions regardless of whether

Lasso
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Fig. 5. Importance of BTC volatility drivers over time based on the significance of variables in LASSO.



P. Fiszeder et al.

Applied Soft Computing 188 (2026) 114384

RF1 In_RVBTCd
3 T T T T T T In_RVBTCW
In_RVBTCm
A_volume
25 In_Google
Others
2 W
e 1.
g A
8. \l h' *llu M“‘ I
£ 1 ﬂ‘ﬂ
0.5
|
0
-0.5 I 1 I I I 1 1 1 I

2020

2021

2022 2023
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Fig. 7. Importance of BTC volatility drivers over time based on the improvement in the split criterion for RF (standardised data to enhance readability).

it is applied to the MSE or MAE criterion. Most notably, the results of this
test for the BMA model differ markedly from those obtained for the
LASSO and RF models. BMA shows limited improvement from exoge-
nous variables, except when using outlier-replaced variables under the
MSE criterion. In contrast, LASSO and RF models consistently benefit
from both raw and transformed exogenous variables across both eval-
uation measures, highlighting their superior ability to leverage addi-
tional information.

Notably, for LASSO and RF models, untransformed exogenous

15

variables significantly enhance weekly Bitcoin volatility forecasts. The
SPA test suggests that further transformations, such as outlier replace-
ment or standardisation, offer no additional forecasting accuracy im-
provements, rendering them unnecessary for these approaches.
Comparing the weekly and daily results, it can be observed that the
RF model performs better in weekly forecasts than in daily ones. This
improvement may be attributed to the model’s ability to capture com-
plex nonlinear patterns, which are more pronounced in aggregated
weekly data. Weekly volatility tends to smooth out high-frequency noise
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Table 5

Evaluation of weekly variance forecasts based on the MCS test.
Method MSE Rank P-value MAE Rank P-value
HAR 0.240 12 0.150* 0.503 13 0.025
BMA 0.240 13 0.106* 0.504 14 0.052
BMA-X 0.311 16 0.068 0.576 16 0.076
BMA-X out 0.233 10 0.325* 0.483 10 0.425*
BMA-X st 0.295 15 0.068 0.568 15 0.032
BMA-X out_st 0.233 9 0.411* 0.482 9 0.553*
LASSO 0.245 14 0.068 0.498 12 0.315*
LASSO-X 0.225 4 0.883* 0.459 1 1.000*
LASSO-X_out 0.229 7 0.570* 0.462 3 0.834*
LASSO-X st 0.228 6 0.591* 0.466 4 0.747*
LASSO-X_out_st 0.229 8 0.520* 0.461 2 0.834*
RF 0.236 11 0.244* 0.495 11 0.071
RF-X 0.225 3 0.883* 0.468 5 0.826*
RF-X_ out 0.224 1 1.000* 0.471 7 0.661*
RF-X st 0.224 2 0.971* 0.470 6 0.687*
RF-X_out_st 0.226 5 0.660* 0.472 8 0.661*

Note: The values of MSE are multiplied by 105, the values of MAE are multiplied
by 102, the lowest values of MSE and MAE are in bold, p-value is for the MCS test,
* indicates that models belong to MCS with a confidence level of 0.90. The
evaluation period is January 1, 2020 - March 31, 2023.

Table 6
Evaluation of weekly variance forecasts based on the SPA test.
Compared methods MSE MAE
P-value P-value

BMA vs. BMA-X 0.837 0.845
BMA vs. BMA-X out 0.049 0.109
BMA vs. BMA-X st 0.824 0.849
BMA vs. BMA-X_out_st 0.045 0.098
BMA-X vs. BMA-X_out 0.154 0.143
BMA-X vs. BMA-X st 0.152 0.186
LASSO vs. LASSO-X 0.058 0.027
LASSO vs. LASSO-X_out 0.047 0.003
LASSO vs. LASSO-X st 0.051 0.024
LASSO vs. LASSO-X _out_st 0.051 0.004
LASSO-X vs. LASSO-X_out 0.798 0.645
LASSO-X vs. LASSO-X st 0.901 0.547
RF vs. RF-X 0.045 0.006
RF vs. RF-X_ out 0.030 0.015
RF vs. RF-X st 0.026 0.006
RF vs. RF-X_out_st 0.057 0.013
RF-X vs RF-X out 0.288 0.783
RF-X vs. RF-X_st 0.325 0.739

Note: The table presents p-values of the SPA test for pairs of models (displayed at
the left). A p-value lower than a significance level means that the forecasts from
the second model are more accurate than the forecasts from the first model,
which is used as a benchmark model (the p-values lower than 0.1 are in bold).
The evaluation period is January 1, 2020 - March 31, 2023.

present in daily returns, thereby emphasizing underlying structural re-
lationships that are better suited for nonparametric models such as RF.
In contrast, daily volatility is more influenced by short-term fluctuations
and random shocks, which may obscure the nonlinear dependencies that
RF is designed to exploit. While this issue merits further examination,
such an extension is constrained by the limited availability of non-
overlapping weekly observations.

The BMA model performs worse than LASSO in both daily and
weekly forecasts, likely because it incorporates too many explanatory
variables, including those with limited or no predictive power. This can
introduce estimation noise and reduce forecast precision, especially
when multicollinearity is present. LASSO, by contrast, performs variable
selection and regularization simultaneously, improving generalization
by retaining only the most informative predictors.

5.3. Contextualizing our results in the literature

The results we have obtained are unique, as other studies in the
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literature are different in methods, explanatory variables, research pe-
riods and frequency of data. In particular, it is not possible to directly
confront our results with other studies, as, to the best of our knowledge,
no previous work has compared BMA, LASSO, and RF in out-of-sample
forecasting of BTC volatility using explanatory variables. Lehrer, Xie,
and Yi [61] compared LASSO and RF models using a sentiment index
derived from Twitter. For all forecast horizons considered, i.e., 1, 2, 4,
and 7 days, the RF model significantly outperformed the LASSO model.
Their study used data from May 20, 2015, to August 20, 2017, which
precedes the period analysed in our study.

Bakas, Magkonis, and Oh [28] examined the importance of 22 po-
tential determinants of Bitcoin volatility over the period from August
2010 to May 2020 using dynamic BMA. They identified Google Trends,
total Bitcoin circulation, U.S. consumer confidence, and the S&P 500
index as the most important factors influencing Bitcoin volatility.
However, they used monthly data and did not conduct an out-of-sample
forecasting study.

Research on the accuracy of out-of-sample volatility forecasts that
jointly considers a wide range of potential drivers within a single model
remains scarce (see Section 2 for the detailed review). Zhou, Xie, Wang,
Gong, and Zhu [99] demonstrated a significant impact of the 10 ana-
lysed variables on daily BTC volatility; however, their results varied
across different time periods — namely, before and during the COVID-19
pandemic - as well as across the adopted time scales. Notably, the au-
thors did not account for BTC-specific factors such as trading volume
and Google search activity, which emerged as the most important pre-
dictors in our study.

Wang, Ma, Bouri, and Guo [19] utilized 17 economic variables and 3
technical strategies to forecast BTC volatility. According to the LASSO
model, the most frequently selected variables in their study were the
trade-weighted USD index return, S&P 500 RV, and the global real
economic activity index. However they relied on monthly data and in
contrast to our study, they did not consider BTC-specific factors such as
trading volume, and did not apply nonlinear ML methods.

Feng, Qi, and Lucey [21] used 19 economic variables and indicators to
forecast daily BTC volatility. The most important drivers of volatility were
the hash rate and the effective federal funds rate. While these results differ
significantly from ours, their out-of-sample forecasting period was much
narrower, namely, from October 19, 2021, to December 31, 2022.
Moreover, the authors did not use nonlinear ML methods.

The most comprehensive study was conducted by Wang, Andreeva,
and Martin-Barragan [88], who used 27 external and 6 internal de-
terminants to forecast daily, weekly, and monthly BTC volatility. Un-
fortunately, their analysis is divided into two parts: one focusing on
internal variables (this set includes, for example, BTC trading volume),
and another on external drivers. The adjusted closing prices of the
NASDAQ and S&P 500 indices, as well as Google search activity, were
identified as the most influential external determinants. However, the
analysis was conducted separately for the two sets of variables rather
than within a unified model.

5.4. Discussion

1. The main goal of this work is to identify the primary drivers of Bit-
coin volatility using various predictive models. It must be emphas-
ised that this task is very challenging due to the nature of the time
series data for both Bitcoin volatility and the exogenous variables,
which lack distinctive patterns, strong seasonality, and exhibit
chaotic trends and large random fluctuations. Key factors contrib-
uting to the high volatility of cryptocurrencies include the lack of
fundamental value, making their prices highly dependent on volatile
market demand, and the strong influence of market sentiment and
speculation driven by news events and social media. Additionally,
the absence of regulatory oversight, market immaturity, low capi-
talisation, and limited historical data further complicate accurate
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price forecasting and increase susceptibility to significant price

fluctuations.

2. It should be noted that the results, specifically the importance of
considered exogenous variables as BTC volatility drivers, depend on
the predictive model used. Different models combine variables in
various ways, leading to discrepancies in the perceived importance
of each variable. For instance, RF constructs more complex models
than linear models such as LASSO and BMA. RF can capture intricate
relationships between variables, which linear models might overlook
due to their simpler structure. Consequently, linear models can only
identify drivers that have a linear impact on BTC volatility, whereas
more complex models can reveal nonlinear influences.

3. Note that the predictive models we used have fundamentally
different mechanisms for estimating variable importance, and thus,
the importance determined by each model carries a different
meaning. Here is a clarification of these differences:

e BMA accounts for model uncertainty in the variable selection
process by averaging over the best models within the model class
according to their approximate posterior model probability. Vari-
ables with higher model-averaged estimates are considered more
important, as they consistently contribute to the best-performing
models.

e LASSO minimises a regularised loss function, which is particularly
useful for feature importance estimation because it can shrink
some coefficients in a linear model to zero, effectively performing
variable selection. The non-zero coefficients provide an indication
of the importance of the corresponding variables. This method
highlights variables that have a significant linear relationship with
the target variable.

e RF employs two methods for calculating variable importance:

a. Permutation Importance: This method utilises out-of-bag ob-
servations. It involves shuffling the values of a variable in the
out-of-bag set and measuring how much the permutation de-
creases the model’s accuracy. The variable importance is
calculated as the difference between the baseline accuracy and
the accuracy after shuffling, averaged over all trees. This
method reflects how much the model relies on each variable for
making accurate predictions.

b. Improvement in the split criterion: Each time a variable is used
to split a node, the reduction in the split criterion (MSE) is
calculated for the child nodes. The variable importance is
computed as the total reduction of the criterion brought by that
variable, averaged over all trees in the forest. This method in-
dicates how well each variable contributes to making splits that
improve the purity of the nodes.

In summary, while BMA focuses on averaging model contri-
butions to account for uncertainty, LASSO highlights variables
with significant linear relationships, and RF emphasises the
reduction in prediction error and split criterion. Understanding
these different mechanisms helps in interpreting the impor-
tance of variables in a more nuanced way, depending on the
model used.

4. The influence of the factors affecting Bitcoin volatility was time-
varying. The impact of BTC trading volume and Google searches
for Bitcoin was much higher during the COVID-19 pandemic. The
obtained results extend the previous findings in the literature.
Guzman, Pinto-Gutiérrez, and Trujillo [120] found that during the
coronavirus pandemic investors traded more BTC on days with low
mobility connected with lockdown mandates. Moreover, Corbet,
Hou, Hu, Larkin, Lucey, and Oxley [121] analysed the connections
between cryptocurrency volatility and liquidity (measured by
trading volume) during the outbreak of the pandemic. Results sug-
gest that liquidity increased sharply, in accordance with the WHO
announcements of a worldwide pandemic.

According to the results of our study, the significance of Google

searches was stronger during the COVID-19 pandemic and
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diminished during 2022-23. This conclusion expands research re-
sults from Salisu, and Ogbonna [77], who analysed the influence of
information from Google Trends on the volatility of Bitcoin, Ether-
eum, Litecoin and Ripple. They showed a positive impact of news on
the volatility of cryptocurrencies, which was higher during the
coronavirus pandemic than the period before it.

According to PIP in the BMA procedure the WTI crude oil variance
influenced significantly BTC volatility in 2020. Our results yet again
extend the findings of previous results in the literature. Maghyereh,
and Abdoh [67] investigated volatility interlinkages between Bitcoin
and various financial assets. They found that the volatility coherence
between Bitcoin and crude oil was limited and occurred only during
the COVID-19 pandemic - primarily in the early period from January
to May 2020, and later in November 2020. A significant increase in
posterior inclusion probabilities for the crude oil index was also
observed in 2020 by Bakas, Magkonis, and Oh [28]. Furthermore,
according to the study by Zhou, Xie, Wang, Gong, and Zhu [99], the
short-term influence of oil volatility on Bitcoin volatility was positive
before the COVID-19 pandemic but turned negative during the
pandemic. Moreover, Elsayed, Gozgor, and Lau [48] observed
changes in the direction of return and volatility spillovers between
oil and BTC during the pandemic; however, these changes were very
short-term.

5. As traditional financial markets operate from Monday to Friday, we
excluded all data from Saturdays and Sundays from our analysis. To
account for weekend trading effects in future studies, several ap-
proaches could be considered:

e separate modelling of weekend volatility, e.g., estimating vola-
tility on weekends separately or including weekend-specific vari-
ance components;

e using dummy variables to capture potential weekend spillover

effects;

employing mixed-frequency models (such as GARCH-MIDAS) that

can accommodate differing trading calendars or allow for contin-

uous crypto data to inform models of lower-frequency (weekday-
only) data.

These adjustments could improve the understanding of inter-
market volatility transmission across different trading calendars.

6. Conclusions

The cryptocurrency market is constantly developing, and its impor-
tance is growing every year. This is confirmed by the increasing number
of crypto assets, growing capitalisation and the increasing number of
new derivatives and other instruments.

Despite the growing development of the cryptocurrency market, the
volatility of these instruments is still enormous compared to other
financial assets. This high variability is a serious problem because it
plays an important role in many financial strategies. It is crucial, for
example, for the construction of portfolios, hedging, valuation of de-
rivatives, and risk management.

Forecasting the huge volatility of cryptocurrencies is very difficult,
and the application of standard volatility models such as the GARCH
model does not give satisfactory results (see [15]). That is why we apply
in this study more advanced forecasting methods: HAR, BMA, LASSO
and RF, and use the widest in the literature set of explanatory variables
which potentially can influence Bitcoin volatility. Three of the methods
used, namely, BMA, LASSO and RF have built-in mechanisms for vari-
able selection, allowing us to evaluate variable importance. We show
that LASSO and RF models with exogenous variables significantly in-
crease the accuracy of both daily and weekly BTC variance forecasts in
comparison to the models which include only lagged volatilities of BTC.
Of the wide set of variables taken for the study, the ones with the
greatest impact on BTC volatility are lagged daily, weekly and monthly
realised variances of BTC, trading volume of BTC and Google searches
for Bitcoin. Moreover, this influence of the variables on BTC volatility is
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time-varying and underscores the evolving nature of Bitcoin’s rela-
tionship with broader economic indicators and market sentiment.

For daily forecasts, linear models BMA and LASSO are unable to use
the information contained in the untransformed exogenous variables
effectively. In contrast, the RF model handles this quite well probably
because it is well-suited to nonlinear relationships in the data and makes
robust predictions. The most accurate daily forecasts of Bitcoin variance
are based on the LASSO model, provided that outliers have been
replaced in exogenous variables.

In the case of weekly forecasts, the results depend on the adopted
error measure. According to the MSE criterion, the best forecasts are
from the RF model, while the MAE measure indicates the LASSO model.
For RF and LASSO, incorporating untransformed exogenous variables
significantly enhances the accuracy of weekly forecasts compared to
models without exogenous inputs. However, further processing through
outlier replacement and standardisation does not lead to additional
improvements in accuracy.

The study’s results offer valuable insights for investors and other
participants in the crypto-asset markets. The identified relationships can
aid investment decision-making, particularly in evaluating volatility and
managing investment risk. The findings suggest that several persistent
factors with predictive capabilities can be identified, along with other
factors that may show such characteristics during specific periods. The
findings further suggest that, beyond price movements, investors and
other market participants should continuously monitor additional
cryptocurrency market characteristics, such as volatility and trading
volume, as these exhibit strong predictive properties concerning future
market volatility. In addition, market sentiment, as proxied by the
Google Trends index, remains an important subject of ongoing analysis
by market participants. The proposed methods allow for including these
factors and their adjustment over time. These results may also benefit
supervisory authorities, market makers, and crypto-asset market orga-
nisers in monitoring market conditions and preparing for increased or
decreased volatility.

Our research can be further developed and expanded in several di-
rections in the future. First, alternative forecasting methods and
different variable selection techniques could be explored. Our study
focused solely on forecasting models that incorporate an internal
mechanism for predictor evaluation. However, other variable selection
methods exist and could be applied to a broader class of forecasting
models (e.g., [122]). Second, it would be valuable to consider other
cryptocurrencies to determine whether our findings for BTC volatility
can be generalised to other digital assets. Third, our study highlighted
the significant impact of data preprocessing. Therefore, it seems crucial
to also consider alternative preprocessing methods beyond outlier
replacement and standardisation, which could further enhance forecast
accuracy.

Appendix

Table A.1
Summary statistics of analysed data
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Variable Mean Minimum Maximum Standard deviation Skewness Excess kurtosis
In_ RVBTCd -6.9006 -10.7399 -2.0680 1.1302 0.11 0.61
In_ RVBTCw -6.7185 -9.6766 -3.2473 0.9867 0.11 0.78
In_RVBTCm -6.5401 -8.5368 -4.4751 0.8165 0.29 0.11
BTC-specific factors

In_volume 23.6402 20.5061 26.5840 0.9535 -0.78 -0.07
A_volume 0.1802 -1.8737 1.8624 0.2283 0.25 7.38
In_transactions 12.5611 11.7896 13.1035 0.1751 -0.42 0.08
A_transactions 0.0234 -0.5606 0.4753 0.0923 -0.06 4.15
In_block 0.1343 -0.5681 0.9135 0.1885 -0.10 2.14
A_block 0.0538 -0.5584 0.4529 0.1034 -0.02 2.40

(continued on next page)
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Table A.1 (continued)

Variable Mean Minimum Maximum Standard deviation Skewness Excess kurtosis
In_capital 26.2492 24.5166 27.8760 0.8613 0.21 -1.13
A_capital 0.1651 -0.2929 0.1824 0.0436 -0.29 3.84
In_hash 18.2476 15.2227 19.8023 0.9378 -0.94 0.31
A_hash 0.2750 -0.5486 0.5803 0.1228 -0.02 0.73
In_addresses 13.3246 12.6153 13.8858 0.1839 -0.28 -0.20
A_addresses 0.0273 -0.4786 0.4051 0.0824 -0.20 3.02
In_Google 2.6803 1.5539 4.6052 0.5249 0.52 -0.21
A_Google 0.0097 -1.0537 1.4697 0.1941 1.16 9.34
Financial markets

r_S&P 0.0335 -0.1277 0.0897 0.0130 -0.83 14.53
v_S&P 0.0084 0.0001 0.2577 0.0180 7.84 83.88
r_Nasdaq 0.0432 -0.1315 0.0893 0.0153 -0.63 7.61
v_Nasdaq 0.0119 0.0001 0.3341 0.0212 6.78 68.87
r_STOXX 0.0147 -0.1324 0.0883 0.0125 -0.99 14.21
v_STOXX 0.0096 0.0000 0.4799 0.0242 11.96 195.47
r FTSE 0.0022 -0.1151 0.0867 0.0107 -1.15 15.93
v_FTSE 0.0076 0.0001 0.3505 0.0185 10.85 160.42
r_Nikkei 0.0225 -0.0627 0.0773 0.0117 -0.13 4.15
v_Nikkei 0.0057 0.0000 0.2984 0.0133 12.74 228.19
r_SSE -0.0002 -0.0804 0.0555 0.0106 -0.66 5.69
v_SSE 0.0070 0.0003 0.1364 0.0087 5.34 52.94
r EUR -0.0056 -0.0206 0.0212 0.0046 -0.03 1.42
v_EUR 0.0023 0.0000 0.0292 0.0026 4.21 27.73
r JPY 0.0125 -0.0386 0.0316 0.0051 -0.42 8.10
v_JPY 0.0027 0.0000 0.0750 0.0052 7.72 79.87
r.CNY 0.0014 -0.0162 0.0158 0.0029 -0.13 3.64
v_CNY 0.0005 0.0000 0.0088 0.0007 4.48 31.31
In_USDX 4.7497 4.6681 4.8545 0.0376 0.41 0.01
r_USDX 0.0057 -0.0191 0.0187 0.0031 0.23 3.00
r Us2y 0.0753 -0.3452 0.3535 0.0466 -0.19 12.26
v_US2Y 0.2628 0.0000 12.0719 0.7982 8.00 84.31
r_.US10Y 0.0294 -0.3241 0.3678 0.0362 0.06 24.91
v_US10Y 0.1295 0.0000 20.0079 0.6547 21.36 592.96
r_oil 0.0266 -0.3454 0.3196 0.0337 -0.96 29.97
v_oil 0.1024 0.0025 10.2820 0.4147 15.07 298.70
r_gold 0.0301 -0.0590 0.0430 0.0087 -0.40 3.78
v_gold 0.0082 0.0000 0.3033 0.0139 10.07 161.42
r_gas -0.0192 -0.3005 0.3817 0.0409 0.12 9.08
v_gas 0.1296 0.0026 9.6801 0.2884 25.03 815.68
r_.BCOM 0.0199 -0.0526 0.0406 0.0097 -0.62 3.52
v_BCOM 0.0065 0.0003 0.2500 0.0100 11.66 248.33
Market and policy uncertainty

In_VIX 2.9501 2.2127 4.4151 0.3625 0.36 0.38
A_VIX 0.0418 -0.2662 0.7682 0.0817 1.55 8.59
In_VSTOXX 2.9729 2.3684 4.4499 0.3425 0.71 0.69
A_VSTOXX 0.0239 -0.3452 0.4857 0.0769 1.02 4.12
In_.GVZ 2.7203 2.1838 3.8914 0.2801 0.45 0.18
A_GVZ -0.0001 -0.2657 0.2977 0.0518 0.71 3.51
In_EPU 4.7738 2.3906 6.6941 0.6055 0.28 0.34
A_EPU 0.0015 -1.7103 1.9415 0.4669 0.12 0.72
In_TMU-SCA 4.0229 1.2415 6.3766 0.5599 0.38 1.70
A_TMU-SCA -0.1053 -2.3297 2.2601 0.4266 0.42 2.95
In_TEU-SCA 4.0605 1.2687 5.9715 0.5757 0.15 0.58
A_TEU-SCA 0.0156 -1.8670 2.3983 0.4033 0.15 2.99
In_GPR 4.6338 2.2504 6.2965 0.4687 -0.12 1.03
A_GPR -0.0228 -2.9959 2.3449 0.4767 -0.16 1.74
In_RA_BEX 1.0962 0.8860 3.2718 0.2047 4.28 31.47
A_RA_BEX 0.0110 -1.1791 1.2980 0.0774 3.20 127.58
In_UNC_BEX -10.2622 -11.3851 -8.6406 0.4254 0.44 1.57
A_UNC_BEX 0.0316 -0.2775 0.4355 0.0479 1.63 15.09
infectious 8.1746 0.0000 68.3700 10.2598 1.85 4.57
A_infectious 0.6691 -42.9800 40.9300 6.7918 0.05 7.92

Note: The mean values for variables A _, r_, v_and minimum, maximum, standard deviation for variables v_are multiplied by 102 The analysed period is August 1, 2017
- March 31, 2023.
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Table A.2

Evaluation of daily variance forecasts using QLIKE and R?
Method QLIKE Rank P-value R? Rank
HAR -5.562 14 0.000 0.153 11
BMA -5.562 13 0.000 0.153 10
BMA-X -5.599 9 0.000 0.057 14
BMA-X out -5.591 12 0.001 0.169 8
BMA-X st -5.597 10 0.000 0.094 13
BMA-X out_st -5.591 11 0.000 0.169 7
LASSO -5.532 15 0.001 0.161 9
LASSO-X -5.731 3 0.022 0.030 16
LASSO-X_out -5.754 2 0.599* 0.435 2
LASSO-X st -5.726 4 0.010 0.046 15
LASSO-X_out_st -5.757 1 1.000* 0.510 1
RF -5.530 16 0.001 0.131 12
RF-X -5.695 7 0.017 0.219 5
RF-X_out -5.702 5 0.027 0.233 3
RF-X st -5.696 6 0.020 0.228 4
RF-X_out_st -5.686 8 0.022 0.195 6

Note: The lowest values of QLIKE and the highest value of R? are in bold, p-value is for the MCS test, * indicates that models belong to MCS
with a confidence level of 0.90. The evaluation period is January 1, 2020 - March 31, 2023.

Table A.3

Evaluation of weekly variance forecasts using QLIKE and R?
Method QLIKE Rank P-value R? Rank
HAR -3.444 13 0.001 0.082 14
BMA -3.441 14 0.001 0.081 15
BMA-X -3.534 6 0.631* 0.090 10
BMA-X_out -3.340 16 0.408* 0.088 12
BMA-X st -3.488 12 0.225* 0.092 9
BMA-X out_st -3.340 15 0.394* 0.089 11
LASSO -3.495 11 0.686* 0.067 16
LASSO-X -3.499 10 0.729* 0.129 3
LASSO-X_out -3.507 8 0.753* 0.141 1
LASSO-X st -3.538 5 0.904* 0.120 7
LASSO-X out_st -3.501 9 0.731* 0.140 2
RF -3.524 7 0.868* 0.083 13
RF-X -3.705 4 1.000* 0.123 6
RF-X_out -3.727 3 1.000* 0.123 5
RF-X st -3.743 1 1.000* 0.125 4
RF-X_out_st -3.733 2 1.000* 0.119 8

Note: The lowest values of QLIKE and the highest value of R? are in bold, p-value is for the MCS test, * indicates that models belong to MCS
with a confidence level of 0.90. The evaluation period is January 1, 2020 - March 31, 2023.
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