{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "bbb1a6ac", "metadata": {}, "outputs": [], "source": [ "import numpy as np" ] }, { "cell_type": "markdown", "id": "b1f0556e", "metadata": {}, "source": [ "### Wyznacznik macierzy" ] }, { "cell_type": "code", "execution_count": 2, "id": "f3ddf67e", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2.0" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "A = np.array([[2, -1, 3], [0, 1, 1], [1, -1, 2]])\n", "np.linalg.det(A)" ] }, { "cell_type": "code", "execution_count": 3, "id": "29304216", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.0" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "A = np.array([[1, 3, 2], [2, -1, 4], [-1, 2, -2]])\n", "np.linalg.det(A)" ] }, { "cell_type": "markdown", "id": "168d5afa", "metadata": {}, "source": [ "### Macierz transponowana" ] }, { "cell_type": "code", "execution_count": 4, "id": "ef31857e", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[ 1, 2, -1],\n", " [ 3, -1, 2],\n", " [ 2, 4, -2]])" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.transpose(A)" ] }, { "cell_type": "code", "execution_count": 5, "id": "091ff847", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.0" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.linalg.det(np.transpose(A))" ] }, { "cell_type": "markdown", "id": "2a7eda4d", "metadata": {}, "source": [ "### Macierz odwrotna" ] }, { "cell_type": "code", "execution_count": 6, "id": "33c17224", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[ 3., -1.],\n", " [-5., 2.]])" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "A = np.array([[2, 1], [5, 3]])\n", "np.linalg.inv(A)" ] }, { "cell_type": "code", "execution_count": 7, "id": "6a21bc66", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[ 1., -1., 1.],\n", " [-38., 41., -34.],\n", " [ 27., -29., 24.]])" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "A = np.array([[2, 5, 7], [6, 3, 4], [5, -2, -3]])\n", "np.linalg.inv(A)" ] }, { "cell_type": "markdown", "id": "0ec1ea19", "metadata": {}, "source": [ "### Zastosowanie wyznacznika do rozwiązywania układu 3 równań liniowych z 3 niewiadomymi" ] }, { "cell_type": "code", "execution_count": 8, "id": "631c89fd", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([ 2., -1., -1.])" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "A = np.array([[3, 4, 1], [2, -3, 2], [1, -1, 0]])\n", "B = np.array([1, 5, 3])\n", "np.linalg.solve(A, B)" ] }, { "cell_type": "markdown", "id": "4364bb47", "metadata": {}, "source": [ "### Działanie macierzy na wektor" ] }, { "cell_type": "code", "execution_count": 9, "id": "0981a527", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([-2, 13, 9])" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "A = np.array([[2, -1, 1], [4, 2, 5], [2, 1, 0]])\n", "B = np.array([2, 5, -1])\n", "np.dot(A, B)" ] }, { "cell_type": "code", "execution_count": 10, "id": "fec9feda", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[-2],\n", " [13],\n", " [ 9]])" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "A = np.array([[2, -1, 1], [4, 2, 5], [2, 1, 0]])\n", "B = np.array([[2], [5], [-1]])\n", "np.dot(A, B)" ] }, { "cell_type": "markdown", "id": "65b3007b", "metadata": {}, "source": [ "### Mnożenie macierzy" ] }, { "cell_type": "code", "execution_count": 11, "id": "d1b4f8d1", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[ 21, -13, -9],\n", " [ 52, 22, 49],\n", " [ 14, -6, -2]])" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "C = np.array([[3, 0, 8], [7, 1, -5], [2, 0, 4]])\n", "D = np.array([[7, 1, 5], [3, 5, -1], [0, -2, -3]])\n", "np.dot(C, D)" ] }, { "cell_type": "code", "execution_count": 12, "id": "c8ecd580", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[ 21, -13, -9],\n", " [ 52, 22, 49],\n", " [ 14, -6, -2]])" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.matmul(C, D)" ] }, { "cell_type": "code", "execution_count": 13, "id": "abd5b934", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[-292],\n", " [ 623],\n", " [-124]])" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.linalg.multi_dot([C, D, A, B])" ] }, { "cell_type": "code", "execution_count": 14, "id": "b2947f4d", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "AxB = \n", " [[ 3 -11 -12]\n", " [ 7 -1 12]\n", " [ -7 -1 -4]]\n", "BxA = \n", " [[ -1 -1 -12]\n", " [ 3 9 2]\n", " [ 6 -4 -10]]\n" ] } ], "source": [ "A = np.array([[3, 2, -1], [0, 1, 5], [1, -2, -3]])\n", "B = np.array([[0, -3, -1], [2, -1, -3], [1, 0, 3]])\n", "print('AxB = \\n', np.dot(A, B))\n", "print('BxA = \\n', np.dot(B, A))" ] }, { "cell_type": "markdown", "id": "1b7634a3", "metadata": {}, "source": [ "### Wartości i wektory własne" ] }, { "cell_type": "code", "execution_count": 15, "id": "7b05abf3", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(array([1., 3.]),\n", " array([[1. , 0.92847669],\n", " [0. , 0.37139068]]))" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "A = np.array([[1, 5], [0, 3]])\n", "np.linalg.eig(A)" ] }, { "cell_type": "code", "execution_count": 16, "id": "3ad28718", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(array([-1., 1., 2.]),\n", " array([[ 0. , 0.70710678, 0.66666667],\n", " [ 0. , 0. , 0.33333333],\n", " [ 1. , -0.70710678, -0.66666667]]))" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "A = np.array([[1, 2, 0], [0, 2, 0], [-2, -2, -1]])\n", "np.linalg.eig(A)" ] }, { "cell_type": "code", "execution_count": 17, "id": "329bb856", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAABLCAYAAAB0t13KAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAUtklEQVR4Ae1dXc7dthH9YuS5cF2g73V2YCcriLODpF1B7R3YyFPyFiQ7sLOCNt6BkxWk/nbgLKBAXaPPBdpz7qe50KdPVz/DIUVKh4AuJYrkDM8cXo1ISvrom2++eXR1dfUW21h4/e233341dmJpGsqz7heIf15a5uj5gJXLJt5yQ7xRzzukPRym8xjnPhpL7855y1HWG2yPUf+HS/W3lo62HI77aPOm3E3lCPT3cthbTtxPNVol5Vvnfh/Gkv0AssL6wJzeH/ca+QP22Wn74bf+wdp9CH+JMr8hlrOzFryb/F6beMuZlt/bTi/+Avtf9o7Hdl3lwA9y5DUq/BFbkoM9ptQWaeL+lZeD3nJRZnZxGMJd5cT9KLNVVY+Xw95yORrv4rOnHwT3gUm9+w7PSwqOQg518eL4Z2x/iqrzgPV4beItd4IYtns1xBppTJp0eLzlWDHKchTw39ieYrsjn3laCdBf3L+68nLQWy6EHmPcQxrrFvcXICzun0DycthbboFl1mUp3Q8gL+T/f07vvsOzDpGJ3BB6H6d5t85G7GaKYqLJzZ2CXcwT/heU/wTb90gLc3idgHB05w30+LkCXVxNgN7ivgu5soVgJ069/YStlmlUcb8sBQ4trUL+0x7Z+0AWhweK09nhNEXTd+q0wB4D7MK1Jd8h5jTSFWJepN8i/gLbZk4PZNPRoU6cCuUUWotB3K/UauCWOaPvoeKn2EbXqW2hvri/BerHklkz/2mJEn3gXrTJoTTvnDj8+yK6btWXjgDs8xS13Ed8cnZYI/Y5CmeOBpO2DOTNE+g0OYWwpYKXZENncf8SOBWkk+fYvsL2DOr8rQKVhiqI+0NEdByGQAP8Z1uz9oFwhwcK8w73GuBqoTLNV1/gsOH1iFq/Io2OBu+CNwuQzxEmcsem3DbTxSFY3HeApiI3CIj7YsLREcjdB0IdHijLu3Le5Wp0p17mPoFqHNIfBpvK4vmtA/nzEHx6vrUiS+WL+0uRUr4ZBMT9GYB0evcIZOsDoQ4PzPA1Nj2GXikfcVFeMnrzYGv1oSdHoDjKQz61EsT9VixVsZ7ifsXGkWpFEMjZB8IcHijJkR1uXHCqUCcC5sxwzc6lsMQpulQ2Mp084lqj6tfyiPuRZlddQEDcFw2OjkCWPhDm8MA6X3cW0pNZbVP1DzWoDyfCFlUbr2pQ65IOpqO4fwkhpS9GQNxfDJUy7hSBXH0g5LF0KMdRAd6J87HiqdGDnZqnmWaNrd0x5W30h+/lqSXQ6fkSnHqEbWyh9eZ6ivvlTNBh/QskrhmF5FNZVXJnBjlxfwago50+GP9p3vA+EOLwQDG+UZmBw1AKlSKADsPHcqnd2AXD0mzxcg2tIJ/oSP8FW60XLXG/EFPIX4h6XEjc1mLE/a0tUJn8g/Gf6If3gagpLT7qzKBH0W9wqPmXNno4oqCN8FRjQ3Rw04XvDqo1iPu1WqZhvcT9ho0n1UMQyNEHkh0eKMWRAT7KzKezeAemUDcCfJ3+pyMq8s6Z70+qzYZ0erh4mQviqwriflXm2KMy4v4erao2rUEgtA8kOzzQ3Ib0bZHpmsYob2EEcJHmwtr3iM9PP3UXbtrxr4XVWSLuTZeJ01q1BXG/Noss18cW59vI5vKS5XKK++WwPpqkFvhPm4T2gYg1PPbNI1PsaMRpsb0czeHHQj9DzEXKjD/HcY3rZGxai6OItQVxvzaLzOgDjnOEk8H49BPSuG6NH62t7Sk7cf9kKv1EIdAY/9ns0D4Q4fCc/jgApCkWZRvVkwkB2IrTVvyeUPUBunKajXrySS1ObdU05SbuV8+g2wqCP7bm6vaJCo+gq7hfoV1aVqkl/hPn6D6QNKUFZe5DJ241PdlDnBT2hYCNPI2tPdqkpeL+JrAfUai4f0Srq819BML6QJLDA41Od7iI5fD0zaP9aAT+0VVY08JlcT/ayqpvDAFxfwwVpR0JgbA+kOrw2BoG88COZAS1tRwCbztRxrdyki9LMl3E/csY6Uw6AuJ+OoaqoW0EwvpAqsNjUwy/to2ntK8cAfPwjW81qGu6iPs1WGO/Ooj7+7WtWrYMgbA+kOrwPOz01ZTWMsMplw8B4xfXi9USxP1aLLFvPcT9fdtXrZtHIKwPpDo8dgEyheZVVw4hsBIBLBD+YEWwX8s6HnHfjKI4GwLifjZoVXEjCET2gY+9bYYSdod71VfIW5/KCYEZBOhUk3PcNl03I+7PWEqnoxEQ96MRPXB9+P/izRpfmvoM+3wnWwshpA+4HR4gZHfaGt1pgS7t62ijPGdHe8Mmifsbgn9A0eL+AY2eo8lwcPjfZU+Y2ih1DlHRdYb0gXsJWtmFxxRJqEpFhcAsAuZY2yvRZwtkzCDuZwRXVd9BQNy/A4kSPAjA4eHLLH9AWeOUp5otypi+Sf//KQ6PCX6/Resl83AIGM/M2dgSAHF/S/SPJ1vcP57N1eLbCIT0gZQpLbvwaITntmGaOIKX/32nKL+l9Qk2flvLvOga22A8M95tqaPpYDptqYtkDxBokNuDFtw5NJ4Z7+5kKJhgOphOBUVL1IERML4Z/1xQpDg89zuJ5nm5FPAWwp8a5yL5IcDH2DcwvNVNlispa1KRoJNoD1/k9B3i16wSMW35FvEX2Gp2eqiu8Y77WwXTwcV9YFyEu6XkbGWEMbloc8vcHmtSP814108rvW86rOI+7MIL1YtOWb7DiuVfIP26SwuNjsj9UADrrcz459IwxeF54JKYUAgkZmN/xMbOwk6T5O2h/MVQUtZFJTKcQLueolp+hPPk7FAE9j90xy9xaG8Q5qmaAkeiGIrz7kbsrd/VOgDfItwtJecWGpUcoO2tcnsOwda5z//pl7DP+b8F+xxhtpuskA9PH5n7cwTawfmQPpDi8Jin9aEUmCA0ZZ2+doz959jnnXKWUFJWlgZcrpT4jd1V8Y3Bz/mn0bX9cg3bnDGeGe+20eJGqulgOs3qUopPpeTMNnibDK1yew4t45nxbi5/zvOmg+m0RBadm2f9jOApR3fooHKU/vf9c979g3PfC1sr5Yxvxj+X3vdcpW4Krb7LTZClonEIPEFVHCEbBpvK4nmFaQTE/Wl8tjorbudH3sN92uUdHJLhxYojO7zByjZSnx8OSWgJgY8DlLWhpoCqVEVOBEb+cMbEef7QxuqJThtz0qJlrK1P3F+LWKb8jXN7DpXWuU/H5hFsZHfpw/YOHaHheR0HIdA5lxxtoxP6EMccffsXYj6qXnMI6QMRDs8lEtcM3lF1M2dmymb681nOjikcl9einBEIiNsRKC6vYzH3cTE9LUMYqfoR03D+euSckjIgAKw5km+LxzNIqLvKlCktXRjrtq1XO3vHjLd8rnKL/2BzKdCrV9zvgdHQbq3cnoNwd9zHhZfODqeyDnvxnTO6zt9CIKQPRIzwhAw13WqaDnIhMGUru0OudZrmrDv+LGtZWH3WKZfBVO9iBKZsUTu35xp5btuOuM/Fyq/RntqnUuZsk/08bQ4hv2Bbc6P1FcpdZ1eunICQPkCH53edzhavbcJ/lxaQ4ZYi5baJ2dDiWwKBPx8/Z9pYx7E0W7x8qywO/jhMWHjsLTesfrRNw0yFjxdzv7BeW4ozO1m8VBfLb/HScqd8idyek+XlsLfcUB8XJsNKgo/d3Iet+PqL3xBfmuoKVrVYdWYni5cKtvwW3ypHbiPh8a1ExwHq+d9cMeT5aCKPl8/ecn1VRrHpZ5jYP8unw/OfLqPFE+VGTy0eJYoy3KgW+0o0W1i8tHWW3+KxclxAOPZUxIMuM8+PhX+OJS5I85YbVj3VpmHeUseLuV9KoQrkmJ0sXqqS5bd4abl+Pi+3+3WM7Xs57C031CEFk2FdUccu7uMawEfRHyA+v5MnSqEK6jE7WbxUJctv8dJyq/LNODNL6vLy2Vuur1MKNmf5KWt4+spovx0EOJTMlzYOA+8g+GE53k1UHVrQsWoA96tc89yeM03L3IfuX6J9nyA+j+xgn08Kjd2AzUGh8wdFAHxxX6NSHB4T+qBG3AHK/VJ6lZSV2ibo+gp1vEfMP59T6PT/Mw7+2iXVGLl5lsE+WbmfQd9Re5aSMyo8QyLa0yq359BwcT+TfV3chy6P0MjPEA8XKfN/6L0BkElnq/4cl5JzFljJDtuNjd9N5PZTtxW7VibA4OoDQ3kpDs+wrtLH9sTFHSBgRBrw34jfBilVUlaQypPVcDSH380i6Z9jn5/r+Bz715OlGjyJNkVzIQKFUnwqJScCk6g6DsPtKcBq4j104QgOR994seUnJs4b0p7h+OREIY7sq0fk/hQl7Bz/8/mWa24caaOzGXWdNBnVxq552K41BIoELRpgJHYchic30RW9VC60fYOYd3hXiLk4l2nsYNxOHYrn1gSUKyZrjV6peTs8br3qPbXOWsuzrdiSuTBon4v7pfhUSs4AkyoOaW8ocghuTwFOHLBF854iPdx/g3J0erh+ZxiuLSFCZ9Sxy/9swyggfkqMsNlaTb54kGl8MeTZFgFyqqwixeExJ6Ko0wOjnOd/pxBFPs4Vn6dtpvJeOldS1iUdlH5GwHhmvDufmNuJ4MJAhulgOg1Ojx+W4lMpOeOtVGoGBIxnxrtFIjLwnnJNB9NpVhfqMZupy5Cqs7g/izRvBv4xm6u+DMY3459Lw5QpLXr6DDZ0eHNU1y/njJMAWtGckrJWqLWbrDZ1abxb27BI+5gOObkfqe8UVqXkTOmgc9MIpHA/2r7i/rStqj6L6+GrwTWRDhBfEXBdteJ4sq/Tz/jnUjfF4TFHwjwvlwK5CsGA1KvIS/RKysqFVwP1Gs+Md4tVzmAf08F0WqzLkowZ9B0VW0rOqHAlrkHAeGa8W1Q2k31NB9NpkS5LM2XS+Y74UnLuCK4oARg8gjqcBeG6t9qD8c3459I3xeExT8s8L5cCGQtxXvKHjPX3qy4pqy/3SPs2mmK8W9P2aPuYDrm4H63vJaxKybkkX+nLEPByP4d9xf1lNqs6F66NXFPF9TuPsZ/kRBRqqLcP3FKvuTU8t7SfOCjo7FyVlDXR5L2fMg+fCzFXhQz2sT8I02mVPnOZM+g7KrKUnFHhSlyDgPFsFfcz2VfcX2O5CvOCF3R2+JTW6eWP3fEV4lX8Ktw0Vx8Y6pji8LzrKst1lzvUVcfHRoCdlMF4d3O0za/pIO5vg//RpIr7R7N4pvZ2zg0/7UGH51Enhut4hu9HyqSBu9qQPpDi8Jg3aIq4W6KCQmABAuZcGO8WFMmWxXQQ97NBrIp7CIj7PTC0m4QA37nD0ZJb796B81P7qxxC+kCEw2NDTUlWUGEhMIOAORfmbMxkz3radBD3s8KsyjsExH1RIQQBODa/D6mofCUhfeCeV28AZ3/6V9g3ZbzVqZwQmEPAnIsz7+YK5Dov7udCVvVeQEDcvwCMkg+DQEgfcDs8Hcx28ZHDcxjelW9oz6Hm22M/lNdgVKK4PwqLEiMREPcj0VRdLSIQ2QdSprSI3TU2OjtyeIhGYwFE4qI1voq99kcTjV/mZNSAtLhfgxUu6NAQty+04Jws7p+h0M5SBHbEfzY5rA+kOjy/QplWXly0lCu7zoeOwKFBfiyU79P4FJuRCbvVBjpmDPb9l5ujbX/F/W3xvyO9UW7faccgQdwfAKLDcQR2yn82NqwPpDo8vMtl4IVToQEE0Ck4JXT6Hhn2+aV0I1PN2n/WKUcno5Yg7tdiiU6PRrk9h6K4P4eQzp8Q2Cn/2bawPnAvkSv2EbIWLpqJTVXxDREwftU0wiPub0iIA4kW9w9kbDV1FIGwPpDk8HQe5WldBfZbmBoZRVOJ9SIAXnEKjtyqacHylbhfL2f2opm4vxdLqh1eBKL7QJLD0zXidRc/8TZK5YTABALGq5pGd0xdcd+QUJwDAXE/B6qqsyUEQvtAhMPzpkPv9F2OlpCUrk0g8JdOy79VqK24X6FRdqSSuL8jY6opLgRC+0Cyw4MhJ955cyEsn9ZSEALRCJw8fPDMRlOi63fXJ+67oVPBZQiI+8twUq79IhDaB5Idng7nvzPGBcAWF+0XfrWsGAIdn7iGpzpnpweCuN8DQ7sxCIj7MTiqlnYRyNEHohwevryOwYafbo70KwTSELD52xqns6xl4r4hoTgSAXE/Ek3V1SIC4X0gxOGBJ2bTWk9bRFU6V4sAHWg+nVXtCI+4Xy13WldM3G/dgtI/FYHwPhDi8HSt+g7xfVwAzCtLbazKHxgB8IjTo9xeNQCDuN+AkVpRUdxvxVLSMxcCufpAmMMDBX/oGv8sFwiqNxyBP3Q1PgivOb3Cr7sq6ExUHcT9Ks1TM7fnABP35xDS+TkEWuY/25alD3w8h9rK83R6nuMCwJEePrmlUCECsI2tO7HRuJ+QxhdIvkG8+YgKdOBCZT719xr7rfBI3K+A6+BL1dyeg0jcn0NI56cQaJ3/bFvOPhDt8PBunN9nonf2AptChQiAUKdvaVWomqlka8Fa4pC4b9bbMG6A23PoiPtzCOn8RQR2wH+2LVsfCJvSopYAm3fjvEidRnmYpiAEHAjQYX4FPp0+W+IoX7yIuF8c8r0KFPf3alm1aykC2fpAqMPD1uCPn0P7vFBRaQUhsAoB8IcjhJzSaml059RGcX+VqZV5gIC4PwBEh4dDIHcfCHd4OgvZKM/Dw1lMDXYjALLT0fke2zPst7J2Z9hecX+IiI5nERD3ZyFShp0jUKIPZHF4oDjfm8LFry93biM1LxaBH1Hdz+DP5gunvc0S973IHb6cuH94ChwegOx9IIvDQ7Phj5+Ppz9EbAuQDm9NAXAZAfCET4xxq31B9eVGdGfE/VmIlKGHgLjfA0O7h0SgVB/oP6X1DkKHYPOx4JQLEMv+gjr+jq3VKYohJiWPvTbxlju1DbZ6h53V05Hech2gHA38akc8OTr3vRz0lutolBZ5OewtJ+6n2avS0l4Oe8uFw+Dls7ccGhDy/z8nnw4PFxhzNGYsJD0lA+HX2PjHzxfbyeEZQ3g8zWsTb7mhFlxH4wmucuAI1+5w3Q4/UbKLcGDueznoLRfNFxeHoYSrnLgfbb5N6/Ny2FsuZ2NdfPb0g+A+MKn3/wFpggAX8wVBcQAAAABJRU5ErkJggg==", "text/latex": [ "$\\displaystyle \\left[ \\left( -1, \\ 1, \\ \\left[ \\left[\\begin{matrix}0\\\\0\\\\1\\end{matrix}\\right]\\right]\\right), \\ \\left( 1, \\ 1, \\ \\left[ \\left[\\begin{matrix}-1\\\\0\\\\1\\end{matrix}\\right]\\right]\\right), \\ \\left( 2, \\ 1, \\ \\left[ \\left[\\begin{matrix}-1\\\\- \\frac{1}{2}\\\\1\\end{matrix}\\right]\\right]\\right)\\right]$" ], "text/plain": [ "⎡⎛ ⎡⎡0⎤⎤⎞ ⎛ ⎡⎡-1⎤⎤⎞ ⎛ ⎡⎡ -1 ⎤⎤⎞⎤\n", "⎢⎜ ⎢⎢ ⎥⎥⎟ ⎜ ⎢⎢ ⎥⎥⎟ ⎜ ⎢⎢ ⎥⎥⎟⎥\n", "⎢⎜-1, 1, ⎢⎢0⎥⎥⎟, ⎜1, 1, ⎢⎢0 ⎥⎥⎟, ⎜2, 1, ⎢⎢-1/2⎥⎥⎟⎥\n", "⎢⎜ ⎢⎢ ⎥⎥⎟ ⎜ ⎢⎢ ⎥⎥⎟ ⎜ ⎢⎢ ⎥⎥⎟⎥\n", "⎣⎝ ⎣⎣1⎦⎦⎠ ⎝ ⎣⎣1 ⎦⎦⎠ ⎝ ⎣⎣ 1 ⎦⎦⎠⎦" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import sympy as sp\n", "sp.init_printing(use_unicode=True)\n", "\n", "A = sp.Matrix([[1, 2, 0], [0, 2, 0], [-2, -2, -1]])\n", "A.eigenvects()" ] }, { "cell_type": "code", "execution_count": 18, "id": "ede40a5b", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(array([ 4., 1., -2.]),\n", " array([[-0.66666667, -0.66666667, 0.33333333],\n", " [ 0.66666667, -0.33333333, 0.66666667],\n", " [-0.33333333, 0.66666667, 0.66666667]]))" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "A = np.array([[2, -2, 0], [-2, 1, -2], [0, -2, 0]])\n", "np.linalg.eig(A)" ] }, { "cell_type": "code", "execution_count": 19, "id": "c601c4dc", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAABMCAYAAABtR71PAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAVfklEQVR4Ae1dW7LURhJtE/6euMYR8z+wA7B3cGcHMF6BYQcQ/PlvAnYArMCGHVy8Apu7A7yAiTAm5nsimHP6Khu1WlJL9VKWdCpCXVKpHlknT0qpqpL6q8+fP+8UtonATz/9dIGe/wvbY+zf3yYK6rUQEAJCQAhsCYGvccO7hw6/H+j0W5x/OHBuUjLKs+6niN9NKqBMO2AVpJM55Zq8lw3cdIB6A/J9wIk7fSdx7qu+dKZFlGNbV9juo45PrGsNAX3ZnB2gz9l5XIobEXyebT9oSzZQSrGZ21mDDYRwP6QMVYFySbh/rv2vW3p/gX0aaTv80T6Yu4/GX6LMH4jl9MwF7yZ/qE7OloNOrtHENeIHZ0R73nP+n0jLUg7ykC9vUf9rbFFOd4/ciyShP1u3g7N8HFBMaLmB6qKSi9mBbCBKT14Lh3I5tFxKHEK4H1Jml5D7o+23HZ+XbDQVWqiLN0ZOo/wjVZ0brCdUJ6HlTiCGHl91E5HGpFHHJ7QcK0ZZjhD+he0RtpP2maeWAPllB7tdKB9DyyWnRx8PkcZ2stgB6pYNJNfiohWGcjm0XLLOhnA/pIwJnIL759pvOz7WbnSMRjl1wid2Gu9qpiuigVEFcxDgaM8V+PMOWzKHfI4AsXllB7EIlisPXXFa7g02T1OssoFyFFhlS+A1p46eNp37DvFHHiOdI/6eQ1bu38rUczo9nLKo+mk9EzaqdgIC4A6nRznlxWmiWoPswLHmwLELbG+wkWPUFW8SboJswI0qqhQE/CGfOWLEl1fsBRY6PO9xfOm5U5Av6/U/ueMDgfnkxOFf8zI94yvZfCNADl2CU6PTCR67IDvwqJVjmaCjT9geYnuMMz8fn3VzJBtwo4rqBOE6F3L7EMB18omzMBzd9B6ycT+54wMk+eTERbNa0OydVs7lA4c4xUUe9S1Ucy697MC7gmqQTzZQg5bcyshRnQ/gEJeetAOvqRzt5IiQ25CT+0kdHwjKJ3OO+NBTUxACKRAgl+6AW09SVFaiDtlBCZQ31YZsYFPqTtZZOjhccjK0zrbrECVrOGFFWbif1PFBZ581QGu0J6Hmc1QFY6AzwZEU6my/j2N3zgVk4pw0+UQ5awmyg1o0VYGcsoEKlORQRPCG07h3e0Tj4MSu4VXPaT9JjYzJr//J3uqCgARToz1+ODMqCfTFaaRaRuZeQtb9Wh/IzQXPboPswK1qahdMNlC7Bh3I31yfOMVVy7WfqCXnfsoRHz7lMuhNrhsc9JsIgZazYxxLVHOWakxG2UEWeLdZqWxgm3rP0GsuauY/MvDDiFWEHNxPMuIDwThXyPU9/ObK0HxiFSBLSLcIcKTnAfh1D5vLb1DIDspyp8H7V7Q6Z60Ch/9d8mcCerKBCSApSz8C4D1HTrjmp8Yv4iflfhLHB2DyC80MBFbBOQIg/tl/pkWewf/hWqh75Bad6x+web1xyQ4KkgMc5UPWlv5cVzZQkF9ragq28gj9uY2YfzdUY0jK/VSOj3mQWtRcAaUcOjVnUYPMHE1kPhqw1/lp2QE1pJAFAdlAFlhXXyl4wwfGu4jt+rTDPtf5MK7iq/iQM+n1P3qNDwTiMPMltrHX5oixghCIRYCONb8/sX8rIbaylOVlBynRVF0jCMgGRsDRqWMEmmvl94i7D4t0hj4e53Z/lIz7KUZ8bHjf9ds27lVaWMDmRv2saXbv/WP/R6R7XqN1BRnpZHuc7pIdNGSqNPq2kfs2YtlAmBJlA2G4ZSmFazmv61zMzNESThW1A9+SrWaBcyN4sut/CsfH5gwplEI9CDwH8Q+fM28M4z3E7/vug5de2VQqnR9vQXbgTSMT5AHv7dP9xin+dxeH//kHuR7fzJMNTNCrsuwR4D2Zzg+XB3SD13WSXTnbx8m4n8Lx2V8wcJEwodqCat8vAo940W/pjR8zZJrnt6b4VyhElDJyysvTk7nsgJqpLIBDh3UPNYgOeWUDNSjKgYzgiueH2NkIpeR+1BofCML1PdyqWCA1G+l1F+Boz+8VdtGeVL7zIrvswIsmNiOHbGAzqlZHOwgk4X7siM/+KReCyfHpaMf7IW7W3WF8OkJcoG7E8toFOmv2lXAvo4yyA69sWadcsoF16lW9Oo9AEu5HjfhARlvX4P1meR7ODeeAs0NHgqv8a/gmCtchMRj3bo6W/TVZZAfL6mErrcsGtqJp9bOLQBLuxzo+Nt3wW1c6HdeBAJweLn7j+p772Pe0ZmYIQJueM+4N5SuZbrLIDkqivt22ZAPb1f3We56E+7FTXbxpMmiq6waHqn4bp+cp4v2IRXO8Q+xZnyYb15Z5CbIDL5rYhhyygW3oWb08RSAJ92NHfOzmY8KciqkUlwg0Tg6/7fAS+3xLitNd/MjVR5cCN0JBzsOoVCOzB3FlBx60sBEZZAMbUbS6eYJAKu4Hj/hAAHvK3bWFOZFUCV4R4Fwpb9g2Z7qXE7o8fNvHq+CQi442+cdt0XU1sgNooPIAHdIO+PG9x9ivYZ0bEZcNEAWFLSIQzf1gxwdoc4SAQaM9NzhU9YsL/DdVCXwsrI36HJzv49NFj2QHReFO2xjsgPqzt/Js5C5tI3lqkw3kwVW1+kcgmvu3IvpoNx0TIqIqFRUCsxAwZ9v+ZmBW4cSZZQeJAS1ZHRwffhCQn+43TpVsPqYtk1c2EIOiytaIQDT3YxwfMzjXa0Jq1KpkPouAcc6cjrMFMmaQHWQEV1UPIiAbGIRGJ1aOQDT3Y6a67KajEZ+KWdYM9fP/imp5nZ1oG+eMg0tqwGQwmZaURW1vBwHjm/FvyZ6bDCbTkrKo7RkI4PpP3dk/t/OzHHQq+Kbv9YxqSmc1nhnvZrcf4/hcNK2Z9zW78ZACSyiqUudgEF70h7p7jY26I9mDCYSySwbjoAcZguygFLdKtbOkIjbadvU2YHprOMoF5tlesJAdGNq7HbDgdZ9v9doHWJnGb7q9Zxo2L1/G/yL08V4w92Mcn9vHMuQ/giKKKQptrcU5OFEM+vYJifs/Z8T+E+zbAt2TvE4T/mzkKs7BHjxmy1CKW6Xa6cFESfkRqNoGBuDhyHPykQbZwQDaNx+uPXIygRVHe/hv7tSF1xdgorkf4/iYt8WbaKlAb7SIoqD82p2DUjpZoh3jnHFwCRmsTZPBZLL0wbgUt0q1M9hRnciJgPHN+JezrXN1mwwm07n8J+fBVT6AZQmyg0FYL3HmA/D5psHIMnKk5wHS7mCzhcR2zkNsPDPezZbp1uwSXwrMftL9UjR4zxTV7TAVdUFFBdesgkIgDIEl7CBMUpUSAnkQiLIBXLfvQSzezOyGlkdK1dpFgPdN/jH1EO7d+2y3fLXHMSM+1mkbdrLjnDEVxa8Mb05ROUGtsO6g9TSZ+1nSDjJ3ZTvVNw9LHEXmQxWfcDmq/CdivuLuOazJBn4A3pxiORrN9wz+GmQD3vvlDj19oSO6w/nk0449bYUkRXM/heMz5ISEdGi0TMWKGu2XTq4CgWJ2sAq0nHQC1xQO5dtbLU6kqlaM2TYA/DnFxb/OUXCAAPRBp4czJ6u2iZiprgsHetptRVEesHYkw+wLbEbZXdhBxv6pap8IVG8DuHbzBvsJscd1JD61nl8qLmp+C514HvGM5n6KEZ/oYadIXdagqMguqngHgQPnYKBc2xVtCJ36Qw4PMoUUVpnpCFDnyP0rNsZTw0OUu56auYJ8B75VbAN8dX3VIws5eZTaDlAfR9645mdoCixnd+bUHc19Oj5/a1q0eI4AzPu/qQU2rKipEFk+04XFln4utvwWn8sfev7vgQVDy3Wby92/bntTjifbwZTKVpLH9GTx1G5ZfouPyuE6Qkf3/lFiwAHq+XyuGPJ8NZInlM+h5dqi9GLTzrDA/mQbAK58ZXoLU1ymJ4unqsXyW3xSLpUdsOJGH7cRH77pc9LgcUIIh0PKHLd6czSISV/mVtqhfTo+/21OWNzKN2l38qjRwoqa1BknmUwXFk8Vy/JbPLXc3Hz/mVugyR9arttc7v5125tyPNkOplS2kjymJ4undsvyWzy13Kx8uB6NOTVT6grlc2i5tkxZsWk3NGN/kg0Ad05xcaR2C1NcpieLp8Jp+S2eWm52PujhAQrdRXwY6Wl0tEM8pKMQDoeU6etPKCaH9icRta/lJdOgjBBFLSmy2s6EALjgYZorU+9UrRA4j0CFNkDH53vIzWUK7XAPB3yzjumcctE0WBudDPvAmJhTF12seY99laHJpFVC7qDrf4zjwwYvsN1O2pMzlU1VFPIVW/tRsq0z8ISctj/ZpB6DSBTSaGSZIM5l0lNWO8gk8wn8pdo5aXjhBPYbIjxrxOANmeFHpHu3hSAbYOcy6HqWDaB9fpaE21FA+l9IeIf4MPLADDjWtfwIqTQHwJV8p5NJzLvTjpdIe5GmpeS1BHPfJLllOzXELUXREPgfI4cN8nOh3P5ihZgXs78Qv0/Ur7ZzcFRlhraO6s91ALnfcEP9nGtn2B8jzY5vUlfy61hPpbhVqp3aGPMc3OA3ZLjxhvsRW6rrhjssHNsBseJ1m9shZJBXdnBAd3eFXTo/vOZ3t/299EvWde3FjPjwAnFE0gLQtBXVbe7aEmAsn7BxbpIOUvDTAsraUOxlUzedA9Z7hXg/DIg4SVsme6kYch89VZVqd6l2MuopyA4gTxFulWpnKb0maPcRMcJmIxD8gCHT+KHUwzUlQTsuqkCfclyvgmzAAIFMHG2w0TaONNA2fkP8IpW8TZ1scnXXcnYqJACTuyHl1lAmxvExj7CY8zNHUcyLjfOUwQHlJzkHKdoKFnKbBY1zxsFJKGTSk8lgMk2VpQi3xOGz6uDXgn8/m8tfBuOb8W+yhBnswGQwmSbLwoyQZ/SLzSnkRR1F7G1Wx5U5FAHjmfFudj0xU1308hls6PDmyNcvF20FgzOzKyXbmina6rLbHK9xcE4HU+vJZMhpB6llHsKrVDtD7RdPx/XhVecawZswF9ZeFxdmXoMxNsCWUup6TTaQGpt5WlXuKQjEcn8X4/iYQ2He1xSBi+XBhYtyFfn/pJJtFQPQd0PGOePgJGkz6clkMJkmyTI1UyaZT5ov1c5Jw44SgME9iMNR4vuOxBoSxfhm/BvKd5KeQdcmg8l00mZMQgZ5B8Up2dagEDpxDgHjmfHuXP6T8zGOj3n55n2dVL5wAufpS61KL9nWwrC6aN5GV4yDU4XKoSeTIZcd5JC5D69S7fS1vXgarhVcY8L1PfexH3xBLdiRUBugiKl1vRYbyIFNQUpspqkY7u9BqmqNzxy1FnR6diXbmoPBivOaxz/0ca3ermfSk90kTabetkMTM8l8Ik6pdk4adpCAvtPp4Vtd+6/WNsc7xLP4VbgrxrfZMqJfqR8IV2ED1F8GbArTYhPNBXPf0IlxfD40leR60jUZFQuBLgK8UTEYB2+Olvk1GWQHy+Af1SpudOQS3yqi43OvqYzrfLofdGtOuYlkA25UIUEKIxDN/RjHx540TIjCfVdzG0bAnAzj4JJQmAyygyW1EN42v9nDJ8ijb/fACRp90yi8uWQlZQPJoFRFlSEQzf0Ujo8NO1WGncStGAFzMszpWLIrJoPsYEktBLYNB+ebwKJLF5MNLK0Btb8UAtHcvxUqOS4YdsHfYd8ECa1O5YTAHATMyThwcE7hlHllBynRVF0zEJANzABLWVeFQDT3gx2fBka78cjxWRWv/Ham5WTzC7SfnEgqO3CiiC2IIRvYgpbVxz4EUnE/ZqqLcl1jo9Mjx4doVBhAJC7o5Cfia3mN17hmzoYH1GUHHrQwIkOFPB/pzeF6KxsYQ0nnDgisiP9Jrv+xjs9vQLaWD34dSLD1HRgBhwpfY+P3N77DZmTCrvtAR43B/lvp5mjZX9nBsvj3tl45z3v71CTKBsbQ0bk9AivlfxLuxzo+fNJl4M1ToRIEYBCcItr/dw32n2DfyFRDD75vhKSz4SXIDrxooiVH5Txv9eRkVzZwAokSugislP9JuH+rC9bMY/tzv5punDO7qOzOEDCueRrxkR04I8nKxZENrFzB6t4gAkm4H+X4NB7lfp4Z+zVNlwyiqhN+EQDHOEVHnnla2LyTHfjlzNokkw2sTaPqz1QEUnI/yvFpBH7bxJdTO6B8QiAQAeOYp9Ee64rswJBQnBMB2UBOdFW3ZwSScT+F43PVILX/nxvPqEm26hH4oenBzw57IjtwqJQViiQbWKFS1aVJCCTjfrTjg+EnPn1zsSzf7lIQAjkR2Hv84JyNruRsa1bdsoNZcClzOAKygXDsVLJuBJJxP9rxaXD8hTEu/rbwqG54Jb07BBpucY2PO6enBZbsoAWGdtMiIBtIi6dqqweB1NxP5fjwA3gMNhR1c6RfIZAOAZvf9TjNZb2UHRgSinMgIBvIgarqrAGBpNxP4vjAG7Pprkc1ICgZq0SATjXf5nI74iM7qJJXNQktG6hJW5I1JQJJuZ/E8Wl692/EF7j4m2eWstOqa8MIgFOcQuX2qgIYZAcVKKk2EWUDtWlM8qZCIAf3kzk+EO5F09HHqTqseoog8G3Tyu0irYU18qwpRqfCdZAduFVPDTwfA082MIaOzp1DoGb+J+f+1+fQmnmezs8TXPw58sM3vRScIgD92HoUG6F7gzR+jPIKsZuRFcjCBc18Y/At9mvhlOzACe/BmSp4PgaXbGAMHZ0bQ6B2/ufifmrHh0/k/O8nemhPxxSic8siAELt/6trWSkmtW7rxmrik+xgkmrzZ6qI52NgyAbG0NG5QQRWwP8s3E821UXkATKfyHmD2o/6ME1BCEQiQCf6Fbi1/2uUyLqKFJcdFIF5S43IBrakbfW1jUAW7id1fCgtLvoc5udNigIrCIFgBMAljh5yqqum0Z59f2UHwWpXwRYCsoEWGNrdFAI5uZ/c8Wk0Y6M+dzalKXU2GQIgPR2e59geY7+WtT3d/ssOuojoeDICsoHJUCnjyhDIzf0sjg+E5rdWuED25cr0oe6UQ+A1mnoHLrlZaD2367KDuYgpfwcB2UAHEB1uBoGs3M/i+FA1uOjztfY7iG1x0mY0po7GIQDO8E0zbrUswB7ssOxgEBqdGEFANjACjk6tGoES3G+/1fUBDXYB5SvEMTcflv0VdfyCrdbpii4mJY9DdRJa7qRv0NsHJM6esgwt1wjAkcKHK+LM1u0glI+h5U54HJsQyufQcpBXNhCrNF/lQ7kcWi5Z70M4HFKmJXA098+1T8eHC5E5OtMXot6kQePX2HjR58fx5Pj0IdyfFqqT0HL9Utykcp1NSAgqB75wbQ/X9fBvUFYRNmwHoXwMLZeTL0F8hkCzy8kGcqqxeN2hXA4tl6ODszkcwnsKnpD7ozL/Hx1HaFU2nId0AAAAAElFTkSuQmCC", "text/latex": [ "$\\displaystyle \\left[ \\left( -2, \\ 1, \\ \\left[ \\left[\\begin{matrix}\\frac{1}{2}\\\\1\\\\1\\end{matrix}\\right]\\right]\\right), \\ \\left( 1, \\ 1, \\ \\left[ \\left[\\begin{matrix}-1\\\\- \\frac{1}{2}\\\\1\\end{matrix}\\right]\\right]\\right), \\ \\left( 4, \\ 1, \\ \\left[ \\left[\\begin{matrix}2\\\\-2\\\\1\\end{matrix}\\right]\\right]\\right)\\right]$" ], "text/plain": [ "⎡⎛ ⎡⎡1/2⎤⎤⎞ ⎛ ⎡⎡ -1 ⎤⎤⎞ ⎛ ⎡⎡2 ⎤⎤⎞⎤\n", "⎢⎜ ⎢⎢ ⎥⎥⎟ ⎜ ⎢⎢ ⎥⎥⎟ ⎜ ⎢⎢ ⎥⎥⎟⎥\n", "⎢⎜-2, 1, ⎢⎢ 1 ⎥⎥⎟, ⎜1, 1, ⎢⎢-1/2⎥⎥⎟, ⎜4, 1, ⎢⎢-2⎥⎥⎟⎥\n", "⎢⎜ ⎢⎢ ⎥⎥⎟ ⎜ ⎢⎢ ⎥⎥⎟ ⎜ ⎢⎢ ⎥⎥⎟⎥\n", "⎣⎝ ⎣⎣ 1 ⎦⎦⎠ ⎝ ⎣⎣ 1 ⎦⎦⎠ ⎝ ⎣⎣1 ⎦⎦⎠⎦" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "A = sp.Matrix([[2, -2, 0], [-2, 1, -2], [0, -2, 0]])\n", "A.eigenvects()" ] }, { "cell_type": "code", "execution_count": null, "id": "218a2257", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.5" } }, "nbformat": 4, "nbformat_minor": 5 }