CoOccurrence – a FORTRAN program for species co-occurrence analysis Version 2.0

Werner Ulrich

Nicolaus Copernicus University in Toruń Department of Animal Ecology Gagarina 9, 87-100 Toruń; Poland e-mail: ulrichw @ uni.torun.pl

Latest update: 10.06.2008

1. Introduction

The study of species co-occurrences has a long tradition in ecology (Weiher and Keddy 1999). Particularly the long lasting and still ongoing discussion around community assembly rules (Diamond 1975, Diamond and Gilpin 1982, Gilpin and Diamond 1982, Connor and Simberloff 1979, 1983, 1984, Gotelli and McCabe, 2002, Ulrich 2004) has inspired the development of statistical tools to infer non random patterns in community assembly (Gotelli and Graves 1996, Gotelli 2000, 2001).

Community assembly is often studied in terms of nestedness (Atmar and Patterson 1986, Wright et al. 1998, Ulrich and Gotelli 2007) and non-random pat- and NODF. The first counts the number of discrepanterns of species co-occurrences (Diamond 1975, cies (absences or presence) that must be erased to pro-Gotelli 2000, 2001) and the respective standard soft- duce a perfectly nested matrix (Brualdi and Sanderson ware is widely used: The Nestedness Temperature 1999). This is done for tows and columns separately Calculator (Atmar and Patterson 1995), EcoSim and the lower value is taken. NODF is a matrix wide (Gotelli and Entsminger 2002, and Nestedness (Ulrich count of species associations for rows and columns 2006).

two nestedness and three common co-occurrence met- degree of nestedness (Almeida-Neto et al. 2008). rics :The discrepancy metric of Brualdi and Sanderson

(1999), NODF (Almeida-Neto et al. (2008), the species combinations score (Pielou and Pielou 1968), the C-score (Stone and Roberts 1990), and the checkerboard score (Gotelli 2000). While most of these metrics are also implemented in Nestedness and EcoSim, the present program is particularly designed for the study of multiple matrices for instance in null model analysis, for the analysis of the statistical behaviour of certain metrics, and in studies of neutral models.

2.1. Presence absence – metrics

Nestedness

CoOccurrence contains the discrepancy metric BR importance of columns and separates the The present program CoOccurrence implements (NODFcolumns) and rows (NODFrows) for the total

Co-occurrence : Incidence metrics

co-occurrences:

1. The species combinations score (COMBO) screens the columns of the presence absence or abun- are 2x2 submatrices of the form dance matrix for unique species combinations (Pielou and Pielou 1968). Hence, it counts the number of species that always co-occur.

2. The checkerboard score (Gotelli 2000) screens the matrix for checkerboards. These are 2*2 subma-

1 0 0 1 0 1 1 0 trices of the structure or . The score is a simple count of the number of such submatrices.

3. The C-score (Stone and Roberts 1990) is the average number of checkerboards for two species i and j. The score is calculated from

$$CS = \sum_{i,j} (N_i - N_{ij})(N_j - N_{ij})$$

where N_i and N_i are the row totals (numbers of occurrences) of species i and j and N_{ii} is the number of cooccurrences of both species.

4. A correlation test calculates the average Spearman rank order correlation between all species pairs Low values of CA point to species segregation. and compares this with the null expectation.

5. The variance test of Schluter (1984) compares pattern is the variance of row totals (s^2_{row}) with the mean variance of N columns (s^2_{column}). For a random matrix the quotient $s_{row}^2/s_{columns}^2$ should be χ^2 distributed with N degrees of freedom.

For comparing matrices of different size and shape the metrics have to be standardized. This is done by dividing the effect size through the expected value.

$$Metric_{Stan \, dardized} = \frac{Obs - Exp}{Exp}$$

Co-occurrence : Abundance metrics CoOccurrence calculates six indices that might

The present program implements five measures of quantify the pattern of co-occurrence in abundance matrices.

1. A strong version of abundance checkerboards

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}; (a > b, a > c, d > b, d > c) \lor (a < b, a < c, d < b, d)$$

The metric *CA* is a count of the number of abundance checkerboards in the matrix. This metric can be standardized with regard to matrix size by

$$CA_{ST} = \frac{4CA}{m(m-1)n(n-1)}$$

High values of CA point to species segregation.

2. A strong version of the number of species aggregations AA is a count of aggregated 2x2 submatrices of the form

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}; (a > b, a > c, d < b, d < c) \lor (a < b, a < c, d > b, d > c)$$

Again a standardized metric has the form

$$AA_{ST} = \frac{4AA}{m(m-1)n(n-1)}$$

3. A measure of the strength of the checkerboard

$$SA_{ST} = \frac{4\sum \sqrt{(a-c)^2 + (b-d)^2 / (a^2 + b^2 + c^2 + d^2)}}{m(m-1)n(n-1)}$$

4. The variance test of Schluter (1984) is a matrix wide metric of species segregation or aggregation. This test compares the variance of row totals V with the sum of the column variances W. If all columns are random draws from the same metacommunity the value U=V/W should be χ^2 distributed with n degrees of freedom. Low values of U point to species segregation.

5. Chao et al (2008) extended the Morisita index of similarity for two communities to a matrix wide metric for *n* communities of the form

CoOccurrence

$$MA = \frac{\sum_{i=1}^{m} [(\sum_{j=1}^{n} p_{ij})^{2} - \sum_{j=1}^{n} (p_{ij})^{2}]}{(n-1)\sum_{i=1}^{n} (p_{ij})^{2}}$$

This metric is also a possible metric of matrix wide species segregation. Low values of MA point to species segregation.

6. The Mantel test identifies non-congruence between two matrices. To assess whether a matrix is not random the program calculates the mean Mantel correlation between the matrix and the null model matrices (see below). Note that the Mantel test does not identify whether an observed matrix is more aggregated or segregated than observed.

3. Data structure

CoOccurrence needs one main plain text data file of the following structure. The columns of the matrix are sites, the rows species. Hence the matrix below contains 20 species distributed over 12 sites. The data file has to be a simple ASCII file with data delimitated by one or more spaces. Accepted are either abundance or presences absence data of the integer (In) or real format (Fn.k) The first row contains site names, the first column species names. The file has therefore the same format that is needed for EcoSim (Gotelli and Entsminger 2002). The number of species is not limited, the maximum number of sites is about 150.

Alternatively, you may run CoOccurrence in a batch. In this case the input files must have a structure as shown above and the driver file contains only the names of the data files. The first line has to be a comment line.

4. Program run

First, the program asks for the files names. The Matrix.txt. You get the default values after returning enter. If you don't give the name of the data file and

S 1 2 3 4 5 6 7 8 9 10 11 12 $c \hspace{0.1cm} 0.00 \hspace{0.1cm} 0.00 \hspace{0.1cm} 1.00 \hspace{0.1cm} 0.00 \hspace{0.00}\hspace{0.00} 0.00 \hspace{0.00} 0.00 \hspace{0.00} 0.00 \hspace{0.00} 0.00 \hspace{0.00} 0.00 \hspace{0.00}\hspace{0.00} 0.00 \hspace{0.00}\hspace{0.00} 0.00 \hspace{0.00}\hspace{0.00} 0.00 \hspace{0.00}\hspace{0.0}$ d 1.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 h 0.00 0.00 1.00 1.00 1.00 1.00 0.00 1.00 0.00 0.00 0.00 0.00 $0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 1.00 \ 1.00 \ 1.00 \ 0.00 \ 1.00 \ 1.00 \ 0.00$ m 0.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 0.00 0.00 0.00 n 100 100 100 100 000 100 100 100 100 000 100 000 r 1.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 0.00 0.00 0.00 0.00

Test1.txt return enter the program expects a batch Test2.txt Test3.txt run and a file name with the data files. Test4.txt Next, the program asks for the model Test5.txt

for randomization. In the case of inci-

dence matrices you have five possibilities: A null model with fixed row and column constraints (input: s) using the independent swap algorithm (Gotelli 2000, 2001), no constraints (equiprobable row and columns, input: e), or fixed row (input: f) or fixed column (input: c) constraints only. For details of the null models used see Gotelli (2000, 2001). The independent swap model uses ten times the matrix size (10*rows*columns) single swaps to generate a randomized matrix.

The fifth null model (o) assigns species with a probability according to the number of site occurrences. This model is therefore identical to the Random 1 model of Patterson and Atmar (1986) and Wright et al. (1998).

In the case of abundances you have 16 null models divided in to two groups,: one that reshuffles whole cell contents within the matrix and one that resamples according to predefined constraints:

1. PM reshuffles populations within the non-empty default output file names are CoOccurrence.txt and cells of the total matrix. The model alters total row and column relative abundances.

2. PC reshuffles populations within the non-empty

* Comment

CoOccurrence

cells of each column. The model retains total row species richness but alters total row relative species abundances.

3. *PR* reshuffles populations within the non-empty cells of each row. The model retains total column species richness but alters total column relative species abundances.

4. *OA* resamples originally occupied cells proportional to observed row and column totals until the total number of individuals in the matrix is reached. *OS* does not retain observed row and column total abundances.

5. *OF* resamples originally occupied cells proportional to observed row and column totals until for each row and column total abundances are reached.

6. *IR* resamples the matrix proportional to observed row and column totals until total species richness is reached.

7. *IS* resamples the matrix proportional to observed row and column totals until for each row and column total species richness is reached. This model also preserves matrix wide species richness.

8. ISA resamples the matrix proportional to observed row and column totals

reached. 9. *ISR* sequentially resamples each row proportional to observed column totals until the respective row total species richness is reached. This model also preserves matrix wide species richness.

10. *ISC* sequentially resamples each column proportional to observed row totals until the respective column total species richness is reached. Again this model preserves matrix wide species richness.

11. *IT* resamples the matrix proportional to observed row and column totals until for each row and

_ O **_ X** C:\Users\ulichw\Documents\Projects\CoOccurrence.exe Program Co-occurrence: Version 1; 12.05.2008 Copyright Dr. Werner Ulrich or does not take responsibility for co run or any damages caused by the progr of input file with exte nsion. File has to have EcoSim format. output file (with extension), default = Cooc.txt tructure analyis (yes∕no), default = no trix file (with extension), default = Matrix.txt, or type: no randomization: column constraints sequential swap (s), s (equiprobable row and columns)(e), equiprobable column constraints (f), and equiprobable row constraints (c), ng according to observed frequencies of l distribution (1), of accu ling according to observed freq ling from a lognormal distribut ling from the observed total ab (1),
ance distribution (a) er of iterations for computing standard deviations of the null model ult=100 Species: 20 Sites: 24 Nestedness: am: 0hh 0min 39sec Enter command<CR> or <CR> to continue. -0.468 C:\Users\ulichw\Documents\Projects\Abundance\CoOccurrence.exe _ 0 ogram Co-occurrence: Version 1: 12.05.2008 Copyright Dr. Werner Ulrich author does not take responsibility ram run or any damages caused by the input file with extension. File has to have EcoSim format. run leave blank. absence (p)(default) or additional abundance analysis (a) using ranked data for metrics calculation (yes/no); default = no output file (with extension), default = Cooc.txt cture analvis (ves/no). default = no matrix file (with extension), default = Matrix.txt, or type: no domization: ential swap (s), of occurrence (o). (pm), within columns (pc), within rows (pr), total abundance fix row/column abundanc (isr), ed (if) er of iterations for computing standard deviations of the null model Species: Ohh 77 5 1min 27se ad<CR> or 1.258 Sites: 30 <CR>

column total abundances are reached. This model also preserves matrix wide abundance.

12. *ITR* sequentially resamples each row proportional to observed column totals until the respective row total is reached. This model also preserves matrix wide abundance.

13. *ITC* sequentially resamples each column proportional to observed row totals until the respective column total is reached. Again this model preserves matrix wide abundance.

14. *IA* resamples the matrix proportional to observed row and column totals until the matrix wide

CoOccurrence

Plik Edycja For	mat Widok	Pomoc							
	t.txt	Species: 2	0 Sites:	24 MatFill:	0.82 Occ:	394 M	odel: a		
Index	File	In	SimIn	StdDevIn	z-in	StIndex	SkewIn	L95%CIN	U95%CIN
Checkerboard		0	0.00	0.00	0.00	0.0000	0.00	0.00	0.00
Combinations	test.txt	3	1.63	1.35	1.01	0.0050	1.04	0.00	6.00
C-Score	test.txt	10.56	11.47	1.41	-0.64	0.0000	0.36	9.18	14.43
	test.txt	50	52.18	4.66	-0.47	-0.0055	0.16	44.00	62.00
Correlation	test.txt	0.21	0.26	0.03	-1.65	-0.0665	0.20	0.20	0.32
Variancetest	test.txt	2.77	2.38	0.21	1.84	0.0103	0.34	2.00	2.85
	test.txt	77.25	77.09	2.08	0.07	0.0067	-0.72	73.02	80.38
NODFcolumns	test.txt	75.64	74.21	3.00	0.48	0.0554	-0.79	66.38	79.32
NODFrows	test.txt	79.58	81.28	2.52	-0.67	-0.0906	-2.63	75.93	84.87

abundance is reached. This is the least constraint model.

15. *IF* is a two step algorithm that preserves row and column abundances and species richness. In the first step the algorithm converts the abundance matrix into a presence – absence matrix and reshuffles 2x2

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \lor \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 to

submatrices of the form

prine na neces

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \lor \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

. In the second step it fills the non-empty cells according to algorithm *OF*.

Note that the program has the option to convert species abundances into ranks and perform all calculations with the rank abundances.

Next the program asks for the number of randomizations to compute the null model means and standard deviations, as well as upper and lower 95% confidence

	Matrix.txt -	Notatni	ik								
	Plik Edycja Format Widok Pomoc										
Ρ	acked matri	ix: te	st.t	xt						<u>~</u>	
	1.0 2.0 3.0 4.0 5.0 6.0 7.0										
1234567891	0	111111101 101	1 1 1 1 1 0 1 0	1 1 1 1 0 0 1 0 0	1 1 1 0 0 1 0 0 0	1110010000	100 100 000000000000000000000000000000	1 0 0 0 0 0 0 0	7 5 5 3 3 2 1 1		
		9	8	6	5	4	2	1			
L	.ast packed	rando	mize	d ma	trix	: te	st.t:	xt	No. of Swaps: 25000	I I	
		1.0	2.0	3.0	4.0	5.0	6.0	7.0			
1234567891	0	11111110	1 1 1 1 1 0 1 0 1	1 1 1 1 0 0 0 0	1 1 1 0 1 0 0 0 0	1 1 1 1 0 0 0 0 0 0	1 0 0 0 0 1 0 0 0	1 0 0 0 0 0 0 0	7 5 5 3 3 2 1 1		
		9	8	6	5	4	2	1		~	

limits. In most cases 100 such randomizations will be null model is best suited to account for passive samenough.

5. The output files

CoOccurrence produces two output files. The first file (Cooc.txt) contains basic information about the matrix and the measurements. First it gives species and site numbers, matrix fill, the total number of occurrences, and the null model algorithm. Then observed metric values, simulated values, the respective standard deviations, Z-scores, standardized values, skews of the null model distribution, and upper and lower 95% confidence limits of this distribution are provided. The second file Matrix.txt contains the packed original data matrix and the last randomized packed matrix. The examples above show both files. Due to the fixed output format (I5) the matrix file may have problems to proper print the values in the case of program for species co-occurrence analysis. relative abundances as input values.

6. Null model properties

Different null models point to different degrees of randomness in the data. Matrix size and fill might also influence the results. The fixed row - fixed column model (sequential swap) appears to be the most conservative model while retaining the basic matrix properties during simulation. However, standard deviations of this model are often smaller than those of the other non-randomness. The equiprobable model, in turn, is KBN 2 P04F 039 29). the most liberal. Fixed row equiprobable column and fixed column equiprobable row constraints behave quite similar, which is not surprising due to the theoretical equivalence of matrix rows and columns. The lognormal sampling model appears to be robust against matrix fill but not against matrix size. Theoretically this model should behave similar to the fixed row - fixed column model.

There is no consensus about the question which

CoOccurrence

pling. Because the lognormal and the resample models are passive sampling models they should theoretically be preferred. However, we seldom know the underlying abundance distribution from which the individuals are drawn. Recent evidence (Ulrich and Gotelli 2007a, b) points to the fixed row - fixed column model to account best for passive sampling. However, there is still no comparative study. In my view the lognormal model and the fixed row - fixed column should be preferred.

7. Citing CoOccurrence

CoOccurrence is freeware but nevertheless if you use CoOccurrence in scientific work you should cite CoOccurrence as follows:

Ulrich W. 2006. CoOccurrence - a FORTRAN www.uni.torun.pl/~ulrichw

8. System requirements

CoOccurrence is written in FORTRAN 95 and runs under Windows 9.x, XP, and Vista. The present version is limited to 300 sites, otherwise computation abilities are only limited by the computer's memory.

9. Acknowledgements

The development was supported by grants from the models increasing thus the probability of pointing to Polish Science Committee (KBN, 3 P04F 034 22,

10. References

Almeida-Neto M., Guimarães P., Guimarães Jr P. R., Lovola R. D., Ulrich W. 2008. A consistent metric for nestedness analysis in ecological systems: reconciling concept and quantification. Oikos: in press.

Atmar W., Patterson B. D. 1993. The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia 96: 373-382.

CoOccurrence

Atmar W., Patterson B. D. 1995. The nestedness temperature calculator: a visual basic program, including 294 presence absence matrices. AICS Research Incorporate and The Field Museum.

Brualdi R. A., Sanderson J. G. 1999. Nested species subsets, gaps, and discrepancy. Oecologia 119: 256-264.

Connor E. F., Simberloff D. 1979. The assembly of species communities: chance or competition. Ecology 60: 1132-1140.

Connor E. F., Simberloff D. 1983. Interspecific competition and species co-occurrence patterns on islands: null models and the evaluation of evidence. Oikos 41: 455-465.

Connor E. F., Simberloff D. 1984. Neutral models of species co-occurrence' patterns. In: Strong D. R., Simberloff D., Abele L. G., Thistle A. B., (eds.), Ecological Communities: Conceptual Issues and the Evidence, Princeton Univ. Press, pp. 316-331.

Diamond J. M. 1975. Assembly of species communities. In: Cody, M. L., Diamond, J. M. (eds.), Ecology and Evolution of Communities, Harvard Press, Cambridge, pp. 342-444.

Diamond J. M., Gilpin M. E. 1982. Examination of the 'null' model of Connor and Simberloff for species co-occurrences on islands. Oecologia 52: 64-72.

Gilpin M. E., Diamond J. M. 1982. Factors contributing to non-randomness in species co-occurrences on islands. Oecologia 52: 75-84.

Gotelli N. J. 2000. Null model analysis of species co-occurrence patterns. Ecology 81: 2606-2621.

Gotelli N. J. 2001. Research frontiers in null model analysis. Global Ecology and Biogeography Letters 10: 337-343.

Gotelli N. J., McCabe D. 2002. Species cooccurrence: a meta-analysis of J. M. Diamond's assembly rules model. Ecology 83: 2091-2096.

Gotelli N.J., Entsminger G.L. 2002. EcoSim: Null models software for ecology. Version 7. - Acquired Intelligence Inc. & Kesey-Bear. Burlington, VT 05465. http://homepages.together.net/~gentsmin/ ecosim.htm.

Gotelli N. J., Graves G. R. 1996. Null Models in Ecology. Smithsonian Institution. Press, Washington D.C.

McAbendroth L., Foggo A., Rundle D., Bilton D. T. 2005. Unravelling nestedness and spatial pattern in pond assemblages. J. Anim. Ecol. 74: 41-49.

Patterson B. D., Atmar W. 1986. Nested subsets and the structure of insular mammalian faunas and archipelagos. In: Heaney, L. R., Patterson B. D. (eds) Island biogeography of mammals, Academic Press, London, pp. 65-82.

Pielou D. P., Pielou E. C. 1968. Association among species of infrequent occurrence: the insect and spider fauna of *Polyporus betulinus* (Bulliard) Fries. - Journal of Theoretical Biology 21: 202-216.

Schluter D. 1984 A variance test for detecting species associations, with some example applications. Ecology 65: 998-1005.

Stone L. and Roberts A. 1990. The checkerboard score and species distributions. - Oecologia 85: 74-79.

Ulrich W. 2004. Species co-occurrences and neutral models: reassessing J. M. Diamond's assembly rules. Oikos 107: 603-609.

Ulrich W. 2006. Nestedness—a Fortran progam for program for calculating ecological matrix temperatures. Online available at http://www.uni.torun.pl/ ~ulrich.

Ulrich W., Gotelli N. J. 2007a. Null model analysis of species nestedness patterns. Ecology: 88: 1824-1831.

Ulrich W., Gotelli N. J. 2007b. Disentangling community patterns of nestedness and species cooccurrence. Oikos 116: 2053-2061.

Weiher E., Keddy P. A. (eds.) 1999. Ecological Assembly Rules: Perspectives, Advances, Retreats. Cambridge Univ. Press, New York.

Wright D. H., Patterson B. D., Mikkelson G. M., Cutler A., Atmar. W. 1998. A comparative analysis of nested subset patterns of species composition. Oecologia 113: 1-20.

8