
22.05.2023

Programowanie 
Robotów 
Mobilnych

Rafał Szczepański
e-mail: szczepi (at) umk.pl
www.umk.pl/~szczepi

Planowanie ścieżki 
globalnej



Spis treści

2

• Algorytm mrówkowy

Programowanie Robotów Mobilnych

Planowanie ścieżki globalnej

• Algorytm eksplorowania drzew losowych

• Algorytm A*

• Algorytm DijkstraPlan prezentacji



3

Programowanie Robotów Mobilnych

Planowanie ścieżki globalnej

Założenia:

• Znajomość pozycji robota

• Znajomość pozycji zadanej (cel)

• Znajomość mapy środowiska

Oczekiwania:

• Znalezienie optymalnej ściezki

Planowanie ścieżki lokalnej



4

Programowanie Robotów Mobilnych

Planowanie ścieżki globalnej

Postać grafowa mapy



5

Programowanie Robotów Mobilnych

Planowanie ścieżki globalnej

Algorytm znajdujący najkrótszą ścieżkę z pojedynczego źródła w grafie o nieujemnych
wagach krawędzi. Algorytm bazuje na przeszukiwaniu drzewa wszerz (ang. Breadth
First Search, BFS).

Algorytm rozpoczynając od punktu startowego przeszukuje drzewo w szerz
aktualizując odległość od źródła do każdego z wierzchołków.

Wykonując kolejne kroki wybierając kolejne wierzchołki, do których dojście z
wierzchołka początkowego jest wykonywane najmniejszym kosztem algorytm
przeszukuje drzewo aż dojdzie do wierzchołka docelowego

Algorytm Dijkstra



6

Programowanie Robotów Mobilnych

Planowanie ścieżki globalnej

Algorytm Dijkstra Algorytm: Pseudokod algorytmu Dijkstra
Wejście: 𝐺 , 𝑠 (wierzchołek początkowy), 𝑑 (wierzchołek docelowy)
Wyjście: ścieżka do celu

1 Dla każdego wierzchołka 𝑣 w grafie 𝐺
2 𝑑 𝑣 ← ∞
3 poprzednik 𝑣 ← niezdefiniowano
4 Koniec dla każdego
5 𝑑 𝑣 ← 0
6 𝑄 ← kolejka wierzchołków w grafie 𝐺
7 Dopóki 𝑸 nie jest puste
8 𝒖 ← zdejmij z kolejki 𝑄 wierzchołek o najmniejszej wartości 𝒅 𝒖
9 Dla każdego wierzchołka 𝒗, który jest sąsiadem 𝑢

10
Jeżeli 𝒅 𝒗 > 𝒅 𝒖 +𝒘 𝒖,𝒗 , gdzie 𝑤 . 𝒐𝒛𝒏𝒂𝒄𝒛𝒂 wagę połączenia

𝑢 → 𝑣
11 𝒅 𝒗 ← 𝒅 𝒖 + 𝒘 𝒖,𝒗
12 𝑝𝑜𝑝𝑟𝑧𝑒𝑑𝑛𝑖𝑘 𝑣 ← 𝑢
13 Koniec jeżeli
14 Koniec dla każdego
15 Koniec dopóki
16 ś𝒄𝒊𝒆ż𝒌𝒂 ← 𝒏𝒐𝒘𝒂 𝒍𝒊𝒔𝒕𝒂
17 ś𝒄𝒊𝒆ż𝒌𝒂 ←dodaj 𝒔
18 𝒗 ← 𝒅
19 Dopóki 𝒑𝒐𝒑𝒓𝒛𝒆𝒅𝒏𝒊𝒌 𝒗 ≠ 𝒔
20 𝒗 ← 𝐩𝐨𝐩𝐫𝐳𝐞𝐝𝐧𝐢𝐤 𝐯
21 ś𝒄𝒊𝒆ż𝒌𝒂 ←dodaj 𝒗
22 Koniec dopóki
23 ś𝒄𝒊𝒆ż𝒌𝒂 ←dodaj 𝒔



7

Programowanie Robotów Mobilnych

Planowanie ścieżki globalnej

Algorytm Dijkstra



8

Programowanie Robotów Mobilnych

Planowanie ścieżki globalnej

Algorytm Dijkstra



9

Programowanie Robotów Mobilnych

Planowanie ścieżki globalnej

Algorytm Dijkstra



10

Programowanie Robotów Mobilnych

Planowanie ścieżki globalnej

Algorytm Dijkstra



11

Programowanie Robotów Mobilnych

Planowanie ścieżki globalnej

Algorytm Dijkstra



12

Programowanie Robotów Mobilnych

Planowanie ścieżki globalnej

Algorytm Dijkstra



13

Programowanie Robotów Mobilnych

Planowanie ścieżki globalnej

Algorytm Dijkstra



14

Programowanie Robotów Mobilnych

Planowanie ścieżki globalnej

Jeżeli robot znajduje się na środku pokoju i ma dojechać w prawy górny róg to
algorytm Dijkstra’y będzie sprawdzał również wierzchołki po przeciwległej stronie
pomieszczenia, bo minimalizuje on odległość od wierzchołka startowego nie
uwzględniając odległości do wierzchołka docelowego.

Nie poprawią one rozwiązania, ale algorytm jak było wspomniane bazuje na
przeszukiwaniu drzewa wszerz, przez co algorytm analizuje wierzchołki idąc
stosunkowo szeroką „falą”.

Doprecyzowując algorytm Dijkstra’y do zagadnienia planowania ścieżki warto
zaznaczyć, że wagi połączeń pomiędzy wierzchołkami grafu odpowiadają odległością
pomiędzy punkami na mapie. Dzięki tej wiedzy możemy rozszerzyć analizowane
wierzchołki o informację pomiędzy danym wierzchołkiem v, a wierzchołkiem
docelowym d poprzez wyznaczenie odległości w linii prostej pomiędzy tymi
wierzchołkami:

ℎ 𝑣 = 𝑑 − 𝑣

Bardzo istotną cechę odległości pomiędzy tymi wierzchołkami jest to, że jest ona nie
większa niż rzeczywista odległość możliwa do uzyskania w grafie (dla trzech punktów
definiuje to nierówność trójkąta).

Algorytm A*



15

Programowanie Robotów Mobilnych

Planowanie ścieżki globalnej

Algorytm A* Algorytm: Pseudokod algorytmu A*
Wejście: 𝐺 , 𝑠 (wierzchołek początkowy), 𝑑 (wierzchołek docelowy)
Wyjście: ścieżka do celu

1 Dla każdego wierzchołka 𝑣 w grafie 𝐺
2 𝑑 𝑣 ← ∞
3 poprzednik 𝑣 ← niezdefiniowano
4 Koniec dla każdego

5 𝑑 𝑣 ← 0

6 𝑄 ← kolejka wierzchołków w grafie 𝐺
7 Dopóki 𝑸 nie jest puste
8 𝒖 ← zdejmij z kolejki 𝑄 wierzchołek o najmniejszej wartości 𝒅 𝒖
9 Dla każdego wierzchołka 𝒗, który jest sąsiadem 𝑢

10 Jeżeli 𝒅 𝒗 > 𝒅 𝒖 +𝒘 𝒖,𝒗 + 𝒉 𝒗

11 𝒅 𝒗 ← 𝒅 𝒖 + 𝒘 𝒖,𝒗 + 𝒉 𝒗
12 𝑝𝑜𝑝𝑟𝑧𝑒𝑑𝑛𝑖𝑘 𝑣 ← 𝑢
13 Koniec jeżeli
14 Koniec dla każdego
15 Koniec dopóki

16 ś𝒄𝒊𝒆ż𝒌𝒂 ← 𝒏𝒐𝒘𝒂 𝒍𝒊𝒔𝒕𝒂

17 ś𝒄𝒊𝒆ż𝒌𝒂 ←dodaj 𝒔

18 𝒗 ← 𝒅

19 Dopóki 𝒑𝒐𝒑𝒓𝒛𝒆𝒅𝒏𝒊𝒌 𝒗 ≠ 𝒔
20 𝒗 ← 𝐩𝐨𝐩𝐫𝐳𝐞𝐝𝐧𝐢𝐤 𝐯
21 ś𝒄𝒊𝒆ż𝒌𝒂 ←dodaj 𝒗
22 Koniec dopóki
23 ś𝒄𝒊𝒆ż𝒌𝒂 ←dodaj 𝒔



16

Programowanie Robotów Mobilnych

Planowanie ścieżki globalnej

Algorytm A*

Punkt startowy

Punkt docelowy

Analizowana 
pozycja przez 
algorytm A*



17

Programowanie Robotów Mobilnych

Planowanie ścieżki globalnej

Algorytm eksplorowania drzew losowych (RRT) polega na konstrukcji grafu w sposób
losowy. Algorytm RRT tworzy specjalny rodzaj grafu zwany drzewem.

Jest to struktura, która posiada korzeń, który w naszym przypadku jest aktualną
pozycją robota, i każdy kolejny wierzchołek w drzewie posiada dokładnie jednego
rodzica.

Generując odpowiednio nowe punkty i łącząc je z drzewem, algorytm RRT dokonuje
eksploracji całej mapy w celu znalezienia drogi do punktu docelowego.

Algorytm eksplorowania drzew losowych



18

Programowanie Robotów Mobilnych

Planowanie ścieżki globalnej

Algorytm eksplorowania drzew losowych

Algorytm: Pseudokod budowy drzewa algorytmu eksplorowania drzew losowych

Wejście: 𝑠 (pozycja początkowa)
Wyjście: 𝑇 (drzewo eksplorujące mapę)

1 Stwórz nowe drzewo 𝑇 i dodaj 𝑠 jako jego korzeń

2 Dla 𝒊 = 𝟏. . 𝑵 wykonaj

3 Wygeneruj losową pozycję 𝑥

4 Jeżeli 𝑪𝒐𝒍𝒍𝒊𝒔𝒊𝒐𝒏𝑪𝒉𝒆𝒄𝒌 𝒙 = 𝒇𝒂𝒍𝒔𝒆

5 Znajdź wierzchołek 𝑦, który jest najbliższym sąsiadem w drzewie 𝑇 dla 𝑥

6 Jeżeli 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝒙, 𝒚 > ∆

7
Znajdź pozycję 𝑧, która leży na ścieżce łączącej 𝑥 i 𝑦 oraz spełnia zależność
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑧, 𝑦 ≤ ∆

8 𝒙 ← 𝒛

9 Koniec jeżeli

10 Jeżeli 𝐿𝑜𝑐𝑎𝑙𝑃𝑙𝑎𝑛𝑛𝑒𝑟 𝑥, 𝑦 = 𝑡𝑟𝑢𝑒

11 Dodaj pozycję 𝑥 do drzewa 𝑇 ustawiając 𝑦 jako jego rodzica

12 Koniec jeżeli

13 Koniec jeżeli

14 Koniec dla



19

Programowanie Robotów Mobilnych

Planowanie ścieżki globalnej

Algorytm eksplorowania drzew losowych

Źródło: https://en.wikipedia.org/wiki/Rapidly-exploring_random_tree



20

Programowanie Robotów Mobilnych

Planowanie ścieżki globalnej

Algorytm eksplorowania drzew losowych
Algorytm: Pseudokod algorytmu eksplorowania drzew losowych
Wejście: 𝑠 (pozycja początkowa), 𝑑 (pozycja docelowa)
Wyjście: ścieżka do celu

1 Stwórz nowe drzewo 𝐴 i dodaj 𝑠 jako jego korzeń
2 Stwórz nowe drzewo 𝐵 i dodaj 𝑑 jako jego korzeń
3 Dopóki drzewa 𝐴 i 𝐵 nie są połączone
4 Rozszerz drzewo 𝐴 o pozycję 𝑥
5 Znajdź najbliższego sąsiada 𝑦 pozycji 𝑥 w drzewie 𝐵
6 Jeżeli 𝐿𝑜𝑐𝑎𝑙𝑃𝑙𝑎𝑛𝑛𝑒𝑟 𝑥, 𝑦 = 𝑡𝑟𝑢𝑒

7
Zwróć ścieżkę łączącą pozycje wierzchołków:
- od punktu 𝑥 do korzenia w drzewie 𝐴
- od punktu 𝑦 do korzenia w drzewie 𝐵

8 Koniec jeżeli
9 Zamień drzewa 𝐴 i 𝐵

10 Koniec dopóki



21

Programowanie Robotów Mobilnych

Planowanie ścieżki globalnej

Jest to algorytm metaheurystyczny bazujący na populacji opracowany do zastosowań
w problemach optymalizacyjnych. ACO jest inspirowany naturą, a dokładniej
mrówkami.

Mrówka zostawia feromony podczas marszu. A wybór ścieżki, którą pójdzie mrówka
zależy w pewnym stopniu od wartości feromonów na ścieżce. W związku z tym,
mrówki początkowo w nowym terenie wybierają ścieżki bardziej losowo (brak
feromonów) i z biegiem czasu poprzez zostawiany ślad feromonowy na ścieżkach
zaczynają poruszać się po najlepszej ścieżce.

Pozostawianie feromonu na ścieżce łączącej wierzchołki grafu i i j przez k-tą mrówkę
modelujemy jako odwrotnie proporcjonalne do długości ścieżki jaką mrówka
pokonała aby dotrzeć z punktu początkowego do punktu końcowego:

∆τ𝑖,𝑗
𝑘 = ൞

𝑄

𝐿𝑘
, 𝑗𝑒ż𝑒𝑙𝑖 𝑘 − 𝑡𝑎 𝑚𝑟ó𝑤𝑘𝑎 𝑝𝑟𝑧𝑒𝑠𝑧ł𝑎 𝑘𝑟𝑎𝑤ę𝑑𝑧𝑖ą 𝑖, 𝑗

0, 𝑤 𝑝𝑜𝑧𝑜𝑠𝑡𝑎ł𝑦𝑐ℎ 𝑝𝑟𝑧𝑦𝑝𝑎𝑑𝑘𝑎𝑐ℎ

gdzie: Q jest stałą (np. Q = 1), a Lk jest długością całej trasy od wierzchołka
początkowego do końcowego mrówki.

Algorytm mrówkowy 
(ang. Ant Colony Optimization algorithm, ACO)



22

Programowanie Robotów Mobilnych

Planowanie ścieżki globalnej

Dodatkowo, feromon paruje, co jest symulowane poprzez zmniejszanie aktualnej
wartości feromonu na ścieżce w każdej iteracji. Pełny model feromonu na danej
ścieżce jest następujący:

τ𝑖,𝑗 = 1 − 𝜌 τ𝑖,𝑗 +෍

𝑘=1

𝑁

∆τ𝑖,𝑗
𝑘

gdzie: 𝜌 jest współczynnikiem parowania feromonu na ścieżce (0 ≤ 𝜌 ≤ 1), N oznacza
liczbę agentów (mrówek) algorytmu.

Algorytm mrówkowy 
(ang. Ant Colony Optimization algorithm, ACO)



23

Programowanie Robotów Mobilnych

Planowanie ścieżki globalnej

Kolejnym elementem kluczowym algorytmu jest decyzja o wyborze kolejnego
wierzchołka. Kluczową rolę odgrywają wartość feromonu połączenia (τ𝑖,𝑗 ) oraz

celowość zmiany stanu ηi,j, co w zakładanym przypadku planowania ścieżki można

przyjąć za odwrotność odległości pomiędzy wierzchołkami ηi,j =
1

𝑑𝑖,𝑗
. Wzór na

prawdopodobieństwo wyboru połączenia z wierzchołka i do wierzchołka j można
zapisać następująco:

𝑝𝑖,𝑗 =
τ𝑖,𝑗
α ⋅ ηi,j

β

σ𝑚∈𝑑𝑜𝑠𝑡ę𝑝𝑛𝑒𝑤𝑖𝑒𝑟𝑧𝑐ℎ𝑜ł𝑘𝑖 τ𝑖,𝑚
α

⋅ ηi,m
β

gdzie: : α jest parametrem wpływu feromonu na ścieżce α ≥ 0), a β jest parametrem
wpływu długości połączenia (β ≥ 1)).

Algorytm mrówkowy 
(ang. Ant Colony Optimization algorithm, ACO)



24

Programowanie Robotów Mobilnych

Planowanie ścieżki globalnej

Algorytm mrówkowy 
(ang. Ant Colony Optimization algorithm, ACO)

Algorytm 7: Pseudokod algorytmu mrówkowego
Wejście: 𝑠 (pozycja początkowa), 𝑑 (pozycja docelowa),

𝑁 (populacja mrówek), 𝑀 (liczba iteracji), 𝑄, α, β, 𝜌 (parametry)
Wyjście: ścieżka do celu

1 Inicjalizacja zmiennych
2 Dla 𝑖𝑡𝑒𝑟 = 1…𝑀 wykonaj
3 Dla 𝒌 = 𝟏. . 𝑵 wykonaj
4 Pozycja mrówki ← 𝑠
5 Dopóki mrówka nie osiągnęła punktu docelowego (𝑑)
6 Oblicz prawdopodobieństwo dla każdego możliwego ruchu
7 Wybierz kolejną pozycję zgodnie z prawdopodobieństwem
8 Koniec dopóki
9 Aktualizuj ilość feromonów na ścieżkach

10 Koniec dla
11 Koniec dla
12 Zwróć ścieżkę wybierając trasę o największych prawdopodobieństwach



25

Programowanie Robotów Mobilnych

Planowanie ścieżki globalnej

Algorytm mrówkowy 
(ang. Ant Colony Optimization algorithm, ACO)



26

Programowanie Robotów Mobilnych

Planowanie ścieżki globalnej

Algorytm mrówkowy 
(ang. Ant Colony Optimization algorithm, ACO)

Źródło: https://www.youtube.com/watch?v=SJM3er3L6P4



27

Programowanie Robotów Mobilnych

Planowanie ścieżki globalnej

Założenia:

• Znajomość pozycji robota

• Znajomość ścieżki

• Znajomość mapy środowiska

• Dane z lokalnych czujników robota

Oczekiwania:

• Śledzenie globalnej ścieżki

Śledzenie ścieżki globalnej (ang. Waypoint tracking)



28

Programowanie Robotów Mobilnych

Planowanie ścieżki globalnej

Śledzenie ścieżki globalnej (ang. Waypoint tracking)

Algorytmy śledzenia ścieżki globalnej tj. Pure
Pursuit nie posiadają wbudowanych
mechanizmów omijania przeszkód wykorzystując
czujniki pokładowe.

W celu bezkolizyjnej realizacji globalnej ścieżki
należy zastosowań algorytm planowania ścieżki
lokalnej.



29

Programowanie Robotów Mobilnych

Planowanie ścieżki globalnej

Śledzenie ścieżki globalnej (ang. Waypoint tracking)

Najbliższy punkt 
ścieżki globalnej 
od aktualnej 

pozycji robota

Wyprzedzenie o np. 1m ścieżki 
jako punkt do śledzenia dla 
algorytmu planowania ścieżki 
lokalnej



30

Programowanie Robotów Mobilnych

Planowanie ścieżki globalnej

Śledzenie ścieżki globalnej (ang. Waypoint tracking) + APF



31

Programowanie Robotów Mobilnych

Planowanie ścieżki globalnej

Śledzenie ścieżki globalnej (ang. Waypoint tracking) + APF



32

Programowanie Robotów Mobilnych

Planowanie ścieżki globalnej

Śledzenie ścieżki globalnej (ang. Waypoint tracking) + APF


