
16.05.2023

Programowanie
Robotów
Mobilnych

Rafał Szczepański
e-mail: szczepi (at) umk.pl
www.umk.pl/~szczepi

Planowanie ścieżki lokalnej

Spis treści

2

• Algorytm sztucznych pól potencjałowych

• Algorytm dynamicznego okna

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

• BUG2

• BUG1

• BUG0Plan prezentacji

3

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

Założenia:

• Znajomość pozycji robota

• Znajomość pozycji zadanej (cel)

• Brak znajomości mapy środowiska

• Lokalna znajomość środowiska
poprzez wbudowane czujniki

Oczekiwania:

• Bezkolizyjne poruszanie się

• Osiągnięcie pozycji zadanej

Planowanie ścieżki lokalnej

4

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

Inspirowane przyrodą (insektami). W działaniu algorytmów BUG można wyróżnić
dwie akcje:

• Podążaj na wprost celu,

• Podążaj wzdłuż ściany/przeszkody (lewostronnie lub prawostronnie).

Algorytmy będą działały nawet w przypadku zastosowania czujników uderzeniowych.
Nie wymagają one czujników odległości ani skanera laserowego. Natomiast wymagają
znajomości swojej pozycji (np. metodą odometryczną).

Oznaczmy wektorem q = [x, y]T pozycję w przestrzeni:

• qrobot – pozycja robota,

• qgoal – pozycja docelowa,

• qH – punkt zdarzenia wykrycia przeszkody (od ang. hit),

• qL – punkt opuszczenia przeszkody (od ang. leave).

Algorytmy BUG

5

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

1. Podążaj na wprost celu

2. Jeżeli napotkałeś przeszkodę to
podążaj wzdłuż niej aż do odzyskania
możliwości poruszania na wprost celu

3. Kontynuuj

BUG0 - Strategia

6

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

1. Podążaj na wprost celu

2. Jeżeli napotkałeś przeszkodę to
podążaj wzdłuż niej aż do odzyskania
możliwości poruszania na wprost celu

3. Kontynuuj

BUG0 - Strategia

7

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

1. Podążaj na wprost celu

2. Jeżeli napotkałeś przeszkodę to
podążaj wzdłuż niej aż do odzyskania
możliwości poruszania na wprost celu

3. Kontynuuj

BUG0 - Strategia

8

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

1. Podążaj na wprost celu

2. Jeżeli napotkałeś przeszkodę to
podążaj wzdłuż niej aż do odzyskania
możliwości poruszania na wprost celu

3. Kontynuuj

BUG0 - Strategia

9

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

1. Podążaj na wprost celu

2. Jeżeli napotkałeś przeszkodę to
podążaj wzdłuż niej aż do odzyskania
możliwości poruszania na wprost celu

3. Kontynuuj

BUG0 - Strategia

10

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

1. Podążaj na wprost celu

2. Jeżeli napotkałeś przeszkodę to
podążaj wzdłuż niej aż do odzyskania
możliwości poruszania na wprost celu

3. Kontynuuj

BUG0 - Strategia

11

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

BUG0 - pseudokod Pseudokod algorytmu BUG0

Wejście: 𝑞𝑠𝑡𝑎𝑟𝑡, 𝑞𝑔𝑜𝑎𝑙

Wyjście: informacja o osiągnięciu celu lub informacja, że ścieżka do celu nie istnieje

1 Dopóki 1 == 1 wykonuj

2 Powtórz

3 Przesuń się wprost do celu

4 Dopóki 𝑞𝑔𝑜𝑎𝑙 nie został osiągnięty lub przeszkoda nie została wykryta

5 Jeżeli 𝑞𝑔𝑜𝑎𝑙 został osiągnięty wtedy

6 Zwróć flagę powodzenia

7 Koniec jeżeli

8 𝑞𝑖
𝐻 = 𝑞𝑟𝑜𝑏𝑜𝑡

9 Powtórz

10 Podążaj wzdłuż przeszkody

11 Dopóki 𝑞𝑔𝑜𝑎𝑙 nie został osiągnięty lub możliwy jest ruch na wprost przeszkody

12 lub 𝑞𝑖
𝐻 został ponownie osiągnięty

13 𝑞𝑖
𝐿 = 𝑞𝑟𝑜𝑏𝑜𝑡

14 Jeżeli robot nie może poruszyć się na wprost celu wtedy

15 Zwróć flagę porażki

16 Koniec jeżeli

17 i += 1

18 Koniec dopóki

12

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

BUG0 – Zawsze zadziała?

13

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

BUG0 – Zawsze zadziała?

14

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

1. Podążaj na wprost celu

2. Jeżeli napotkałeś przeszkodę to
podążaj wzdłuż niej aż ją okrążysz
zapamiętując pozycję, która jest
najbliżej celu

3. Wróć do punktu, który był najbliżej
celu i kontynuuj

BUG1 - Strategia

15

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

1. Podążaj na wprost celu

2. Jeżeli napotkałeś przeszkodę to
podążaj wzdłuż niej aż ją okrążysz
zapamiętując pozycję, która jest
najbliżej celu

3. Wróć do punktu, który był najbliżej
celu i kontynuuj

BUG1 - Strategia

16

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

1. Podążaj na wprost celu

2. Jeżeli napotkałeś przeszkodę to
podążaj wzdłuż niej aż ją okrążysz
zapamiętując pozycję, która jest
najbliżej celu

3. Wróć do punktu, który był najbliżej
celu i kontynuuj

BUG1 - Strategia

17

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

1. Podążaj na wprost celu

2. Jeżeli napotkałeś przeszkodę to
podążaj wzdłuż niej aż ją okrążysz
zapamiętując pozycję, która jest
najbliżej celu

3. Wróć do punktu, który był najbliżej
celu i kontynuuj

BUG1 - Strategia

18

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

1. Podążaj na wprost celu

2. Jeżeli napotkałeś przeszkodę to
podążaj wzdłuż niej aż ją okrążysz
zapamiętując pozycję, która jest
najbliżej celu

3. Wróć do punktu, który był najbliżej
celu i kontynuuj

BUG1 - Strategia

19

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

1. Podążaj na wprost celu

2. Jeżeli napotkałeś przeszkodę to
podążaj wzdłuż niej aż ją okrążysz
zapamiętując pozycję, która jest
najbliżej celu

3. Wróć do punktu, który był najbliżej
celu i kontynuuj

BUG1 - Strategia

20

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

BUG1 - pseudokod
Pseudokod algorytmu BUG1

Wejście: 𝑞𝑠𝑡𝑎𝑟𝑡, 𝑞𝑔𝑜𝑎𝑙

Wyjście: informacja o osiągnięciu celu lub informacja, że ścieżka do celu nie istnieje

1 Dopóki 1 == 1 wykonuj

2 Powtórz

3 Przesuń się wprost do celu

4 Dopóki 𝑞𝑔𝑜𝑎𝑙 nie został osiągnięty lub przeszkoda nie została wykryta

5 Jeżeli 𝑞𝑔𝑜𝑎𝑙 został osiągnięty wtedy

6 Zwróć flagę powodzenia

7 Koniec jeżeli

8 𝑞𝑖
𝐻 = 𝑞𝑟𝑜𝑏𝑜𝑡

9 Powtórz

10 Podążaj wzdłuż przeszkody

11 Dopóki 𝑞𝑔𝑜𝑎𝑙 nie został osiągnięty lub 𝑞𝑖
𝐻 nie został ponownie osiągnięty

12 Wyznacz punkt 𝑞𝑖
𝐿 jako punkt najbliższy do celu od przeszkody

13 Poruszaj się wzdłuż przeszkody do punktu 𝑞𝑖
𝐿

14 Jeżeli robot nie może poruszyć się na wprost celu wtedy

15 Zwróć flagę porażki

16 Koniec jeżeli

17 i += 1

18 Koniec dopóki

21

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

1. Podążaj na wprost celu

2. Jeżeli napotkałeś przeszkodę to
podążaj wzdłuż niej aż przetniesz linię
kierunkową

3. Kontynuuj

BUG2 - Strategia

22

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

1. Podążaj na wprost celu

2. Jeżeli napotkałeś przeszkodę to
podążaj wzdłuż niej aż przetniesz linię
kierunkową

3. Kontynuuj

BUG2 - Strategia

23

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

1. Podążaj na wprost celu

2. Jeżeli napotkałeś przeszkodę to
podążaj wzdłuż niej aż przetniesz linię
kierunkową

3. Kontynuuj

BUG2 - Strategia

𝑎𝑞𝑟𝑜𝑏𝑜𝑡
𝑥 𝑘 − 1 + 𝑏 − 𝑞𝑟𝑜𝑏𝑜𝑡

𝑦
𝑘 − 1 ⋅ 𝑎𝑞𝑟𝑜𝑏𝑜𝑡

𝑥 𝑘 + 𝑏 − 𝑞𝑟𝑜𝑏𝑜𝑡
𝑦

𝑘 ≤ 0

Dopasowujemy parametry 𝑎 i 𝑏 równiania
funkcji liniowej 𝑦 = 𝑎𝑥 + 𝑏 . Przecięcie
funkcji możemy zdefiniować chwilą w
której zmienia się znak w kolejnej chwili
czasu równania:

𝑦(𝑞𝑟𝑜𝑏𝑜𝑡
𝑥) − 𝑞𝑟𝑜𝑏𝑜𝑡

𝑦

Więc warunek przecięcia linii kierunkowej
można zapisać następująco:

24

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

1. Podążaj na wprost celu

2. Jeżeli napotkałeś przeszkodę to
podążaj wzdłuż niej aż przetniesz linię
kierunkową

3. Kontynuuj

BUG2 - Strategia

25

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

1. Podążaj na wprost celu

2. Jeżeli napotkałeś przeszkodę to
podążaj wzdłuż niej aż przetniesz linię
kierunkową

3. Kontynuuj

BUG2 - Strategia

26

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

1. Podążaj na wprost celu

2. Jeżeli napotkałeś przeszkodę to
podążaj wzdłuż niej aż przetniesz linię
kierunkową

3. Kontynuuj

BUG2 - Strategia

27

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

BUG2 - pseudokod
Pseudokod algorytmu BUG2

Wejście: 𝑞𝑠𝑡𝑎𝑟𝑡, 𝑞𝑔𝑜𝑎𝑙

Wyjście: informacja o osiągnięciu celu lub informacja, że ścieżka do celu nie istnieje

1 Dopóki 1 == 1 wykonuj

2 Powtórz

3 Przesuń się wprost do celu

4 Dopóki 𝑞𝑔𝑜𝑎𝑙 nie został osiągnięty lub przeszkoda nie została wykryta

5 Jeżeli 𝑞𝑔𝑜𝑎𝑙 został osiągnięty wtedy

6 Zwróć flagę powodzenia

7 Koniec jeżeli

8 𝑞𝑖
𝐻 = 𝑞𝑟𝑜𝑏𝑜𝑡

9 Skręć w lewo (lub w prawo)

10 Powtórz

11 Podążaj wzdłuż przeszkody

12 Dopóki 𝑞𝑔𝑜𝑎𝑙 nie został osiągnięty lub 𝑞𝑖
𝐻 nie został ponownie osiągnięty

13 lub prosta łącząca punkty 𝑞𝑠𝑡𝑎𝑟𝑡 𝑖 𝑞𝑔𝑜𝑎𝑙 nie została osiągnięta

14 Jeżeli robot nie może poruszyć się na wprost celu wtedy

15 Zwróć flagę porażki

16 Koniec jeżeli

17 i += 1

18 Koniec dopóki

28

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

BUG2 – Zawsze zadziała?

29

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

BUG2 – Zawsze zadziała?

30

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

Algorytmy BUG0, BUG1, BUG2 - Porównanie

• Algorytm BUG1 przeszukuje wszystkie możliwości przed wykonaniem
kolejnego etapu. Dzięki temu, jeżeli to możliwe, znajdzie ścieżkę do punktu
docelowego.

• Algorytmy BUG0 i BUG2 przeszukują „zachłannie” i w razie wystąpienia
odpowiedniego warunku zaczynają ponownie poruszać się na wprost punktu
docelowego. Powoduje to możliwość utknięcia algorytmu.

• W ogólności algorytmy BUG0 i BUG2 dostarczają lepsze rozwiązanie niż
BUG1 (krótsza ścieżka). Niestety, mogą powodować problemy z dodarciem
do punktu docelowego.

• Ruch lewostronny lub prawostronny może zostać zdefiniowany odgórnie w
algorytmie lub może być wybierany losowo podczas wykrycia kolejnej
przeszkody. Zastosowanie losowości powoduje, że algorytmy BUG0 i BUG2
znajdą rozwiązanie, lecz może być ono gorsze niż algorytmu BUG1.

31

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

Algorytm BUG0 - skaner laserowy 360 stopni

Założeniem algorytmów BUG jest podążanie wzdłuż przeszkód. Można
to zrealizować czujnikami uderzeniowymi. Mając natomiast informację
o przeszkodach do których się zbliżamy możemy ją wykorzystać i zamiast czekać
na „zderzenie” możemy wykonać predykcję przyszłych ruchów.

Predykcja polega na znalezieniu punktu
„opuszczenia” śledzenia przeszkody
w przypadku poruszania się lewostronnego
i prawostronnego. Następnie wybierając ten
z punktów, który jest bliżej (algorytm
zachłanny) jako kolejny cel poruszania się
możemy skrócić przebytą drogę robota.

32

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

Algorytm BUG2 - zasięg skanera laserowego 360 stopni

Ograniczony zasięg czujnika Nieograniczony zasięg czujnika

33

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

Algorytm inspirowany oddziaływaniem elektrostatycznym. Zakładając różne ładunki
robota oraz punktu docelowego generowana jest siła przyciągająca, a takie same
ładunki robota i przeszkód generują siłę odpychającą.

Algorytm sztucznych pól potencjałowych
(ang. Artificial Potential Field algorithm, APF)

34

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

Podstawowym równaniem algorytmu jest funkcja potencjału 𝑈 ∶ 𝑅𝑁 → 𝑅, wyrażona
następującym równaniem:

𝑈 𝑞 = 𝑈𝑎𝑡𝑡 𝑞 + 𝑈𝑟𝑒𝑝 𝑞

gdzie:

𝑞 to pozycja robota,

𝑈𝑎𝑡𝑡 𝑞 jest potencjałem przyciągającym (ang. attractive),

𝑈𝑟𝑒𝑝 𝑞 jest potencjałem odpychającym (ang. repulsive).

Wartość funkcji potencjału może być intepretowana jako energia, a wtedy gradient
potencjału jest siłą. Gradient funkcji potencjału jest następujący:

∇𝑈 𝑞 = ∇𝑈𝑎𝑡𝑡 𝑞 + ∇𝑈𝑟𝑒𝑝 𝑞

Algorytm sztucznych pól potencjałowych

35

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

Celem tego potencjału jest przyciąganie robota (o pozycji 𝑞) do punktu docelowego
(𝑞∗), czyli minimalizacja błędu 𝑒(𝑞) = 𝑞 − 𝑞∗. Rozważmy dwie funkcje: stożkową
oraz paraboliczną.

APF – potencjał przyciągający (ang. attractive potential)

𝑈𝑎𝑡𝑡 𝑞 = 𝜁 |𝑒 𝑞 |

∇𝑈𝑎𝑡𝑡 𝑞 = 𝜁
𝑒(𝑞)

| 𝑒 𝑞 |

𝑈𝑎𝑡𝑡 𝑞 =
1

2
𝜁 𝑒 𝑞

2

∇𝑈𝑎𝑡𝑡 𝑞 = 𝜁𝑒(𝑞)

36

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

Funkcja stożkowa generuje gradient o stałej długości (niezależny od odległości robota
od celu. Powoduje to, że w przypadku bardzo małych odległości pomiędzy punktem
docelowym a robotem powstanie nadal stosunkowo duża siła.

Z drugiej strony, funkcja paraboliczna dostarcza gradient liniowo zależny od odległości,
co może spowodować bardzo duże wartości przy znacznie oddalonych pozycjach
docelowych.

W praktycznych implementacjach stosuje się połączenie tych dwóch funkcji, dzięki
czemu uzyskujemy spadek wartości gradientu przy dojeżdżaniu do punktu
docelowego i stałą wartość przy odległych pozycjach docelowych.

W celu zapewnienia płynnego przejścia wartości gradientu przez graniczną wartość
przełączania pomiędzy potencjałami należy dodać odpowiedni człon do potencjału
przyciągającego.

APF – potencjał przyciągający (ang. attractive potential)

37

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

𝑈𝑎𝑡𝑡 𝑞 =

1

2
𝜁| 𝑒 𝑞 | 2, 𝑗𝑒ż𝑒𝑙𝑖 |𝑒 𝑞 | ≤ 𝑑𝑔

∗

𝑑𝑔
∗𝜁𝑒 𝑞 −

1

2
𝜁 𝑑𝑔

∗ 2
, 𝑤 𝑝𝑜𝑧𝑜𝑠𝑡𝑎ł𝑦𝑐ℎ 𝑝𝑟𝑧𝑦𝑝𝑎𝑑𝑘𝑎𝑐ℎ

gdzie: 𝑑𝑔
∗ jest wartością graniczną, tj. od tej odległości długość wektora gradientu

maleje z razem z odległością od punktu docelowego pozwalając na płynne
zatrzymanie się robota.

∇𝑈𝑎𝑡𝑡 𝑞 = ൞

𝜁𝑒 𝑞 , 𝑗𝑒ż𝑒𝑙𝑖 𝑑𝑔 ≤ 𝑑𝑔
∗

𝑑𝑔
∗𝜁

𝑒 𝑞

| 𝑒 𝑞 |
, 𝑤 𝑝𝑜𝑧𝑜𝑠𝑡𝑎ł𝑦𝑐ℎ 𝑝𝑟𝑧𝑦𝑝𝑎𝑑𝑘𝑎𝑐ℎ

APF – potencjał przyciągający (ang. attractive potential)

38

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

Celem tego potencjału jest zapewnienie bezkolizyjnego poruszania się po nieznanym
środowisku. Potencjał jest odwrotnie proporcjonalny do odległości od przeszkody.
Dzięki temu jesteśmy w stanie zapewnić bezkolizyjny ruch, ponieważ przy odległości
dążącej do zera wartość potencjału dąży do nieskończoności. W ten sposób
minimalizujemy odległość od przeszkody (ang. clearance) 𝑐𝑂𝑖 𝑞 = 𝑞 − 𝑂𝑖

APF – potencjał odpychający (ang. repulsive potential)

39

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

Warto pokreślić, że wprowadzony zostaje dodatkowy parametr 𝑄∗, który odpowiada
za zakres oddziaływania przeszkód na robota. Pozwala to na zignorowanie przeszkód
w znacznej odległości od robota, dzięki czemu robot będzie się poruszał wprost do
punktu docelowego. W celu zachowania płynności przejścia, musi on zostać
uwzględniony w funkcji potencjału:

𝑈𝑟𝑒𝑝
𝑂𝑖 𝑞 =

1

2
𝜂

1

||𝑐𝑂𝑖||
−

1

𝑄∗

2

, 𝑗𝑒ż𝑒𝑙𝑖  ||𝑐𝑂𝑖|| ≤ 𝑄∗

0, 𝑤 𝑝𝑜𝑧𝑜𝑠𝑡𝑎ł𝑦𝑐ℎ 𝑝𝑟𝑧𝑦𝑝𝑎𝑑𝑘𝑎𝑐ℎ

Powyższe wyrażenie prowadzi do następującego gradientu:

∇𝑈𝑟𝑒𝑝
𝑂𝑖 𝑞 = ൞

𝜂
1

𝑄∗ −
1

||𝑐𝑂𝑖||

𝑐𝑂𝑖
||𝑐𝑂𝑖||

2 , 𝑗𝑒ż𝑒𝑙𝑖  ||𝑐𝑂𝑖|| ≤ 𝑄∗

0, 𝑤 𝑝𝑜𝑧𝑜𝑠𝑡𝑎ł𝑦𝑐ℎ 𝑝𝑟𝑧𝑦𝑝𝑎𝑑𝑘𝑎𝑐ℎ

APF – potencjał odpychający (ang. repulsive potential)

40

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

Potencjał odpychający jest sumą wszystkich potencjałów od każdej z przeszkód w
analizowanym zakresie:

∇𝑈𝑟𝑒𝑝 𝑞 = ෍

𝑖=1

𝑁

∇𝑈𝑟𝑒𝑝
𝑂𝑖 𝑞

APF – potencjał odpychający (ang. repulsive potential)

41

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

Całościowy potencjał jest sumą potencjału przyciągającego oraz sumy potencjałów
odpychających:

𝑈 𝑞 = 𝑈𝑎𝑡𝑡 𝑞 + 𝑈𝑟𝑒𝑝 𝑞

A ich gradient:

∇𝑈 𝑞 = ∇𝑈𝑎𝑡𝑡 𝑞 + ∇𝑈𝑟𝑒𝑝 𝑞

Siła jest równa gradientowi z odwrotnym znakiem:

𝐹(𝑞) = − ∇𝑈 𝑞

APF – Funkcja potencjału

42

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

APF – Suma potencjałów przyciągającego i odpychających

X

Y

43

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

Jedną z modyfikacji APF jest zastosowanie transformacji funkcji odpychającej, aby
przeszkody nie odpychały robota od siebie, a skierowały się wzdłuż jego konturów.
Transformacja polega na przemnożeniu gradientu potencjału odpychającego przez
macierz obrotu (dwuwymiarową w analizowanym przypadku):

∇𝑈𝑣𝑜𝑟𝑡 𝑞 =
cos 𝛾 −sin 𝛾
sin 𝛾 cos 𝛾

⋅ ∇𝑈𝑟𝑒𝑝 𝑞

gdzie: 𝛾 wynosi ±90° i określa kierunek zgodny lub przeciwny do ruchu wskazówek
zegara.

APF – potencjał wirowy (ang. vortex potential)

44

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

APF – Suma potencjałów przyciągającego i wirowych

X

Y

45

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

Safe APF – Suma potencjałów przyciągającego i kombinacji
potencjałów odpychających i wirowych

46

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

X

Y

Safe APF – Suma potencjałów przyciągającego i kombinacji
potencjałów odpychających i wirowych (𝑑𝑣𝑜𝑟𝑡 = 0.3 m)

47

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

X

Y

Safe APF – Suma potencjałów przyciągającego i kombinacji
potencjałów odpychających i wirowych (𝑑𝑣𝑜𝑟𝑡 = 0.5 m)

48

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

Wektor siły możemy zinterpretować na kilka sposobów:

• Jako uogólnioną siłę przyłożoną do robota uwzględniając jego dynamikę
𝜏 = 𝐹 𝑞

• Jako uogólnione przyśpieszenie:
ሷ𝑞 = 𝐹 𝑞

• Jako uogólnione prędkości:
ሶ𝑞 = 𝐹 𝑞

Tylko ostatnia metoda zapewnia asymptotyczną stabilności wokół punktu zadanego.

APF – interpretacja siły

49

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

Wyznaczenie prędkości liniowej stycznej do toru ruchu robota oraz orientacji w jakim
kierunku robot powinien się poruszać jest następujące:

𝑣𝑟𝑒𝑓 = 𝐿𝑖𝑚𝑖𝑡 ∇𝑈 𝑞 , 𝑣𝑚𝑎𝑥

𝜃𝑟𝑒𝑓 = 𝑎𝑟𝑐𝑡𝑎𝑛
−∇𝑈𝑦 𝑞

−∇𝑈𝑥 𝑞

gdzie: 𝑣𝑚𝑎𝑥 jest maksymalną prędkością liniową robota.

APF – wyznaczenie prędkości liniowej i kątowej robota

50

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

Dodatkowym zabezpieczeniem przed poruszaniem się z zbyt dużą prędkością w
niewłaściwym kierunku względem wyznaczonej orientacji robota jest uwarunkowanie
liniowej prędkości od uchybu orientacji robota względem wartości referencyjnej:

𝑣𝑟𝑒𝑓 = ቊ
𝐿𝑖𝑚𝑖𝑡 𝛼 ∇𝑈 𝑞 , 𝑣𝑚𝑎𝑥 , 𝑗𝑒ż𝑒𝑙𝑖 𝑎𝑏𝑠 𝜃𝑒𝑟𝑟𝑜𝑟 ≤ 𝜃𝑒𝑟𝑟𝑜𝑟

𝑚𝑎𝑥

0, 𝑤 𝑝𝑜𝑧𝑜𝑠𝑡𝑎ł𝑦𝑐ℎ 𝑝𝑟𝑧𝑦𝑝𝑎𝑑𝑘𝑎𝑐ℎ

𝛼 =
𝜃𝑒𝑟𝑟𝑜𝑟
𝑚𝑎𝑥 − 𝑎𝑏𝑠 𝜃𝑒𝑟𝑟𝑜𝑟

𝜃𝑒𝑟𝑟𝑜𝑟
𝑚𝑎𝑥

gdzie: 𝜃𝑒𝑟𝑟𝑜𝑟
𝑚𝑎𝑥 jest granicznym uchybem powodującym zatrzymanie prędkości liniowej.

APF – wyznaczenie prędkości liniowej i kątowej robota

51

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

APF – Przykład 1

Wygenerowano na bazie:

Autor: Rafał Szczepański

Link: https://www.mathworks.com/matlabcentral/fileexchange/126455-artificial-potential-field-path-planning-algorithm

52

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

APF – Przykład 2

Wygenerowano na bazie:

Autor: Rafał Szczepański

Link: https://www.mathworks.com/matlabcentral/fileexchange/126455-artificial-potential-field-path-planning-algorithm

53

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

APF – Przykład 3

Wygenerowano na bazie:

Autor: Rafał Szczepański

Link: https://www.mathworks.com/matlabcentral/fileexchange/126455-artificial-potential-field-path-planning-algorithm

54

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

APF – Przykład 4

Wygenerowano na bazie:

Autor: Rafał Szczepański

Link: https://www.mathworks.com/matlabcentral/fileexchange/126455-artificial-potential-field-path-planning-algorithm

55

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

Algorytm dynamicznego okna już wykorzystywaliśmy w poprzednim ćwiczeniu. Jest to
jeden z podstawowych algorytmów planowania ścieżki lokalnej, który jest jedną z
bibliotek ROS. Sam algorytm można podzielić na dwie główne części:

• Przeszukiwanie przestrzeni rozwiązań,

• Optymalizacja.

Polega na predykcji przyszłych ruchów robota oraz sprawdzaniu ew. kolizji. Predykcja
jest ograniczona do dynamicznego okna uwzględniając o ile może zostać zmieniona
prędkość liniowa oraz kątowa względem aktualnej wartości. Dzięki temu algorytm
zapewnia płynność ruchu.

Następnie dokonywana jest optymalizacja, czyli wybór najlepszego rozwiązania
względem predefiniowanych kryteriów.

Algorytm dynamicznego okna
(ang. Dynamic Window Approach, DWA)

56

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

DWA - wizualizacja

57

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

DWA - wizualizacja

58

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

Pierwsza część jest odpowiedzialna za przygotowanie dyskretnego zbioru możliwych
sygnałów sterujących, tj. prędkość liniowa i kątowa. Można wyróżnić w niej trzy
elementy:

• Trajektorie kołowe: założeniem algorytmu dynamicznego okna jest rozważanie
trajektorii kołowych, które można zdefiniować jako pary prędkości liniowej i
kątowej 𝑣,ω . Pozwala to zredukować planowanie ścieżki do dwuwymiarowego
problemu.

• Dopuszczalne prędkości: wymaganiem rozważania danej pary prędkości jest
bezpieczeństwo uzyskanej trajektorii, tj. brak kolizji z przeszkodą. Warunkiem
dopuszczenia pracy 𝑣,ω jest możliwość zatrzymania się robota zanim osiągnie
najbliższą przeszkodę na wygenerowanej trajektorii.

• Dynamiczne okno: zakładamy ograniczone przepieszczenia robota. W związku z
tym uwzględniając aktualne prędkości robota 𝑣𝑅, ωR prędkości mogą się
zmieniać w ograniczonym zakresie zdefiniowanym przez maksymalne
przyśpieszenie liniowe i kątowe.

DWA – tworzenie zbioru możliwych sygnałów sterujących

59

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

Druga część, tj. optymalizacja, jest związana z maksymalizacją funkcji celu wyrażonej
równaniem:

𝐺 𝑣, 𝜔 = 𝜎 𝛼 ⋅ ℎ𝑒𝑎𝑑𝑖𝑛𝑔 𝑣, 𝜔 + 𝛽 ⋅ 𝑑𝑖𝑠𝑡 𝑣, 𝜔 + 𝛾 ⋅ 𝑣𝑒𝑙 𝑣, 𝜔

gdzie: α, β i γ to parametry funkcji celu, a σ jest funkcją wygładzającą.

Powyższa funkcja celu jest złożona z następujących elementów:

• Docelowy kierunek (ang. target heading): jest to nagroda za poruszanie się na
wprost celu, tj. jazda na wprost celu dostarcza maksymalną wartość

• Prześwit (ang. clearance): funkcja 𝑑𝑖𝑠𝑡 jest najbliższym punktem do przeszkody
dla trajektorii. Im mniejsza odległość do przeszkody tym większa szansa, że robot
będzie próbował objechać przeszkodę dookoła.

• Prędkość (ang. velocity): jest to nagroda w funkcji celu za wysoką prędkość liniową
robota.

DWA - optymalizacja

60

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

Zacznijmy od wygenerowania możliwych prędkości liniowych i kątowych w zakresie
maksymalnych wartości jakie może zapewnić robot. Dodatkowo, zakładając, że robot
aktualnie porusza się z prędkościami 𝑣𝑅, 𝜔𝑅 i zakładając maksymalne przyśpieszenia
równe 𝑎𝑅

𝑚𝑎𝑥, 𝜖𝑅
𝑚𝑎𝑥 możemy zdefiniować dolną oraz górną granicę dopuszczalnych

prędkości:

𝑣𝑚𝑎𝑥 𝑘 = 𝑣𝑅 𝑘 − 1 + 𝑡׬ 𝑘−1

𝑡 𝑘
𝑎𝑅
𝑚𝑎𝑥𝑑𝜏 𝑣𝑚𝑖𝑛 𝑘 = 𝑣𝑅 𝑘 − 1 − 𝑡׬ 𝑘−1

𝑡 𝑘
𝑎𝑅
𝑚𝑎𝑥𝑑𝜏

𝜔𝑚𝑎𝑥 𝑘 = 𝜔𝑅 𝑘 − 1 + 𝑡׬ 𝑘−1

𝑡 𝑘
𝜖𝑅
𝑚𝑎𝑥𝑑𝜏 𝜔𝑚𝑖𝑛 𝑘 = 𝜔𝑅 𝑘 − 1 − 𝑡׬ 𝑘−1

𝑡 𝑘
𝜖𝑅
𝑚𝑎𝑥𝑑𝜏

gdzie: t k oznacza czas w 𝑘-tej dyskretnej chwili czasu.

DWA – maksymalne prędkości i dynamiczne okno

61

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

Następnie, przyjmując pewną rozdzielczość lub dzieląc zakres na 𝑁 części uzyskujemy
dwuwymiarową przestrzeń przeszukiwań. Kolejnym krokiem jest predykcja przyszłych
pozycji (tj. trajektorii robota). W tym celu można skorzystać następujących równań:

𝜃 𝑘 + 1 = 𝜃 𝑘 + 𝜔𝑅 𝑘 ⋅ 𝑡 𝑘 + 1 − 𝑡 𝑘

𝑥𝑅 𝑘 + 1 = 𝑥𝑅 𝑘 + 𝑣𝑅 𝑘 ⋅ 𝑐𝑜𝑠 θ 𝑘 + 1 ⋅ 𝑡 𝑘 + 1 − 𝑡 𝑘

𝑦𝑅 𝑘 + 1 = 𝑦𝑅 𝑘 + 𝑣𝑅 𝑘 ⋅ 𝑠𝑖𝑛 θ 𝑘 + 1 ⋅ 𝑡 𝑘 + 1 − 𝑡 𝑘

gdzie: θ jest orientacją robota, 𝑥𝑟 i 𝑦𝑟 są pozycjami odpowiednio w osi 𝑥 oraz 𝑦, a 𝑡
jest czasem. Predykcje możemy wykonać jako np. pięć sekund jazdy ze stałym
okresem próbkowania wynoszącym 0.1 sekundy.

DWA – predykcja przyszłych pozycji robota

62

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

Jeżeli mamy już trajektorię dla każdego zestawu prędkości kątowej i liniowej 𝑣,ω , to
jesteśmy w stanie upewnić się, że trasy są bezkolizyjne, a dodatkowo, że robot będzie
w stanie się zatrzymać zanim zahamuje. Można to zapisać łącząc dwa następujące
warunki:

𝑣 ≤ 2 ⋅ 𝑑𝑖𝑠𝑡 𝑣, 𝜔 ⋅ 𝑎𝑏 ∧ 𝜔 ≤ 2 ⋅ 𝑑𝑖𝑠𝑡 𝑣, 𝜔 ⋅ 𝜖𝑏

gdzie: 𝑎𝑏 i ϵ𝑏 są przyśpieszeniami przy hamowaniu. Zakładając płynność ruchu, można

przyjąć dla uproszczenia, że 𝑎𝑏 = 𝑎𝑅
𝑚𝑎𝑥 i ϵ𝑏 = ϵ𝑅

𝑚𝑎𝑥. W ten sposób wykluczając
kolizyjne trajektorie, otrzymujemy zbiór par prędkości liniowej i kątowej do procesu
optymalizacji. Dla każdej pary obliczana jest wartość wskaźnika jakości, a następnie
wybierana para, która zapewnia wartość maksymalną ze wszystkich analizowanych
możliwości.

DWA – warunek bezkolizyjności

63

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

Wydajną metodą wykrycia kolizji jest rozpatrywanie robota mobilnego poprzez zestaw
okręgów lub jeden okrąg. Dzięki temu kolizja występuje gdy odległość od przeszkody
jest mniejsza bądź równa promieniowi okręgu. Wykorzystując dane ze skanera
laserowego, który jest zamontowany w środku okręgu o promieniu 𝑟, otrzymujemy
prosty warunek na sprawdzenie czy pomiar 𝑑 jest kolizyjny:

𝑘𝑜𝑙𝑖𝑧𝑗𝑎 𝑑 = ቊ
𝑝𝑟𝑎𝑤𝑑𝑎, 𝑗𝑒ż𝑒𝑙𝑖 𝑑 < 𝑟
𝑓𝑎ł𝑠𝑧, 𝑤 𝑝𝑜𝑧𝑜𝑠𝑡𝑎ł𝑦𝑐ℎ 𝑝𝑟𝑧𝑦𝑝𝑎𝑑𝑘𝑎𝑐ℎ

DWA – warunek bezkolizyjności dla robota
o nieregularnym kształcie

64

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

Stosując twierdzenie cosinusów oraz wzór redukcyjny oraz znając pomiar względem

środka okręgu pierwszego (𝑑1) pod kątem α i odległość pomiędzy środkami tych

okręgów (𝐷12) możemy wyznaczyć odległość od środka drugiego okręgu (𝑑2):

𝑑2 = 𝑑1
2 + 𝐷12

2 + 𝑑1𝐷12𝑐𝑜𝑠 𝛼

DWA – warunek bezkolizyjności dla robota
o nieregularnym kształcie

65

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

Dla skanera laserowego, który z częstotliwością 10 Hz dostarcza 1440 próbek
(rozdzielczość 0.25 stopnia) zastosowanie powyższego równania może okazać się
kosztowne obliczeniowo. W związku z tym, możemy zaprojektować dodatkowy okrąg
o promieniu 𝑅12, którego środek jest środkiem okręgu pierwszego, i który mieści w
sobie okrąg drugi. Dzięki temu stosując najpierw porównanie odległości ze skanera
laserowego oraz promienia 𝑅12, odległość względem okręgu drugiego będziemy
musieli obliczać tylko jeżeli istnieje szansa, że okrąg drugi może zostać naruszony.

DWA – warunek bezkolizyjności dla robota
o nieregularnym kształcie

66

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

DWA – Przykład 1

Wygenerowano na bazie:

Autor: Atsushi Sakai

Link:
https://github.com/AtsushiSakai/MATLABRobotics/blob/master/PathPlanning/DynamicWindowApproach/DynamicWindowApproachSample.m

67

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

DWA – Przykład 2

Wygenerowano na bazie:

Autor: Atsushi Sakai

Link:
https://github.com/AtsushiSakai/MATLABRobotics/blob/master/PathPlanning/DynamicWindowApproach/DynamicWindowApproachSample.m

68

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

DWA – Przykład 3

Wygenerowano na bazie:

Autor: Atsushi Sakai

Link:
https://github.com/AtsushiSakai/MATLABRobotics/blob/master/PathPlanning/DynamicWindowApproach/DynamicWindowApproachSample.m

69

Programowanie Robotów Mobilnych

Planowanie ścieżki lokalnej

Wygenerowano na bazie:

Autor: Atsushi Sakai

Link:
https://github.com/AtsushiSakai/MATLABRobotics/blob/master/PathPlanning/DynamicWindowApproach/DynamicWindowApproachSample.m

DWA – Przykład 4

