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Błędy odometrii możemy podzielić na:

• systematyczne:
skończona rozdzielczość i częstotliwość próbkowania enkodera,
niewspółosiowość kół,
nierówne średnice kół lub inne niż nominalna średnica,
inny rozstaw kół niż nominalny.

• Przypadkowe:

nierówne podłoże,
przejazd koła po obiekcie,
poślizg kół (śliskie podłoże, gwałtowne przyśpieszenie, duża prędkość na

łukach, nie punktowy kontakt kół z podłożem, siły zewnętrzne
lub wewnętrzne )

Błędy odometrii się kumulują.

Błędy odometryczne
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Nawet dodanie szumu o rozkładzie normalnym z zerową wartością średnią powoduje 
powstawanie błędów w wyznaczonej pozycji poprzez odometrię:

rzeczywista ścieżka

wynik odometrii

Konieczne jest wspomaganie odometrii:

• czujnik IMU (ang. inertial measurement unit),

• znaczniki radiowe,

• GPS (ang. Global Positioning System),

• skaner laserowy 360 stopni.

Błędy odometryczne
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Źródło: Biorobotics Laboratory UNAM (2023). Lessons on Mobile Robot Localization and Kalman Filters
(https://github.com/RobotJustina/MRS_EKF_MatLab/releases/tag/v1.0.1), GitHub. Retrieved March 23, 2023.

Błędy odometryczne

Robot bazując na danych 
odometrycznych podąża za 
wyznaczoną ścieżką przez 
algorytm globalny 
algorytmem czysty pościg 
(ang. PurePursuit).

Ścieżka globalna

Przebyta trasa przez robota
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Źródło: Biorobotics Laboratory UNAM (2023). Lessons on Mobile Robot Localization and Kalman Filters
(https://github.com/RobotJustina/MRS_EKF_MatLab/releases/tag/v1.0.1), GitHub. Retrieved March 23, 2023.

Błędy odometryczne

Robot bazując na danych 
odometrycznych podąża za 
wyznaczoną ścieżką przez 
algorytm globalny 
algorytmem czysty pościg 
(ang. PurePursuit).

Ścieżka globalna

Przebyta trasa przez robota

Estymacja dostarczona 
krokiem predykcji filtru 
Kalmana

Pozycja wyznaczona na 
bazie pomiaru 
odometrycznego
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Mapa środowiska

Problem lokalizacji
Zaszumiony odczyt skanera laserowego

Zaszumiony pomiar odometryczny

Fuzja

Filtrowanie

Pozycja i orientacja
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• Filtr Kalmana jest rekurencyjnym algorytmem wyznaczania
minimalno-wariacyjnej estymaty wektora zmiennych stanu bazując na pomiarach
wymuszenia i wyjścia. Zakłada on, że pomiar i proces są obarczone błędami o
rozkładzie normalnym:

ො𝑥𝑘 = 𝐴𝑘 ො𝑥𝑘−1 + 𝐵𝑘𝑢𝑘 + 𝑤𝑘

𝑧𝑘 = 𝐶𝑘 ො𝑥𝑘 + 𝑣𝑘

gdzie: 𝑤𝑘~𝑁(0, 𝑄𝑘), 𝑣𝑘~𝑁(0, 𝑅𝑘).

• Filtr Kalmana jest przeznaczony do obiektów liniowych i stacjonarnych. Do
nieliniowych i niestacjonarnych układów należy zastosować rozszerzony filtr
Kalmana:

ො𝑥𝑘 = 𝑓 ො𝑥𝑘−1, 𝑢𝑘 + 𝑤𝑘

𝑧𝑘 = ℎ ො𝑥𝑘 + 𝑣𝑘

W równaniach stosuje się gradienty funkcji 𝑓 i ℎ:

∇𝑓𝑘 = ቚ
𝜕𝑓

𝜕𝑥 𝑥𝑘−1|𝑘−1 ,𝑢𝑘

,∇𝑓𝑘 = ቚ
𝜕ℎ

𝜕𝑥 𝑥𝑘|𝑘−1

Rozszerzony filtr Kalmana
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Rozszerzony filtr Kalmana

Źródło: https://en.wikipedia.org/wiki/Kalman_filter 
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Dla dwukołowego robota mobilnego z podparciem postać macierzowa odometrii
jest następująca:

𝑓 𝑥𝑘−1, 𝑢𝑘 =

𝑋𝑘−1 + 𝑣𝑘 ⋅ cos 𝜃𝑘

𝑌𝑘−1 + 𝑣𝑘 ⋅ sin 𝜃𝑘

𝜃𝑘−1 + 𝜔𝑘 ⋅ 𝑑𝑇

Gradient powyższej funkcji:

∇𝑓𝑘 =
1 0 𝑣𝑘 ⋅ sin 𝜃𝑘

0 1 −𝑣𝑘 ⋅ cos 𝜃𝑘

0 0 1

Rozszerzony filtr Kalmana
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Predykcja odczytu pozycji znacznika dla aktualnej pozycji robota może być
wyznaczona następującym równaniem:

Ƹ𝑧𝑖,𝑘 = ℎ𝑖,𝑘 𝑥𝑘 , 𝑀𝑖 =
𝑟𝑘

𝛼𝑘
=

𝑥𝑘 − 𝑥𝑀
2 + 𝑦𝑘 − 𝑦𝑀

2

𝑎𝑟𝑐𝑡𝑎𝑛
𝑦𝑘 − 𝑦𝑀

𝑥𝑘 − 𝑥𝑀

Gradient powyższej funkcji:

∇ℎ𝑖 =

𝑥𝑘 − 𝑥𝑀

𝑥𝑘 − 𝑥𝑀
2 + 𝑦𝑘 − 𝑦𝑀

2

𝑦𝑘 − 𝑦𝑀

𝑥𝑘 − 𝑥𝑀
2 + 𝑦𝑘 − 𝑦𝑀

2
0

−
𝑦𝑘 − 𝑦𝑀

1 +
𝑦𝑘 − 𝑦𝑀
𝑥𝑘 − 𝑥𝑀

2

𝑥𝑘 − 𝑥𝑀
2

1

1 +
𝑦𝑘 − 𝑦𝑀
𝑥𝑘 − 𝑥𝑀

2

𝑥𝑘 − 𝑥𝑀
2

−1

Rozszerzony filtr Kalmana
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Wyznaczenie pozycji robota na bazie pomiaru odległości od znaczników jest realizowane
na bazie przecięcia się prostych ze względu na błędy i szumy pomiarowe powodujące, że
trzy okręgi nie przecinają się w dokładnie jednym punkcie.

𝑧1,𝑘+1 =

(𝑦2−𝑦1)(𝑟2
2 − 𝑟3

2 − 𝑥2
2 + 𝑥3

2 − 𝑦2
2 + 𝑦3

2) − (𝑦3−𝑦2)(𝑟1
2 − 𝑟2

2 − 𝑥1
2 + 𝑥2

2 − 𝑦1
2 + 𝑦2

2)

2 𝑥3 − 𝑥2 𝑦2 − 𝑦1 − 2 𝑥2 − 𝑥1 𝑦3 − 𝑦2

(𝑥2−𝑥1)(𝑟2
2 − 𝑟3

2 − 𝑥2
2 + 𝑥3

2 − 𝑦2
2 + 𝑦3

2) − (𝑥3−𝑥2)(𝑟1
2 − 𝑟2

2 − 𝑥1
2 + 𝑥2

2 − 𝑦1
2 + 𝑦2

2)

2 𝑥2 − 𝑥1 𝑦3 − 𝑦2 − 2 𝑥3 − 𝑥2 𝑦2 − 𝑦1

Rozszerzony filtr Kalmana
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Wyznaczenie estymacji pozycji robota a priori bazując na pomiarze odometrycznym

jest następujące:

ො𝑥𝑘+1|𝑘 = 𝑓( ො𝑥𝑘|𝑘 , 𝑢𝑘)

Aktualizacja kowariancji pomiaru odometrycznego:

𝑃𝑘+1|𝑘 = ∇𝑓 𝑃𝑘|𝑘∇𝑓𝑇 + 𝑄𝑘

Innowacja filtru Kalmana wyznaczana jest z pomiaru czujników odległości jest

następująca:

𝑣𝑖,𝑗,𝑘+1 = 𝑧𝑗,𝑘+1 − Ƹ𝑧𝑖,𝑘+1

Niepewność tego błędu lub jego kowariancja wynosi:

𝑆𝑘+1 = ∇ℎ 𝑃𝑘+1|𝑘∇ℎ𝑇 + 𝑅𝑘+1

Rozszerzony filtr Kalmana
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Estymacja pozycji robota a posteriori wyraża się następująco:

ො𝑥𝑘+1|𝑘+1 = ො𝑥𝑘+1|𝑘 + 𝐾𝑘+1𝑣𝑘+1

Macierz wzmocnienia filtru Kalmana wyraża się następująco:

𝐾𝑘+1 = 𝑃𝑘+1|𝑘∇ℎ𝑇𝑆𝑘+1
−1

Gdzie aktualizacja kowariancji po pomiarze odległości od znaczników wynosi:

𝑃𝑘+1|𝑘+1 = 𝑃𝑘+1|𝑘 + 𝐾𝑘+1𝑆𝑘+1𝐾𝑘+1
𝑇

Rozszerzony filtr Kalmana
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Źródło: Biorobotics Laboratory UNAM (2023). Lessons on Mobile Robot Localization and Kalman Filters
(https://github.com/RobotJustina/MRS_EKF_MatLab/releases/tag/v1.0.1), GitHub. Retrieved March 23, 2023.

Rozszerzony filtr Kalmana

Robot bazując pozycji 
wyznaczonej na bazie EKF 
podąża za wyznaczoną 
ścieżką przez algorytm 
globalny algorytmem czysty 
pościg (ang. PurePursuit).

Ścieżka globalna

Przebyta trasa przez robota

Trasa na bazie samej 
odometrii

Estymacja dostarczona 
krokiem predykcji filtru 
Kalmana
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Źródło: Biorobotics Laboratory UNAM (2023). Lessons on Mobile Robot Localization and Kalman Filters
(https://github.com/RobotJustina/MRS_EKF_MatLab/releases/tag/v1.0.1), GitHub. Retrieved March 23, 2023.

Rozszerzony filtr Kalmana

Robot bazując pozycji 
wyznaczonej na bazie EKF 
podąża za wyznaczoną 
ścieżką przez algorytm 
globalny algorytmem czysty 
pościg (ang. PurePursuit).

Ścieżka globalna

Przebyta trasa przez robota

Trasa na bazie samej 
odometrii

Estymacja dostarczona 
krokiem predykcji filtru 
Kalmana



17

Programowanie Robotów Mobilnych

Lokalizacja

• Filtr cząsteczkowy jest metodą nieliniowej filtracji polegającej na oszacowaniu
rozkładów prawdopodobieństwa docelowego przez rozkłady empiryczne,
skupione na zestawie próbek.

• Można wyróżnić następujące fazy:

Inicjalizacja początkowych pozycji cząstek

Aktualizacja pozycji bazując na modelu

Wyznaczenie prawdopodobieństwa danej pozycji bazując na pomiarach

Wygenerowanie nowych pozycji cząstek zgodnie z rozkładem

prawdopodobieństwa aktualnych pozycji

• Understanding the Particle Filter | | Autonomous Navigation, Part 2:

https://www.youtube.com/watch?v=NrzmH_yerBU

Sekwencyjny algorytm Monte Carlo 

Inaczej: Filtr cząsteczkowy
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• Filtr cząsteczkowy polega na wygenerowaniu 𝑁 potencjalnych kandydatów dla
aktualnego stanu.

• Wartość stanu określa się jako średnią pozycję cząstek:

𝑝 𝑥𝑘 𝑦0:𝑘−1, 𝑢0:𝑘−1, 𝑥0 = ෍

𝑖=1

𝑁

𝑤𝑘
𝑖 ⋅ 𝑝(𝑥𝑘|𝑥𝑘−1, 𝑢𝑘)

• Prawdopodobieństwo dla każdej cząstki jest wyznaczane jako dopasowanie dla
jej pozycji i orientacji pomiaru skanera laserowego do rzeczywistego odczytu
skanera laserowego:

𝑤𝑘
𝑖 = 𝑝 𝑥𝑘−1, 𝑀 𝑦0:𝑘−1, 𝑢0:𝑘−1, 𝑥0

• Skuteczność metody zależy od liczby cząstek.

Sekwencyjny algorytm Monte Carlo 

Inaczej: Filtr cząsteczkowy
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Sekwencyjny algorytm Monte Carlo 

Inaczej: Filtr cząsteczkowy – 1000 cząstek



20

Programowanie Robotów Mobilnych

Lokalizacja

• Uzyskanie dobrych rezultatów w początkowych fazach algorytmu wymaga
bardzo dużej liczby cząstek, co przekłada się na zapotrzebowanie na moc
obliczeniową algorytmu lokalizacji.

• Metoda KLD (Kullback-Leiblera Distance) pozwala na wyznaczenie błędu
aproksymacji filtru cząsteczkowego.

• Pozwala ona na statystyczne podejście do zwiększenia skuteczności filtrów
cząsteczkowych poprzez dostosowanie wielkości zestawów próbek.

𝑛 =
1

2𝜖
𝜒𝑘−1,1−𝛿

2 ≈
k − 1

2𝜖
1 −

2

9 𝑘 − 1
+

2

9 𝑘 − 1
𝑧1−𝛿

3

Adaptacyjny algorytm lokalizacji Monte Carlo

(ang. adaptive (or KLD-sampling) Monte Carlo localization, AMCL)
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Algorytm KLD-sampling
Pseudokod algorytmu KLD-sampling

Wejście: St−1 = 𝑥𝑡−1
𝑖 , 𝑤𝑡−1

𝑖 𝑖 = 1 … 𝑛 , 𝑢t, 𝑧𝑡, 𝜖, 𝛿, Δ

Wyjście: 𝑆𝑡

1 𝑆𝑡 = ∅ , 𝑛 = 0, 𝑘 = 0, 𝑏 = ∅

2 Powtórz

3 Wygeneruj indeks 𝑗(𝑛) z dyskretnego rozkładu danego przez 𝑆𝑡−1

4 Wygeneruj próbkę 𝑥𝑡
𝑛 z 𝑝 𝑥𝑡 𝑥𝑡−1, 𝑢𝑡 wykorzystując 𝑥𝑡−1

𝑗(𝑛)

5 𝑤𝑡
𝑛 = 𝑝 𝑧𝑡 𝑥𝑡

𝑛

6 Dodaj próbkę 𝑥𝑡
𝑛 do 𝑆𝑡

7 Jeżeli 𝑥𝑡
𝑛 wpada do niezajętej komórki w 𝑏

8 𝑘 = 𝑘 + 1

9 Dodaj próbkę do komórki w 𝑏 czyniąc ją zajętą

10 Koniec jeżeli

11 𝑛 = 𝑛 + 1

12 Dopóki 𝑛 <
1

2𝜖
𝜒𝑘−1,1−𝛿

2

13 Znormalizuj wektor 𝑤𝑡 w 𝑆𝑡
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Adaptacyjny algorytm lokalizacji Monte Carlo

(ang. adaptive (or KLD-sampling) Monte Carlo localization, AMCL)

Wariacja szumu procesu V = 0.3

Wariacja szumu pomiaru W = 0.1
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Adaptacyjny algorytm lokalizacji Monte Carlo

(ang. adaptive (or KLD-sampling) Monte Carlo localization, AMCL)

Wariacja szumu procesu V = 0.6

Wariacja szumu pomiaru W = 0.2


