
07.03.2023

Programowanie
Robotów
Mobilnych

Rafał Szczepański
e-mail: szczepi (at) umk.pl
www.umk.pl/~szczepi

Robot Operating System

Spis treści

2

• Tworzenie nowych węzłów

• Kompilacja projektu

• Węzeł publikujący

• Węzeł subskrybujący

• Zmienne globalne

• Środowisko symulacyjne Gazebo

• Pakiet RViz

Programowanie Robotów Mobilnych

Robot Operating System

• Zasada działania ROS

• Koncepcja Robot Operating System (ROS)

• Czym jest programowanie robotów mobilnych?Plan prezentacji

3

Programowanie Robotów Mobilnych

Robot Operating System

Robot mobilny jest to maszyna z czujnikami, silnikami, siłownikami i jednostką
obliczeniową, która pozwala na wykonywanie poleceń zadawanych przez
użytkownika lub może podejmować własne decyzje na bazie informacji
pozyskanych z czujników. W takim razie możemy powiedzieć, że jednostka
obliczeniowa jest „mózgiem” robota. W zależności od złożoności zadania jakie
ma robot mobilny realizować może to być:

• mikrokontroler

(np. Arduino),

• komputer jednopłytkowy

(np. Raspberry PI),

• komputer PC

(np. laptop),

• programowalny

sterownik logiczny (PLC).

Czym jest programowanie robotów mobilnych?

4

Programowanie Robotów Mobilnych

Robot Operating System

Programowaniem robotów mobilnych nazywamy programowaniem „mózgu”
robota. Pisaniem programu na mikrokontroler/PLC, który jest główną jednostką
obliczeniową robota i ma realizować specyficzne zadanie wykorzystując
dostępne elementy wykonawcze i informacje z czujników nazywamy
programowaniem robota. Jednym z najprostszych zadań może być problem
podnieś i podaj (tzw. pick-and-place) element z punktu A do B.

Czym jest programowanie robotów mobilnych?

W zależności od wykorzystanej
głównej jednostki
obliczeniowej program może
być programowany
wykorzystując różne języki
programowania: C
(mikrokontroler) lub C++, C#,
Python (komputer
jednopłytkowy/PC) lub
schemat drabinkowy i tekst
strukturalny (PLC) lub inne
specyficzne języki
obsługiwane/dedykowane.

5

Programowanie Robotów Mobilnych

Robot Operating System

Istotne cechy z punktu widzenia programowania robota
mobilnego:

• Wątki,

• Wysokopoziomowe języki programowania zorientowane obiektowo,

• Sterowanie niskopoziomowe,

• Łatwość prototypowania.,

• Komunikacja miedzyprocesowa,

• Wydajność,

• Wsparcie społeczności,

• Dostępność zewnętrznych bibliotek.

• Wszystkie cechy posiada oprogramowanie nazwane:

Robot Operating System

6

Programowanie Robotów Mobilnych

Robot Operating System

Robot Operating System (ROS) – podstawowe informacje

• Projekt rozpoczął się na Uniwersytecie Stanforda w 2007 roku,

• Aktualnie jest opracowywany i utrzymywany przez organizację Open Robotics,

• Dzięki wbudowanej funkcjonalności pozwala na: wielowątkowość, sterowanie
niskopoziomowe, obsługę pakietów, przekazywanie informacji między
procesami.

• Obsługuje języki programiwania C/C++ oraz Python,

• W niedalekiej przyszłości obsługiwał będzie również C# oraz Java,

• Integracja z bibliotekami tj. OpenCV,

• Wbudowane implementacja zaawansowanych algorytmów do planowania
ścieżki, lokalizacji, mapowania, regulacji itp.,

• Wbudowany symulator Gazebo umożliwiający testowanie opracowywanych
algorytmów symulacyjnie,

• Pakiet RViz umożliwiający wizualizację danych ze skanerów laserowych, kamer,
mapy, pozycję i orientację robota oraz dane użytkownika.

7

Programowanie Robotów Mobilnych

Robot Operating System

Roboty wspierające ROS:

a) TurtleBot 4 (www.clearpathrobotics.com/turtlebot-4/)

b) Pepper (www.aldebaran.com/en/pepper)

c) Husky (https://clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/)

d) Universal Robot UR3 (https://www.universal-robots.com/cb3/)

http://www.clearpathrobotics.com/turtlebot-4/
http://www.aldebaran.com/en/pepper
https://clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/
https://www.universal-robots.com/cb3/

8

Programowanie Robotów Mobilnych

Robot Operating System

Czujniki wspierające ROS:

a) TeraRanger (www.terabee.com)

b) Xsense MTi IMU (www.xsens.com/products/)

c) RPLidar A3 (https://www.slamtec.com/en/Lidar/A3)

d) Intel RealSense (https://realsense.intel.com)

http://www.terabee.com/
http://www.xsens.com/products/
https://www.slamtec.com/en/Lidar/A3
https://realsense.intel.com/

9

Programowanie Robotów Mobilnych

Robot Operating System

Komputery jednopłytkowe wspierające ROS:

a) Raspberry Pi 4 (https://www.raspberrypi.com/products/raspberry-pi-4-model-b/)

b) Odroid XU4 (https://www.hardkernel.com/shop/odroid-xu4-special-price/)

c) NVDIA TX2 (https://www.nvidia.com/pl-pl/autonomous-machines/embedded-
systems/jetson-tx2/)

d) Intel NUC (www.intel.com/content/www/us/en/products/boards-kits/nuc.html)

https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.hardkernel.com/shop/odroid-xu4-special-price/
https://www.nvidia.com/pl-pl/autonomous-machines/embedded-systems/jetson-tx2/
http://www.intel.com/content/www/us/en/products/boards-kits/nuc.html

10

Programowanie Robotów Mobilnych

Robot Operating System

Koncepcja Robot Operating System

W zasadzie to ROS jest szkieletem do komunikacji pomiędzy dwoma programami lub
procesami. Każdym pisany przez nas program jest osobnym węzłem (ang. Node), który
może się komunikować z innymi. Warto zaznaczyć, że nad wszystkim czuwa węzeł
główny (ang. ROS Master), który jest rdzeniem naszego systemu. Kiedy uruchamiamy
nowy węzeł to wysyła on informacje do węzła głównego informując jakie typy danych
wysyła i odbiera. Węzeł, który wysyła dane jest nazywany węzłem publikującym (ang.
Publisher), a węzeł, który odbiera dane to węzeł subskrybujący (ang. Subscriber).

Dane wysyłane pomiędzy wątkami mogą być zarówno najprostszymi typami jak liczby
całkowite, zmiennoprzecinkowe, łańcuchy znaków itp., ale również złożone typy
danych. Wysyłane typy określane są przez ROS message. Wiadomości są
przekazywane przez łącze zwane ROS topic. Każdy temat posiada nazwę oraz typ
danych, który przekazuje.

11

Programowanie Robotów Mobilnych

Robot Operating System

Koncepcja Robot Operating System

12

Programowanie Robotów Mobilnych

Robot Operating System

Najważniejsze pojęcia związane z Robot Operating System:

• ROS node (węzeł): Proces wykorzystujący interfejs programowania aplikacji ROS,

• ROS master (węzeł główny): Program pośrednik, który łączy węzły

• ROS parameter server (serwer parametrów): Program uruchamiany równocześnie
z ROS master. Pozwala na przechowywanie różnych parametrów i wartości.

• ROS topic (temat): Nazwa łącza, przez które węzły mogą przekazywać wiadomości.
Każdy węzeł może subskrybować lub publikować dowolną liczbę tematów.

• ROS message (wiadomość): Wiadomości są przekazywane przez tematy. Istnieją
wbudowane typy wiadomości, jak również użytkownik może stworzyć własną.

• ROS service (usługa): Usługi pozwalają na zastosowanie mechanizmu pytanie-
odpowiedź. Usługa wywołuje funkcje węzła dostarczającego usługę (serwer), która
może zostać wywołana przez inny węzeł (klienta) w dowolnym momencie.

• ROS bag (worek): Metoda pozwalająca zapisać i odtworzyć zapisane tematy.
Również wykorzystywana do logowania danych robota w celu późniejszego ich
wykorzystania.

13

Programowanie Robotów Mobilnych

Robot Operating System

Główne komendy konsolowe Robot Operating System:

• roscore: najwazniejsza komenda w ROS – uruchamia ROS master, ROS parameter
server oraz logging node (węzeł logujący).

• rosnode: funkcja pozwalająca na zarządzanie uruchomionymi węzłami. Na
przykład wypisanie listy uruchomionych węzłów: rosnode list.

• rostopic: dostarcza informacje o tematach publikowanych i subskrybowanych.
Pozwala na wypisanie dostępnych tematów rostopic list, podsłuchanie
przesyłanych danych w danym temacie rostopic echo /nazwa_tematu, lub
opublikowanie danych w danym temacie rostopic pub nazwa_tematu
typ_wiadomości dane.

• rosparam: pozwala na wypisanie i edytowanie zapisanych zmiennych w serwerze
parametrów (ROS parameter server). Wypisanie: rosparam list, zmiana wartości:
rosparam set nazwa_zmiennej wartość_zmiennej, odczyt wartości rosparam get
nazwa_zmiennej.

• rosrun: uruchamia węzeł: rosrun nazwa_pakietu_ros nazwa_węzła.

• roslaunch: przydatka komenda ROS pozwalająca na uruchomienie jednoczesne
kilku węzłów. Komenda roslaunch nazwa_pakietu_ros nazwa_pliku_launch
pozwala na uruchomienie wszystkich węzłów oraz niezbędnych węzłów zależnych
zdefiniowanych w pliku XML *.launch. Automatycznie uruchamiania ROS master.

14

Programowanie Robotów Mobilnych

Robot Operating System

Przykładowe węzły: talker i listener

Przejdźmy teraz do prostego przykładu, gdzie uruchomimy węzeł główny (ROS
master), przykładowy węzeł publikujący (talker) i węzeł subskrybujący (listener).
Tematem jaki będzie publikowany to /chatter. Uruchamiając trzy konsole
(można wykorzystać program Terminator) należy w każdej z nich uruchomić
kolejno:

Węzeł główny:

$ roscore

węzeł publikujący temat /chatter:

$ rosrun roscpp_tutorials talker

węzeł subkrybujący temat /chatter:

$ rosrun roscpp_tutorials listener

15

Programowanie Robotów Mobilnych

Robot Operating System

Przykładowe węzły: talker i listener

16

Programowanie Robotów Mobilnych

Robot Operating System

Przykładowe węzły: talker i listener (plik .launch)

Jak wspomniane było wcześniej, istnieje komenda umożliwiająca uruchomienie
węzła głównego i wielu wątków równocześnie. Powyższy przykład możemy
uruchomić jedną komendą wykorzystując przykładowy plik
talker_listener.launch:

$ roslaunch roscpp_tutorials talker_listener.launch

17

Programowanie Robotów Mobilnych

Robot Operating System

Struktura plików

W celu stworzenia wpłąsnych węzłów musimy stworzyć przestrzeń roboczą dla
ROS i następnie naszego pakietu, który będziemy implementować. W tym celu
wykonujemy następujące komendy:

$ mkdir -p ~/ros_ws/src

$ cd ros_ws/src

$ catkin_init_workspace

$ cd ~/ros_ws

$ catkin_make

$ echo "source ~/ros_ws/deve/setup.bash" >> ~/.bashrc

$ cd ~/ros_ws/src

$ catkin_create_pkg hello_world roscpp rospy std_msg

18

Programowanie Robotów Mobilnych

Robot Operating System

Struktura plików

19

Programowanie Robotów Mobilnych

Robot Operating System

Struktura plików pakietu Hello_world:

• CMakeLists.txt – lista komend do zbudowania pakietu i stworzenia plików
wykonywalnych,

• package.xml – zawiera informacje o zależnościach i inne informacje
dotyczące pakietu,

• src – katalog źródłowy na pliki źródłowe C++,

• include – katalog dla plików nagłówkowych C++ i bibliotek zewnętrznych.

• scripts – katalog źródłowy na pliki źródłowe Python,

• msg – katalog na nowe typy wiadomości, które zdefiniowaliśmy na potrzeby
pakietu. Warto dodać, że są one niezależne od wykorzystywanego języka
programowania,

• srv – katalog na pliki opisujące serwisy, w których można wyróżnić zapytania
(ang. request) i odpowiedzi (ang. response),

• launch – katalog na pliki launch.

20

Programowanie Robotów Mobilnych

Robot Operating System

Dodanie węzła do plików wykonywalnych:

W celu dodania węzła zaimplementowanego w jezyku C++ należy dodać
następujący wiersz w pliku CMakeLists.txt:

add_executable(nazwa_węzła nazwa_pliku.cpp)

gdzie pierwszy argument jest nazwą widoczną z poziomu ROS, a drugi to nazwa
pliku wykonywalnego.

W przypadku węzłą zaimplementowanego w języku Python wystarczy dodać
uprawnienia wykonywania stworzonego pliku następującą komendą:

$ chmod +x ~/ros_ws/src/hello_world/scripts/nazwa_pliku.py

21

Programowanie Robotów Mobilnych

Robot Operating System

Tworzenie węzłów – Importowanie bibliotek

Pierwszą czynnością podczas implementacji nowych węzłów musi być zaimportowanie
bibliotek podstawowych ROS:

C++ Python

#include "ros/ros.h" import rospy

Importowanie typów wiadomości publikowanych przez węzły publikujące wykonuje
się następująco:

C++ Python

#include "std_msgs/String.h
#include "std_msgs/Int32.h

from std_msgs.msg import String
from std_msgs.msg import Int32

22

Programowanie Robotów Mobilnych

Robot Operating System

Tworzenie węzłów – Inicjalizacja węzła

Poleceniem wykonanym w pierwszej kolejności powinna być rejestracja węzła w
systemie poprzez następującą komendę:

C++ Python

ros::init(argc, argv, "nazwa węzła");
ros::NodeHandle nh;

rospy.init_node('nazwa_węzła’, anonymous=True)

Uchwyt do węzła (ang. node handle) w języku C++ należy jawnie zdefiniować,
natomiast w przypadku języka Python, uchwyt jest zdefiniowany wewnątrz modułu
rospy.

23

Programowanie Robotów Mobilnych

Robot Operating System

Tworzenie węzłów – węzeł publikujący

Deklarację, że nasz węzeł będzie publikował wiadomości w ramach tematu wykonuje
się w następujący sposób:

C++

ros::Publisher pub = nh.advertise<typ_wiadomosci_ROS>("nazwa_tematu", 10);

Python

pub = rospy.Publisher(“nazwa_tematu”, typ_wiadomosci_ROS, queue_size=10)

Publikowanie wiadomości realizuje się w następujący sposób:

C++

std_msgs::String msg;
msg.data = "String data"
ros::Publisher chatter_pub = nh.advertise<std_msgs::String>("chatter", 10);
chatter_pub.publish(msg);

Python

msg = String()
msg.data = "string data"
pub = rospy.Publisher('chatter', String, queue_size=10)
pub.publish(msg)

24

Programowanie Robotów Mobilnych

Robot Operating System

Tworzenie węzłów – węzeł subskrybujący

Deklarację, że nasz węzeł będzie nasłuchiwał wiadomości w ramach tematu wykonuje
się w następujący sposób:

C++

ros::Subscriber subscriber_obj = nh.subscribe("nazwa_tematu", 10, callback)

Python

rospy.Subscriber("nazwa_tematu ", typ_wiadomosci_ROS, callback)

W momencie opublikowania nowej wiadomości w subskrybowanym temacie, zostanie
wywołana zadeklarowane funkcją callback, którą definiujemy w następujący sposób:

C++

void callback(const ros_message_const_pointer &pointer) {
// pobieranie danych: pointer->data

}

Python

def callback(data):
pobieranie danych: data.data

25

Programowanie Robotów Mobilnych

Robot Operating System

Tworzenie węzłów – serwer parametrów

Odczyt zmiennych globalnych z serwera parametrów (ROS parameter server)
wykonujemy w następujący sposób:

C++

std::string nazwa_zmienne_globalnej;
if (nh.getParam("/nazwa_zmienne_globalnej ", nazwa_zmienne_globalnej)) {

// ...
}

Python

nazwa_zmienne_globalnej = rospy.get_param("/nazwa_zmienne_globalnej ")

Zapis do serwera parametrów:

C++

nh.setParam("/nazwa_zmienne_globalnej ", „Hello World!”);

Python

rospy.set_param('~private_int', '2')

26

Programowanie Robotów Mobilnych

Robot Operating System

Tworzenie węzłów – synchronizacja węzła z ROS

[C++] Ostatnim zagadnieniem jest funkcja ros::spinOnce() oraz ros::spin(). Musimy
wykonać tę funkcję w celu wyzwolenia procesu prośby o subskrypcję oraz
publikowanie tematu. Używamy spinOnce() po publikowaniu tematu, a spin() jeżeli
tylko subskrybujemy temat. W przypadku obu czynności powinniśmy zastosować
spinOnce().

[Python] Analogicznie do C++, rospy.spin() w przypadku publikowania, rospy.sleep() w
przypadku subskrybowania lub obu operacji.

C++

ros::Rate r(10); // Inicjalizacja pętli na częstotliwość 10 Hz
while(ros::ok()) {

// ...
ros::spinOnce();
r.sleep(); // Wywoływane w głównej pętli programu

}

Python

rate = rospy.Rate(10) # Inicjalizacja pętli na częstotliwość 10 Hz
while not rospy.is_shutdown():

...
rate.sleep() # Wywoływane w głównej pętli programu

27

Programowanie Robotów Mobilnych

Robot Operating System

Tworzenie węzłów – wyświetlanie informacji w konsoli węzła

Mamy kilka rodzajów statusów, które możemy wyświetlić:

• Status informacyjny:

• Status ostrzegawczy:

• Status debugowania:

• Status błędu:

• Status błędu fatalnego:

C++ Python

ROS_INFO(string_msg, args); rospy.loginfo(msg, *args)

ROS_WARN(string_msg, args); rospy.logwarn(msg, *args)

ROS_DEBUG(string_msg, args); rospy.logdebug(msg, *args)

ROS_ERROR(string_msg, args); rospy.logerr(msg, *args)

ROS_FATAL(string_msg, args); rospy.logfatal(msg, *args)

28

Programowanie Robotów Mobilnych

Robot Operating System

Tworzenie pliku .launch
Napisane węzły możemy uruchomić wykorzystując znaną komendę rosrun. Jak
pokazywałem wcześniej, można stworzyć plik uruchomieniowy, który uruchomi wiele
węzłów równocześnie. Sam plik launch umożliwia uruchamianie węzłów z wieloma
opcjami, tj. automatyczne uruchamianie w przypadku zakończenia jego procesu,
przekazywanie parametrów wejściowych. Dodatkowo możemy tworzyć zmienne dla
serwera parametrów, Poniżej przykład:

<launch>
<!– Parametr liczby zmiennoprzecinkowej dla serwera parametrów -->
<param name="my_double" value="3.14159" type="double" />
<!– Parametr liczby całkowitej dla serwera parametrów -->
<param name="my_int" value="3" type="int" />
<!– Parametr łańcucha znaków dla serwera parametrów -->
<param name="my_str" value="Hello" type="str" />
<!– Parametr logiczny dla serwera parametrów -->
<param name="my_PI" value="false" type="bool" />
<!– Uruchomienie węzła zaimplementowanego w C++ -->
<node name="listener_node" pkg="hello_world" type="listener" output="screen"/>
<!– Uruchomienie węzła zaimplementowanego w Python -->
<node name="talker_node" pkg="hello_world" type="talker.py" output="screen"/>

</launch>

W celu uruchomienia pliku launch należy nadać mu uprawnienia do wykonywania
poprzez komendę w konsoli:

$ sudo chmod +x talker_listener.launch

29

Programowanie Robotów Mobilnych

Robot Operating System

Gazebo – środowisko symulacyjne

Gazebo jest otwartym oprogramowaniem. Jest to symulator robotów w 3D z
symulowaną fizyką rzeczywistego świata o wysokiej wierności. Pozwala to na szybkie
prototypowanie i testowanie algorytmów, jak również projektowanie robotów w
cyfrowym środowisku.

Zacznijmy od uruchomienia przykładowego świata (ang. world) z robotem TurtleBot3
Waffle PI:

$ export TURTLEBOT3_MODEL=waffle_pi

$ roslaunch turtlebot3_gazebo turtlebot3_world.launch

Warto dodać definicję modelu do pliku .bashrc, żebyśmy w przyszłości nie musieli go
definiować za każdym razem, gdy uruchomimy nową konsolę:

$ echo “export TURTLEBOT3_MODEL=waffle_pi” >> ~/.bashrc

30

Programowanie Robotów Mobilnych

Robot Operating System

Gazebo – środowisko symulacyjne

31

Programowanie Robotów Mobilnych

Robot Operating System

RViz – wizualizacja danych

Rviz umożliwia wizualizację danych ze skanera laserowego 360 stopni, kamery RGB, a
ponadto umożliwia wizualizację swoich własnych danych, które możemy wysyłać z
naszych własnych węzłów. Dzięki temu prototypowania algorytmów jest dużo
prostsze, ponieważ możemy w graficznej formie przedstawić niektóre elementy
naszego algorytmu.

W celu uruchomienia RViz skonfigurowanego specjalnie dla robota TurtleBot 3 należy
wykonać następującą komendę (nie wyłączając środowiska Gazebo):

$ roslaunch turtlebot3_gazebo turtlebot3_gazebo_rviz.launch

32

Programowanie Robotów Mobilnych

Robot Operating System

RViz – wizualizacja danych

33

Programowanie Robotów Mobilnych

Robot Operating System

Gazebo i RViz – podstawowe operacje myszką

Gazebo

RViz

34

Programowanie Robotów Mobilnych

Robot Operating System

Gazebo i Rviz – bezkolizyjny ruch robota TurtleBot 3

W tym celu należy zatrzymać węzeł odpowiadający za ręczne sterowanie i wykonać
komendę:

$ roslaunch turtlebot3_gazebo turtlebot3_simulation.launch

Przydatnym polecenime jest rqt_graph. Rysuje on zależności pomiędzy wszystkimi
węzłami, tematami i serwisami:

$ rqt_graph

35

Programowanie Robotów Mobilnych

Robot Operating System

Gazebo i Rviz – bezkolizyjny ruch robota TurtleBot 3

36

Programowanie Robotów Mobilnych

Robot Operating System

Gazebo i Rviz – mapowanie terenu

Przejdziemy do prezentacji przykładowej aplikacji SLAM (równoczesna lokalizacja i
mapowanie). W tym celu musimy zainstalować pakiet gmapping (chyba, że już to
zrobiliśmy):

$ sudo apt install ros-noetic-slam-gmapping

A następnie uruchomić przykładową aplikację wywołując polecenie:

$ roslaunch turtlebot3_gazebo turtlebot3_world.launch

$ roslaunch turtlebot3_slam turtlebot3_slam.launch
slam_methods:=gmapping

Teraz mamy dwie możliwości: możemy uruchomić ręczne sterowanie robotem:

$ roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch

lub autonomiczny i bezkolizyjny ruch z wcześniejszego przykładu. Osobiście
uruchomiłem autonomiczny ruch poleceniem:

$ roslaunch turtlebot3_gazebo turtlebot3_simulation.launch

37

Programowanie Robotów Mobilnych

Robot Operating System

Gazebo i Rviz – mapowanie terenu

Po zakończeniu mapowania terenu możemy zapisać zbudowaną mapę wykonując
polecenie:

$ rosrun map_server map_saver -f ~/map

W ten sposób zapisaliśmy mapę do pliku map.pgm. Jest to plik o rozszerzeniu .pgm
(ang. portable gray map). To co warto zaznaczyć to fakt, że ten plik możemy w prosty
sposób edytować np. w Paint, żeby usunąć nieprawidłowości lub błędy wynikające z
„tymczasowych” przeszkód, których na mapie nie chcemy mieć.

38

Programowanie Robotów Mobilnych

Robot Operating System

Gazebo i Rviz – Algorytmy lokalizacji i planowania ścieżki

Skoro mamy mapę, to teraz możemy ją wykorzystać do lokalizacji naszego robota.
Ponownie wyłączmy całą symulację i uruchomimy ją ponownie wczytując wcześniej
zbudowaną mapę, ale najpierw należy się upewnić, ze mamy zainstalowany pakiet
związany z algorytmem planowania ścieżki dynamicznego okna (ang. Dynamic
Widnow Appraoch, DWA):

$ sudo apt-get install ros-kinetic-dwa-local-planner

Następnie uruchamiamy środowisko:

$ roslaunch turtlebot3_gazebo turtlebot3_world.launch

$ roslaunch turtlebot3_navigation turtlebot3_navigation.launch
map_file:=$HOME/map.yaml

Po uruchomieniu AMCL (ang. Adaptive Monte Carlo Localization approach,
adaptacyjny algorytm lokalizacji Monte Carlo) konieczne jest ręczne ustawienie
początkowej pozycji naszego robota względem mapy (patrz lewą kolumnę Rys. 6 8). W
tym celu wybieramy z paska narzędzi w RViz opcję 2D pose estimate. i wybieramy
pozycję i orientację robota na mapie tak, żeby aktualny odczyt ze skanera laserowego
pokrywał się z rzeczywistą mapą.

39

Programowanie Robotów Mobilnych

Robot Operating System

Gazebo i Rviz – Algorytmy lokalizacji i planowania ścieżki

• Wczytana mapa musi zostać
skorygowana do początkowej pozycji

• Po wykonaniu kilku ruchów robotem
w trybie manualny, algorytm AMCL
z dużą dokładnością estymuje pozycję
rzeczywistą robota

40

Programowanie Robotów Mobilnych

Robot Operating System

Gazebo i Rviz – Algorytmy lokalizacji i planowania ścieżki

