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Podstawy Automatyki

Korekcja liniowych układów ciągłych

• Typowe zadanie automatyki: dany jest obiekt fizyczny – należy spowodować by zachowywał się 
w sposób zgodny z oczekiwaniami (założeniami)

• Bardziej precyzyjnie: dany jest obiekt o transmitancji 𝐺(𝑠), należy zaprojektować układ regulacji 
tak, by spełniał on wymagania dotyczące jakości regulacji

• Wymagania formułujemy odnosząc się do wybranych wskaźników czasowych lub 
częstotliwościowych

• Najczęściej rozwiązanie tego zadania polega na dobraniu odpowiedniego regulatora oraz na 
właściwym doborze jego parametrów, aby jakość regulacji  była jak najwyższa

• Korekcja – wprowadzenie do układu nowych członów o tak dobranej strukturze i parametrach, 
by nowopowstały układ miał pożądane właściwości

Istota korekcji
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

• 𝑡𝑝 - czas piku (ang. peak time)

• 𝑡𝑟 - czas narastania (ang. rise time)

• 𝑡𝑠 - czas ustalania (ang. settling time)

• 𝑡𝑑 - czas opóźnienia (ang. delay time)

• 𝑀𝑝 - przeregulowanie (ang. overshot)

• 𝑇𝑑 - okres oscylacji tłumionych

Istota korekcji
Własność odpowiedzi skokowej
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

• Ograniczenia wzmocnienia

Regulator dobierany jest w taki sposób, aby jego charakterystyka omijała obszary zabronione 
(wyznaczone na podstawie założeń projektowych)

Istota korekcji
Ograniczenia częstotliwościowe
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

1. Analiza modelu obiektu (wraz z modelami przetworników pomiarowych i członów 
wykonawczych)

2. Analiza wymagań, które powinien spełniać układ regulacji

3. Wybór sposobu realizacji regulatora (analogowy, cyfrowy mieszany)

4. Decyzja o strukturze układu regulacji i postaci regulatora 

5. Zastosowanie odpowiednich metod dla spełnienia celów projektowania (cele mogą być 
sprzeczne – konieczny kompromis)

6. Analiza otrzymanych rozwiązań (jeżeli niesatysfakcjonujące konieczny powrót do wcześniejszych 
punktów)

Istota korekcji
Procedura projektowania układu regulacji automatycznej
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

Istota korekcji
Ogólny schemat sterowania
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

Istota korekcji
Ogólny schemat sterowania

• Prefiltr formuje (łagodzi) skoki wartości zadanej

• Węzeł sumacyjny porównuje sygnały o tym samym znaczeniu

• Regulator minimalizuje uchyb

• Obiekt może być poddawany zakłóceniom zewnętrznym

• Wartość wyjściową obiektu mierzymy czujnikiem, który jest obarczony szumem pomiarowym, 
błędami kwantyzacji

• Zaszumione pomiary są filtrowane w celu polepszenia odpowiedzi, która jest uwzględniana w 
torze sprzężenia zwrotnego
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

Regulator PID
ang. proportional-integral-derivative controller
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

Regulator PID
Równoległy i szeregowo-równoległy (idealny) regualtor PID
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

Regulator PID
Równoważność zapisów

Regulator równoległy:

𝑢 𝑡 = 𝐾𝑝𝑒 𝑡 + 𝐾𝑖∫ 𝑒 𝜏 𝑑𝜏 + 𝐾𝑑
𝑑

𝑑𝑡
𝑒 𝑡

gdzie: 𝐾𝑝, 𝐾𝑖, 𝐾𝑑 to wzmocnienie członu proporcjonalnego, całkującego i różniczkującego

Regulator szeregowo-równoległy (idealny):

𝑢 𝑡 = 𝑘𝑝 𝑒 𝑡 +
1

𝑇𝑖
∫ 𝑒 𝜏 𝑑𝜏 + 𝑇𝑑

𝑑

𝑑𝑡
𝑒 𝑡

gdzie: 𝑘𝑝, 𝑇𝑖, 𝑇𝑑 to wzmocnienie regulatora, czas zdwojenia i czas wyprzedzenia

Obie struktury są sobie równoważne:

𝐾𝑝 = 𝑘𝑝 𝐾𝑖 =
𝑘𝑝

𝑇𝑖
𝐾𝑑 = 𝑘𝑝𝑇𝑑
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

Regulator PID
Regulator typu P

• Tylko człon proporcjonalny

• Sygnał sterujący zależny liniowo od uchybu regulacji

• Szybka reakcja, niezbyt duża dokładność statyczna
𝑅 𝑠 = 𝑘𝑝 𝑢 𝑡 = 𝑘𝑝𝑒 𝑡
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

Regulator PID
Regulator typu I

• Tylko człon całkujący

• Sygnał sterujący proporcjonalny do całki uchybu regulacji

• Brak uchybu w stanie ustalonym

• Dłuższy czas regulacji

𝑅 𝑠 =
1

𝑠𝑇𝑖
𝑢 𝑡 =

1

𝑇𝑖
∫ 𝑒 𝜏 𝑑𝜏
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

Regulator PID
Regulator typu PI

• Człon proporcjonalny i człon całkujący

• Brak uchybu w stanie ustalonym

• Krótszy czas regulacji w porównaniu z samym członem całkującym

𝑅 𝑠 = 𝑘𝑝 1 +
1

𝑠𝑇𝑖
𝑢 𝑡 = 𝑘𝑝 𝑒 𝑡 +

1

𝑇𝑖
∫ 𝑒 𝜏 𝑑𝜏
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

Regulator PID
Regulator typu PD

• Człon proporcjonalny i człon różniczkujący

• Brak uchybu w stanie ustalonym

• Bardzo szybka reakcja

• Poprawa stabilności

𝑅 𝑠 = 𝑘𝑝 1 + 𝑠𝑇𝑑 𝑢 𝑡 = 𝑘𝑝 𝑒 𝑡 + 𝑇𝑑
𝑑

𝑑𝑡
𝑒 𝜏



16

Podstawy Automatyki

Korekcja liniowych układów ciągłych

Regulator PID
Regulator typu PID

• Człon proporcjonalny, człon całkujący i człon różniczkujący

• Brak uchybu w stanie ustalonym

• Krótki czas regulacji

• Poprawa stabilności

𝑅 𝑠 = 𝑘𝑝 1 +
1

𝑠𝑇𝑖
+ 𝑠𝑇𝑑 𝑢 𝑡 = 𝑘𝑝 𝑒 𝑡 +

1

𝑇𝑖
∫ 𝑒 𝜏 𝑑𝜏 + 𝑇𝑑

𝑑

𝑑𝑡
𝑒 𝜏
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

Regulator PID
Rzeczywisty regulator typu PID

Zamiast członu różniczkującego idealnego – różniczkujący rzeczywisty

𝑅 𝑠 = 𝑘𝑝 1 +
1

𝑠𝑇𝑖
+

𝑠𝑇𝑑
𝑇𝑑
𝐾𝑑

𝑠 + 1

gdzie: 𝑇𝑑 - stała czasowa różniczkowania, 𝐾𝑑 - współczynnik wzmocnienia członu
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

Regulator PID
Wpływ parametrów na odpowiedź układu 
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

Regulator PID
Wpływ parametrów na odpowiedź układu 
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

Regulator PID
Wpływ parametrów na odpowiedź układu 
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

Regulator PID
Wpływ parametrów na odpowiedź układu 
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

Regulator PID
Ręczny dobór nastaw regulatora

1. Zamykamy pętlę sprzężenia zwrotnego (zaimplementowany regulator)

2. Ustawiamy 𝐾𝑖 oraz 𝐾𝑑 na 0

3. Zwiększamy 𝐾𝑝 do uzyskania wartości z przedziału 0.6-0.9 wartości zadanej

4. Zwiększamy 𝐾𝑖 do uzyskania oczekiwanej charakterystyki zerowania uchybu w 
stanie ustalonym (o ile nie doprowadzamy do utraty stabilności układu)

5. Zwiększamy 𝐾𝑑 by zmniejszyć czas regulacji 
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

Regulator PID
Metody Zieglera-Nicholsa

• Dwa warianty:

na podstawie odpowiedzi skokowej (otwarta pętla)

na podstawie wzmocnienia krytycznego (zamknięta pętla)

• Polegają na wyznaczeniu parametrów układu i na ich podstawie wyznaczenia 
parametrów regulatora PID

• Najlepsze efekty dla obiektów inercyjnych z opóźnieniem, czyli także dla obiektów 
inercyjnych wyższych rzędów.
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

Regulator PID
Metody Zieglera-Nicholsa

• Wyniki optymalne

• Kryterium: tłumienie oscylacji do 25% na okres



25

Podstawy Automatyki

Korekcja liniowych układów ciągłych

Regulator PID
Metoda Zieglera-Nicholsa I (bazująca na odpowiedzi skokowej)

Obserwujemy odpowiedź skokową i odczytujemy trzy wielkości:

• Wartość ustaloną odpowiedzi

• Czas opóźnienia

• Stałą czasową odpowiedzi

Dobre wyniki otrzymujemy dla warunku: 0.15 <
𝑇0

𝑇
< 0.6
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

Regulator PID
Metoda Zieglera-Nicholsa I (bazująca na odpowiedzi skokowej)

Przyjmujemy:

𝑎 =
𝑇0

𝑇
𝐾 𝑢 𝑡 = 𝑘𝑝 𝑒 𝑡 +

1

𝑇𝑖
∫ 𝑒 𝜏 𝑑𝜏 + 𝑇𝑑

𝑑

𝑑𝑡
𝑒 𝑡

Parametry odczytujemy z tabeli:
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

Regulator PID
Metoda Zieglera-Nicholsa II (bazująca na wzmocnieniu krytycznym)

• Ustawiamy regulator w tryb proporcjonalny (człony całkujący i różniczkujący 
zerujemy)

• Wyznaczamy (liczymy lub odczytujemy) wzmocnienie krytyczne 𝐾𝑘𝑟, czyli takie przy 
którym układ jest na granicy stabilności

• Wyznaczamy okres oscylacji 𝑇𝑜𝑠𝑐 w tym punkcie (dla wzmocnienia krytycznego na 
granicy stabilności) 

• Parametry odczytujemy z tabeli:

𝑢 𝑡 = 𝑘𝑝 𝑒 𝑡 +
1

𝑇𝑖
∫ 𝑒 𝜏 𝑑𝜏 + 𝑇𝑑

𝑑

𝑑𝑡
𝑒 𝑡
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

Regulator PID
Zjawisko wind-up (nawijania całkowania)

• Obiekt ma zawsze ograniczenia, które nie mogą być przekroczone

• Silnik – ograniczenia prędkości maksymalnej, ograniczenia napięcia zasilającego

• Układ grzewczy – maksymalna temperatura grzałki, ograniczenie napięcia 
zasilającego

• Po osiągnieciu wartości granicznej dalsza zmiana nie jest możliwa 

• Może jednak zdarzyć się, że regulator wymusza dalszą zmianę, wówczas urządzenie 
wykonawcze na nią nie reaguje (pętla sprzężenia zwrotnego przestaje działać)

• Jeśli w regulatorze jest całkowanie to wymuszane zmiany są kumulowane dalej 
mimo braku reakcji – zjawisko nawijania wind-up
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

Regulator PID
Metody przeciwdziałania tzw. anty wind-up

• Ograniczenia wartości całki (górne i dolne)

Jak wyznaczyć wartość progową ograniczenia?

• Zerowanie całki przy zmianie znaku uchybu

Skokowe zmiany sygnału sterującego przy dochodzeniu do wartości zadanej

• Wsteczna korekcja wartości całki uwzględniając saturację sygnału wyjściowego

Jak dobrać wzmocnienie toru anty-windup?
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

Regulator PID
Zjawisko wind-up (nawijania całkowania)

Odpowiedź układu

Sygnał sterujący

Odpowiedź układu

Sygnał sterujący

Odpowiedź układu

Sygnał sterujący

Dobrany regulator dla 
niskosygnałowego sygnału 

referencyjengo

Zwiększenie sygnału 
referencyjnego – nasycenie 

sygnału sterującego

Zastosowanie metody 

anty-windup
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

Regulator PID
Kaskada regulatorów PID

• Możliwość regulacji kilku zmiennych stanu w układzie

• Wyjściem regulatora nadrzędnego jest sygnał referencyjny dla regulatora 
podrzędnego

• Możliwość ograniczenia regulowanych zmiennych

• Dynamika regulatora nadrzędnego powinna być 6-7 razy mniejsza niż regulatora 
podrzędnego
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

Człony korekcyjne
Analiza częstotliwościowa

• Jedna z wielu metod projektowania regulatorów 

• Jednymi z podstawowych wskaźników jakości regulacji są w tym przypadku: zapas 
wzmocnienia (amplitudy) i zapas fazy

• Dobór regulatora lub członu korekcyjnego wymaga analizy charakterystyk 
częstotliwościowych

Logarytmicznej charakterystyki amplitudowej

Logarytmicznej charakterystyki fazowej

• Metoda oparta na własności tych charakterystyk pozwalająca na ich łatwe składanie 
dla członów połączonych łańcuchowo
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

Człony korekcyjne
Składanie charakterystyk
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

Człony korekcyjne
Składanie charakterystyk
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

Człony korekcyjne
Zapas fazy

• Widoczny na charakterystykach: amplitudowo-fazowej, amplitudowej i 
fazowej układu otwartego

• Wyrażany w mierze kątowej (stopnie, radiany)

• Tym większy im większy jest kąt Δ𝜙 = 180° − 𝜙

• Kąt 𝜙 – argument transmitancji widmowej układu otwartego dla którego 
moduł tej transmitancji wynosi 1

• Dodatnie odchylenie logarytmicznej charakterystyki fazowej układu 
otwartego od wartości −180° dla pulsacji odcięcia dla której 
logarytmiczna charakterystyka amplitudowa przecina oś odciętych (0dB)

• Przyjmuje się zwykle od 30 do 60 stopni
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

Człony korekcyjne
Charakterystyki logarytmiczne  (dodawanie dla połączeń łańcuchowych)
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

Regulator dobierany jest w taki sposób, aby jego charakterystyka omijała obszary zabronione 
(wyznaczone na podstawie założeń projektowych)

Człony korekcyjne 
Ograniczenia częstotliwościowe
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

Człony korekcyjne
Synteza sterowania

• Rozwiązaniem alternatywnym do struktury regulatora PID jest dodanie ściśle określonego 
zera jak i bieguna i utworzenie struktury o ogólnej postaci:

𝐺𝐾𝑜𝑟𝑒𝑘𝑐𝑗𝑎 𝑠 = 𝐾
𝑠 + 𝑧

𝑠 + 𝑝

• Gdy zero ma większą (wartość co do modułu) niż biegun, wówczas taki regulator 
nazywamy wyprzedzającym fazę (ang. lead controller). W przeciwnym przypadku 
nazywamy go regulatorem opóźniającym fazę (ang. lag controller)
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

Człony korekcyjne
Synteza sterowania

• Jeżeli użycie jednego z członów podstawowych nie zapewnia wystarczającej jakości 
regulacji, dodaje się człony korekcyjne

• Człony korekcyjne są włączane równolegle lub łańcuchowo (szeregowo)

• Są uogólnieniem podstawowych regulatorów z większą elastycznością doboru 
parametrów
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

Człony korekcyjne
Opóźniający fazę

• Opóźnia fazę korekcji całkowej:

𝐺𝐾𝑜𝑟𝑒𝑘𝑐𝑗𝑎 𝑠 =
𝑇1𝑠+1

𝑇2𝑠+1
𝑇1 > 𝑇2

• zero > biegun

• Pozwala opóźnić moment (w skali pulsacji) zmiany fazy
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

Człony korekcyjne
Przyspieszający fazę

• Przyspiesza fazę korekcji różniczkowej:

𝐺𝐾𝑜𝑟𝑒𝑘𝑐𝑗𝑎 𝑠 =
𝑇2

𝑇1

𝑇1𝑠+1

𝑇2𝑠+1
𝑇2 > 𝑇1

• biegun > zero

• Pozwala przyspieszyć moment (w skali pulsacji) zmiany fazy



42

Podstawy Automatyki

Korekcja liniowych układów ciągłych

Człony korekcyjne
Opóźniająco-przyspieszający fazę

• Opóźnia fazę korekcji całkowej i przyspiesza fazę korekcji różniczkowej:

𝐺𝐾𝑜𝑟𝑒𝑘𝑐𝑗𝑎 𝑠 =
𝑇1𝑠+1 𝑇2𝑠+1

𝑇3𝑠+1 𝑇4𝑠+1

• Jednoczesne opóźnianie i przyspieszanie
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

Regulacja dwupołożeniowa
Regulacja dwupołożeniowa

• Bardzo często spotykana metoda regulacji

• Spotykana wszędzie tam, gdzie możliwe jest jedynie włączenie i wyłączenie obiektu 
regulacji

• Sterowanie przy pomocy przekaźnika  - włącz/wyłącz

• Przekaźniki dwu- i trójpołożeniowe z histerezą i bez

• Przekaźnik jest elementem nieliniowym!

• Regulator nieliniowy!
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

Regulacja dwupołożeniowa
Przykład elektrycznego układu regulacji dwupołożeniowe bez histerezy
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

Regulacja dwupołożeniowa
Histereza

• Cecha charakterystyczna rzeczywistego przekaźnika

• Przejście ze stanu wyłączonego w stan włączony zachodzi dla innej wartości wejściowej 
(większej niż przejście ze stanu włączonego w wyłączony)
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

Regulacja dwupołożeniowa
Histereza

• Miejsce zmiany wartości sygnału może zależeć od kierunku przechodzenia – histereza

• Pojawia się wówczas strefa nieczułości (widoczna na charakterystyce skokowej)

• Zmniejszając strefę nieczułości zwiększamy częstotliwość przelączeń czyli zmniejszamy 
żywotność regulatora
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

Regulacja dwupołożeniowa
Regulacja temperatury 

• Regulacja temperatury to typowy proces wolnozmienny z silnymi własnościami 
uśredniającymi

• Przy sterowaniu przekaźniku dwupołożeniowym sygnał sterujący może przyjmować dwa 
stany, obiekt reaguje na wartość średnią sygnału sterującego
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

Regulacja dwupołożeniowa
Regulacja dwustanowa bez korekcji

• Człon przekaźnika dwupołożeniowego 
występuje samodzielnie

• Częstotliwość przełączeń zależy od 
zadanej wartości referencyjnej, 
własności dynamicznych obiektu, i 
charakterystyki statycznej regulatora

• Istotne parametry – amplituda i 
częstotliwość drgań oscylacji 
ustalonych, wartość średnia sygnału

• Duża amplituda oscylacji ustalonych



49

Podstawy Automatyki

Korekcja liniowych układów ciągłych

Regulacja dwupołożeniowa
Regulacja dwustanowa z korekcją PD

• Korekcja PD pozwala na zmniejszenie amplitudy 
oscylacji ustalonych 

• Obiekt nieliniowy (przekaźnik) obejmuje 
sprzężenie zwrotne z elementem inercyjnym 
(przyjmuje się, że obiekt nieliniowy jest 
wzmocnieniem statycznym o bardzo dużym 
wzmocnieniu

• Dzięki temu charakterystyka regulatora 
(przekaźnik ze sprzężeniem zwrotnym) będzie 
zbliżona do charakterystyki regulatora PD
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

Regulacja dwupołożeniowa
Regulacja dwustanowa z korekcją PID

• Umieszczając równolegle dwa człony inercyjne, to 
odpowiednio je sumując otrzymujemy regulator 
PID

• Inny przebieg regulacji

• Zmiana częstotliwości przełączeń

• Dzięki wysokiej częstotliwości uzyskuje się 
przebieg regulacji zbliżony do regulatora ciągłego

• Stało się to możliwe dzięki objęciu przekaźnika 
pętlą sprzężenia zwrotnego uzyskując „prawie” 
regulator PID
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

Regulacja stanu
Regulator ze sprzężeniem zwrotnym od wektora zmiennych stanu

• Stan musi być dostępny (obserwowalność układu) i powinniśmy mieć na niego pełen wpływ 
(sterowalność układu)

• Pętla ma wzmocnienie statyczne różne od jedności

• Prefiltr kompensuje wzmocnienie pętli, łagodzi skoki wartości zadanej

• Typowe metody doboru wzmocnienia statycznego: metoda optymalizacji liniowo-
kwadratowej (LQ), przesuwanie biegunów

• Uchyby, gdy obiekt rzeczywisty różni się od modelu
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

Regulacja stanu
Regulator ze sprzężeniem zwrotnym od wektora zmiennych stanu z obserwatorem

• Założenie o dostępności stanu jest często niespełnione. Wówczas, stosuje się dodatkowo 
obserwator stanu

• Typowe metody doboru nastaw wzmocnienia statycznego oraz nastaw obserwatora: LQ z 
obserwatorem, przesuwanie biegunów z obserwatorem
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

Regulacja stanu
Metoda przesuwania biegunów (ang. pole placement)

• Stosowana do liniowych układów SISO i MIMO, układów ciągłych i dyskretnych. Zakłada 
dostępność stanu obiektu (pełna informacja o obiekcie)

• Dane: równanie stanu obiektu (macierz stanu A i macierz sterowania B)

• Cel: znalezienie statystycznej macierzy regulatora od stanu, takiej by bieguny układu 
zamkniętego znalazły się w zadanym (przez projektanta) położeniu. Położenie biegunów ma 
zapewnić pożądane właściwości układu regulacji 
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

Regulacja stanu
Metoda przesuwania biegunów (ang. pole placement)

• Metoda pozwala na umieszczenie biegunów w dowolnym miejscu lewej półpłaszczyzny 
płaszczyzny zmiennej zespolonej s pod dwoma warunkami:

1. Para macierzy A i B jest sterowalna 

2. Dostępny jest pełen wektor stanu (jeżeli nie to obserwator należy wykorzystać)

• Wymagania dotyczące wynikowego układu możemy sprowadzić do odpowiedniego 
„idealnego” modelu i parametrów układu regulacji

• Położenie biegunów może być zmienione poprzez zastosowanie statycznego sprzężenia 
zwrotnego od stanu i odpowiedni dobór macierzy sprzężenia 

• Obliczamy macierz K na podstawie modelu zmiennych stanu układu oraz docelowego 
położenia biegunów (formuła Ackermana)
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

Regulacja stanu
Metoda przesuwania biegunów (ang. pole placement)

Ogólny zapis układu – macierze A, B, C, D

Bieguny to pierwiastki równania charakterystycznego : 

Zakładając brak wymuszeni: 

Po podstawieniu otrzymujemy:

A więc bieguny możemy otrzymać:



56

Podstawy Automatyki

Korekcja liniowych układów ciągłych

Regulacja stanu
Metoda optymalizacji liniowo-kwadratowej (ang. linear-quadratic)

• Projektowanie regulatora od stanu dla układu liniowego z kwadratowym wskaźnikiem 
jakości.

• Metoda powstała w latach 60. XX w.

• Daje bardzo dobre rezultaty w przypadku, gdy występują mało intensywne zakłócenia

• Stosuje się do układów ciągłych i dyskretnych

• Przez odpowiedni dobór specyfikacji projektowej można wpływać na każdy ze stanów 
obiektu (ważna cecha)
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

Regulacja stanu
Metoda optymalizacji liniowo-kwadratowej (ang. linear-quadratic)

• Liniowy układ

• Wskaźnik jakości:

• Sprzężenie zwrotne:

• Żeby rozwiązać problem i znaleźć macierz K należy rozwiązać równanie Riccatiego
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Podstawy Automatyki

Korekcja liniowych układów ciągłych

Regulacja stanu
Metoda optymalizacji liniowo-kwadratowej (ang. linear-quadratic)

• Liniowy układ

• Wskaźnik jakości:

• Sprzężenie zwrotne:

• Żeby rozwiązać problem i znaleźć macierz K należy rozwiązać równanie Riccatiego
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