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Podstawy Automatyki

Stabilność liniowych ciągłych układów dynamicznych

• Stabilność jest podstawową własnością jaką powinny się charakteryzować zamknięte układy 
sterowania

• Jest to zdolność do powrotu do stanu równowagi po ustaniu zakłócenia

• Układ może być stabilny, niestabilny lub na granicy stabilności

Pojęcie stabilności
Stabilność
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Podstawy Automatyki

Stabilność liniowych ciągłych układów dynamicznych

• Jedna z najważniejszych cech układów dynamicznych wszelkiego rodzaju

• Określenie „stabilności jest charakterystyczne dla automatyki sterowania

• Inne określenia tej samej właściwości: stateczność (mechanika konstrukcji, dynamiczka ruchu 
samolotu, statku, itp.)

• Most wiszący Tacoma Narrows na skutek 

• drgań rezonansowych spowodowanych 

• silnym wiatrem zawalił się 7.11.1940 r.

Pojęcie stabilności
Stabilność w zagadnieniach inżynierskich
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Podstawy Automatyki

Stabilność liniowych ciągłych układów dynamicznych

• Stabilność BIBO (ograniczone wejście, ograniczone wyjście (ang. Bounded Input Bounded Output)

• Układ stabilny to układ o ograniczonej odpowiedzi na ograniczone wymuszenie

• Trywialne przykłady:

Stabilny – człon inercyjny 1-go rzędu

Niestabilny – człon całkujący

Pojęcie stabilności
Definicja stabilności (1)
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Podstawy Automatyki

Stabilność liniowych ciągłych układów dynamicznych

• Układ liniowy bez wymuszeń (𝑢 = 0)
ሶ𝑥 = 𝑓 𝑥 = 𝐴𝑥

• Punkt równowagi – wartość 𝑥 dla której 𝑓 𝑥 = 0

• Jeżeli det(𝐴) ≠ 0 to istnieje dokładnie jeden punkt równowagi (wówczas równanie 𝐴𝑥 = 0 ma 
dokładnie jedno rozwiązanie

• Jeżeli punkt równowagi 𝑥 ≠ 0 to zawsze można poprzez przekształcenie zmiennych stanu 
sprowadzić go do 0 (𝑥 = 0)

Pojęcie stabilności
Punkt równowagi
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Podstawy Automatyki

Stabilność liniowych ciągłych układów dynamicznych

• Załóżmy, że układ został wytrącony ze stanu 
równowagi i w chwili początkowej 𝑡0
znajduje się w punkcie 𝑥0

• Punkt równowagi 𝑥 = 0 jest stabilny (w 
sensie definicji Lapunowa) jeżeli dla każdej 
liczby dodatniej 𝜖 można dobrać taką liczbę 
𝜂 (zależną zwykle od 𝜖), że trajektoria 
rozpoczynająca się w 𝑥0 lezącym wewnątrz 
kuli o promieniu 𝜂 pozostanie wewnątrz kuli 
o promieniu 𝜖 dla dowolnej chwili 𝑡 > 0

Pojęcie stabilności
Stabilność punktu równowagi
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Podstawy Automatyki

Stabilność liniowych ciągłych układów dynamicznych

• Punkt równowagi 𝑥 = 0 jest stabilny 
asymptotycznie jeżeli:

- 𝑥 jest stabilny

- jest spełniony warunek: lim
𝑡→∞

𝑥 𝑡 = 0

Pojęcie stabilności
Stabilność asymptotyczna
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Podstawy Automatyki

Stabilność liniowych ciągłych układów dynamicznych

• Układ liniowy bez wymuszeń (𝑢 = 0)
ሶ𝑥 = 𝐴𝑥

• Jest stabilny (asymptotycznie stabilny) jeżeli punkt równowagi 𝑥 = 0 jest stabilny
(asymptotycznie stabilny)

• W zależności od możliwych położeń 𝑥0 stabilność dzielimy na:

- lokalną – 𝑥0 w mały otoczeniu 𝑥 = 0

- globalną - 𝑥0 w dowolnie dużym otoczeniu 𝑥 = 0

• Najczęściej w układach sterowania zależy nam na globalnej stabilności asymptotycznej.

Pojęcie stabilności
Definicja stabilności (2)
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Podstawy Automatyki

Stabilność liniowych ciągłych układów dynamicznych

• Pojęcie stabilności bezwzględnej dzieli układy na stabilne i niestabilne

• Jeszcze ważniejsze pojęcie stabilności względnej dla układów stabilnych mówi nam w jakim 
stopniu układ jest stabilny

• Idea pochodzi z pionierskich lat rozwoju lotnictwa i projektowania pierwszych samolotów: jak 
dalece stabilny powinien być samolot? Istnieje kompromis pomiędzy stabilnością i 
manewrowością: 

bardziej stabilny -> mniej zwrotny

• Myśliwiec jest bardzo zwrotny ale niezbyt stabilny. Sterowanie w układzie zamkniętym jest 
niezbędne do pilotowania.

Pojęcie stabilności
Stabilność bezwzględna i względna
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Podstawy Automatyki

Stabilność liniowych ciągłych układów dynamicznych

• Dla układu opisanego modelem czasowym (macierze A, B, C, D) wielomianem charakterystycznym 
nazywamy wielomian:

Δ 𝑠 = det 𝐼𝑠 − 𝐴

• Równaniem charakterystycznym nazywamy równanie:
Δ 𝑠 = det 𝐼𝑠 − 𝐴 = 0

• Rozwiązania tego równania to wartości własne macierzy A.

Warunki stabilności
Równanie charakterystyczne
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Podstawy Automatyki

Stabilność liniowych ciągłych układów dynamicznych

• Wielomian charakterystyczny układu opisanego transmitancją:

𝑇 𝑠 =
𝐿(𝑠)

𝑀(𝑠)
=
𝑎1𝑠

𝑚 + 𝑎2𝑠
𝑚−1 +⋯+ 𝑎𝑚−1𝑠 + 𝑎𝑚

𝑠𝑛 + 𝑏1𝑠
𝑛−1 +⋯+ 𝑏𝑛−1𝑠 + 𝑏𝑛

(przy założeniu, że 𝐿(𝑠) i 𝑀(𝑠) nie mają wspólnych czynników – nie można wykonać skrócenia)

jest to wielomian znajdujący się w mianowniku 𝑀(𝑠):

Δ 𝑠 = 𝑀 𝑠

• Pierwiastki równania charakterystycznego są więc tożsame biegunom układu

• Sposób wyznaczanie równania charakterystycznego zależy od modelu jakim dysponujemy

Warunki stabilności
Równanie charakterystyczne
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Podstawy Automatyki

Stabilność liniowych ciągłych układów dynamicznych

• Układ jest stabilny wtedy i tylko wtedy gdy wszystkie pierwiastki równania charakterystycznego mają 
niedodatnie części rzeczywiste, a każdy pierwiastek o zerowej części rzeczywistej jest jednokrotny (co 
najwyżej jeden pierwiastek na osi urojonej)

• Układ jest stabilny asymptotycznie wtedy i tylko wtedy gdy wszystkie pierwiastki równania 
charakterystycznego mają ujemne części rzeczywiste

Warunki stabilności
Warunki stabilności
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Podstawy Automatyki

Stabilność liniowych ciągłych układów dynamicznych

• Stabilność układów liniowych (ciągłych) wiążę się z biegunami układu

• Warunek konieczny i wystarczający stabilności:

Liniowy układ dynamiczny jest stabilny asymptotycznie wtedy i tylko wtedy gdy wszystkie bieguny 
układu leżą w lewej półpłaszczyźnie płaszczyzny zmiennej zespolonej 𝒔

Stopień stabilności związany jest z tym jak daleko w lewo od osi urojonej znajdują się bieguny

(bieguny = pierwiastki równania charakterystycznego)

Warunki stabilności
Stopień stabilności
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Podstawy Automatyki

Stabilność liniowych ciągłych układów dynamicznych

• Układ składający się z członków połączonych łańcuchowo (kaskadowo) jest stabilny (stabilny 
asymptotycznie) jeżeli każdy z członów składowych jest stabilny (stabilny asymptotycznie)

• Układ składający się z członków połączonych równolegle jest stabilny (stabilny asymptotycznie) jeżeli 
każdy z członów składowych jest stabilny (stabilny asymptotycznie)

Warunki stabilności
Stabilność układów złożonych
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Podstawy Automatyki

Stabilność liniowych ciągłych układów dynamicznych

Transmitancja układ z zamkniętą ujemną pętlą 
sprzężenia zwrotnego:

𝐻 𝑠 =
𝑌(𝑠)

𝑈(𝑠)
=

𝐻1 𝑠

1 + 𝐻1 𝑠 𝐻2 𝑠

Pierwiastki równania charakterystycznego 
układu zamkniętego:

1 + 𝐻1 𝑠 𝐻2 𝑠 = 0

1 +
𝐿(𝑠)

𝑀(𝑠)
= 0

𝑀 𝑠 + 𝐿 𝑠 = 0

Warunki stabilności
Stabilność układu ze sprzężeniem zwrotnym
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Podstawy Automatyki

Stabilność liniowych ciągłych układów dynamicznych

• Rozważmy układ rzędu 𝑛-tego o równaniu charakterystycznym:
Δ 𝑠 = 𝑎𝑛𝑠

𝑛 + 𝑎𝑛−1𝑠
𝑛−1 +⋯+ 𝑎1𝑠 + 𝑎0

• Pierwiastki równania charakterystycznego:
Δ 𝑠 = 𝑎𝑛𝑠

𝑛 + 𝑎𝑛−1𝑠
𝑛−1 +⋯+ 𝑎1𝑠 + 𝑎0 = 0

• Rozwiązanie analityczne tylko dla 𝑛 < 5

• Możliwe rozwiązanie numeryczne

• Istnieją także kryteria stabilności

Warunki stabilności
Pierwiastki równania charakterystycznego
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Stabilność liniowych ciągłych układów dynamicznych

• Pozwalają na określenie położenia pierwiastków równania charakterystycznego w zakresie istotnym z 
punktu widzenia stabilności 

• Dzięki nim nie jest konieczne wyznaczanie pierwiastków równania charakterystycznego (analityczne 
lub numeryczne)

• Kryteria sprawdzają czy pierwiastki znajdują się w lewej półpłaszczyźnie zmiennej zespolonej (tj. czy 
mają ujemne części rzeczywiste)

• Taka informacja jest niezbędna dla projektanta układu sterowania

Warunki stabilności
Kryteria stabilności



19

Podstawy Automatyki

Stabilność liniowych ciągłych układów dynamicznych

• Równanie charakterystyczne:

Δ 𝑠 = 𝑎𝑛𝑠
𝑛 + 𝑎𝑛−1𝑠

𝑛−1 +⋯+ 𝑎1𝑠 + 𝑎0 = 0

• Jeżeli Δ 𝑠 jest zapisany w postaci iloczynowej (𝑟𝑖 , 𝑑𝑙𝑎 𝑖 = 1,…𝑛 są pierwiastkami Δ 𝑠 ) 

Δ 𝑠 = 𝑎𝑛 𝑠 − 𝑟1 𝑠 − 𝑟2 … 𝑠 − 𝑟𝑛

Po przemnożeniu otrzymujemy:

Δ 𝑠 = 𝑎𝑛 𝑠𝑛 − 𝑟1 + 𝑟2 +⋯+ 𝑟𝑛 𝑠𝑛−1 + 𝑟1𝑟2 + 𝑟2𝑟3 +⋯ 𝑠𝑛−2 − 𝑟1𝑟2𝑟3 + 𝑟1𝑟2𝑟4 +⋯ 𝑠𝑛−3 +…+ −1 𝑛 𝑟1𝑟2𝑟3…𝑟𝑛 = 0

Warunki stabilności
Warunek konieczny stabilności 
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Stabilność liniowych ciągłych układów dynamicznych

• Otrzymujemy więc: 

• Wynik: Jeżeli wszystkie pierwiastki są w Lewej Półpłaszczyźnie:

1. Wszystkie współczynniki wielomianu muszą być tego samego znaku 

2. Wszystkie współczynniki wielomianu muszą być różne od zera 

• Praktycznie: Wszystkie współczynniku muszą być większe od zera

• Jest to warunek konieczny stabilności ale niewystarczający!

• Przykład:

Warunki stabilności
Warunek konieczny stabilności 
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Stabilność liniowych ciągłych układów dynamicznych

• Równanie charakterystyczne 

Δ 𝑠 = 𝑎𝑛𝑠
𝑛 + 𝑎𝑛−1𝑠

𝑛−1 +⋯+ 𝑎1𝑠 + 𝑎0

• Warunek wystarczający stabilności

• Analizujemy tzw. Wyznacznik Hurwitza

• Wyznacznik główny i wszystkie minory główne muszą być większe od zera!

Algebraiczne kryteria stabilności
Kryterium Hurwitza 
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Stabilność liniowych ciągłych układów dynamicznych

• Równanie charakterystyczne 

Δ 𝑠 = 𝑎5𝑠
5 + 𝑎4𝑠

4 + 𝑎3𝑠
3 + 𝑎2𝑠

2 + 𝑎1𝑠 + 𝑎0

• Warunek konieczny stabilności: 𝑎𝑖 > 0, 𝑑𝑙𝑎 𝑖 = 0,… , 5

• Warunki wystarczające:

𝑎4 𝑎5 0 0 0
𝑎2 𝑎3 𝑎4 𝑎5 0
𝑎0 𝑎1 𝑎2 𝑎3 𝑎4
0 0 𝑎0 𝑎1 𝑎2
0 0 0 0 𝑎0

> 0

𝑎4 𝑎5 0 0
𝑎2 𝑎3 𝑎4 𝑎5
𝑎0 𝑎1 𝑎2 𝑎3
0 0 𝑎0 𝑎1

> 0
𝑎4 𝑎5 0
𝑎2 𝑎3 𝑎4
𝑎0 𝑎1 𝑎2

> 0
𝑎4 𝑎5
𝑎2 𝑎3

> 0

Algebraiczne kryteria stabilności
Kryterium Hurwitza – przykład dla układu 5-go rzędu
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Stabilność liniowych ciągłych układów dynamicznych

• Równanie charakterystyczne 

Δ 𝑠 = 𝑠5 + 2𝑠4 + 2𝑠3 + 5𝑠2 + 11𝑠 + 10

• Warunek konieczny stabilności (𝑎𝑖 > 0, 𝑑𝑙𝑎 𝑖 = 0,… , 5) jest spełniony.

• Warunki wystarczające:

2 1 0 0 0
5 2 2 1 0
10 11 5 2 2
0 0 10 11 5
0 0 0 0 10

> 0

2 1 0 0
5 2 2 1
10 11 5 2
0 0 10 11

> 0
2 1 0
5 2 2
10 11 5

> 0
2 1
5 2

> 0

Algebraiczne kryteria stabilności
Kryterium Hurwitza – przykład dla układu 5-go rzędu 
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Stabilność liniowych ciągłych układów dynamicznych

• Równanie charakterystyczne 

Δ 𝑠 = 𝑠5 + 2𝑠4 + 2𝑠3 + 5𝑠2 + 11𝑠 + 10

• Warunek konieczny stabilności (𝑎𝑖 > 0, 𝑑𝑙𝑎 𝑖 = 0,… , 5) jest spełniony.

• Warunki wystarczające:

2 1 0 0 0
5 2 2 1 0
10 11 5 2 2
0 0 10 11 5
0 0 0 0 10

> 0

2 1 0 0
5 2 2 1
10 11 5 2
0 0 10 11

> 0
2 1 0
5 2 2
10 11 5

> 0
2 1
5 2

> 0

Warunek niespełniony!

Układ niestabilny!

Algebraiczne kryteria stabilności
Kryterium Hurwitza – przykład dla układu 5-go rzędu 
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Stabilność liniowych ciągłych układów dynamicznych

• Równanie charakterystyczne 
Δ 𝑠 = 𝑎𝑛𝑠

𝑛 + 𝑎𝑛−1𝑠
𝑛−1 +⋯+ 𝑎1𝑠 + 𝑎0

• Warunek wystarczający stabilności

• Krok 1: Uporządkuj współczynniki równania charakterystycznego w tablicę:

• Krok 2: Uzupełnij tablicę:

Algebraiczne kryteria stabilności
Kryterium Routha
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Stabilność liniowych ciągłych układów dynamicznych

• Krok 3: Liczba pierwiastków o dodatniej części rzeczywistej jest równa liczbie zmian znaku w 
pierwszej kolumnie tablicy Routha. Dla układu stabilnego nie powinno być zmian znaku. Jest to 
warunek konieczny i wystarczający stabilności.

Algebraiczne kryteria stabilności
Kryterium Routha
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Stabilność liniowych ciągłych układów dynamicznych

• Wielomian charakterystyczny układu 2-go rzędu jest następujący:
Δ 𝑠 = 𝑎2𝑠

2 + 𝑎1𝑠 + 𝑎0
• Tablica Routha ma postać:

อ
𝑠2

𝑠1

𝑠0

𝑎2 𝑎0
𝑎1 0

𝑏1
gdzie:

𝑏1 = −
1

𝑎1

𝑎2 𝑎0
𝑎1 0 = −

1

𝑎1
−𝑎1𝑎0 = 𝑎0

Wynik: Warunek konieczny i wystarczający stabilności układu 2go rzędu – wszystkie współczynniki są tego 
samego znaku.

Algebraiczne kryteria stabilności
Kryterium Routha – przykład 1 
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Stabilność liniowych ciągłych układów dynamicznych

• Wielomian charakterystyczny układu 3-go rzędu jest następujący:
Δ 𝑠 = 𝑠3 + 𝑠2 + 2𝑠 + 24

(bieguny układu: 1 ± 7, -3)

• Tablica Routha ma postać:

ተ

𝑠3

𝑠2

𝑠1

𝑠0

1 2
1 24

−22
24

Wynik: Warunek konieczny spełniony. Dwie zmiany znaku w pierwszej kolumnie implikują dwa 
pierwiastki prawej półpłaszczyźnie płaszczyzny zmiennej zespolonej 𝑠. Układ niestabilny.

Algebraiczne kryteria stabilności
Kryterium Routha – przykład 3 
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Stabilność liniowych ciągłych układów dynamicznych

• Wielomian charakterystyczny układu 3-go rzędu jest następujący:
Δ 𝑠 = 𝑠3 + 2𝑠2 + 4𝑠 + 𝐾

Tablica Routha ma postać:

ተ

𝑠3

𝑠2

𝑠1

𝑠0

1 4
2 𝐾

8 − 𝐾

2
𝐾

Wynik: 𝐾 > 0 oraz 8 − 𝐾 > 0 → 𝐾 < 8

Układ będzie stabilny dla 𝐾 ∈ 0, 8

Algebraiczne kryteria stabilności
Kryterium Routha – przykład 4 
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Stabilność liniowych ciągłych układów dynamicznych

• Stabilność układów liniowych ciągłych wymaga aby wszystkie bieguny leżały w lewej półpłaszczyźnie 
płaszczyzny s. Stopień stabilności mówi jak daleko w lewej półpłaszczyźnie leżą bieguny.

• Aby użyć kryterium Routha/Hurwitza do wyznaczenia stabilności względnej, wystarczy zmienić 
zmienne tak, aby przesunąć oś urojoną w lewo.

• Przykład: Rozważmy wielomian charakterystyczny
Δ 𝑠 = 𝑠3 + 4𝑠2 + 6𝑠 + 4

• Chcąc sprawdzić, czy odległość biegunów od osi urojonej jest większa od 1 dokonujemy zmiany 
zmiennych: 𝑠2 = 𝑠 + 1 i sprawdzamy ponownie stabilność dla zmodyfikowanego wielomianu

Δ 𝑠2 = 𝑠2 − 1 3 + 4 𝑠2 − 1 2 + 6 𝑠2 − 1 + 4 = 𝑠2
3 + 𝑠2

2 + 𝑠2 + 1

Algebraiczne kryteria stabilności
Stabilność względna
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Stabilność liniowych ciągłych układów dynamicznych

Δ 𝑠2 = 𝑠2
3 + 𝑠2

2 + 𝑠2 + 1

Jeden pierwiastek na lewo od przesuniętej osi i dwa pierwiastki na przesuniętej osi.

Algebraiczne kryteria stabilności
Stabilność względna



32

Podstawy Automatyki

Stabilność liniowych ciągłych układów dynamicznych

• Wybierz 𝐾 i 𝑎 tak aby układ był stabilny

Algebraiczne kryteria stabilności
Przykład
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Podstawy Automatyki

Stabilność liniowych ciągłych układów dynamicznych

• Tablica Routha:

• Warunki stabilności:

Algebraiczne kryteria stabilności
Przykład
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Podstawy Automatyki

Stabilność liniowych ciągłych układów dynamicznych

• Znając charakterystyki częstotliwościowe układu można je wykorzystać do odpowiedzi na pytanie:

Jak można zbadać stabilność przy pomocy charakterystyk częstotliwościowych?

• Do badania stabilności w dziedzinie częstotliwości służy metoda zwana kryterium Nyquista podana 
przez H. Nyquista z Bell Labs w roku 1932 przy okazji budowy długodystansowych linii 
telekomunikacyjnych

• Będziemy wykorzystywać własności kontorów na płaszczyźnie zmiennej zespolonej s. Potrzebujemy 
do tego zasady argumentu Cauchy’ego

Stabilność w dziedzinie częstotliwości
Kryterium stabilności Nyquista
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Podstawy Automatyki

Stabilność liniowych ciągłych układów dynamicznych

• Pozwala na badanie stabilności układu zamkniętego (sprzężenie zwrotne) na podstawie 
charakterystyk układu otwartego (z otwartą pętlą sprzężenia zwrotnego)

• Dzięki niemu możemy określić jakie będzie zachowanie układu po zamknięciu pętli sprzężenia 
zwrotnego (czy będzie stabilny)

• W szczególności pozwala na stwierdzenie czy układ niestabilny stanie się stabilny po zamknięciu pętli 
sprzężenia zwrotnego

• Badamy charakterystykę amplitudowo-fazową układu otwartego

Stabilność w dziedzinie częstotliwości
Kryterium stabilności Nyquista
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Podstawy Automatyki

Stabilność liniowych ciągłych układów dynamicznych

• Transmitancja układu otwartego: 𝐻 𝑠

• Transmitancja operatorowa i widmowa układu zamkniętego z ujemnym sprzężeniem zwrotnym:

𝐻 𝑠

1 + 𝐻(𝑠)
=

𝐻 𝑗𝜔

1 + 𝐻(𝑗𝜔)

• Równanie charakterystyczne układu zamkniętego:

1 + 𝐻 𝑠 = 0 → 1 + 𝐻 𝑗𝜔 = 0

Stabilność w dziedzinie częstotliwości
Układ otwarty->układ zamknięty
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Podstawy Automatyki

Stabilność liniowych ciągłych układów dynamicznych

Część charakterystyki dla 𝜔 < 0

Jest symetrycznym odbiciem części 𝜔 > 0

Względem osi rzeczywistej

(ujemne pulsacje odwracają fazę)

Stabilność w dziedzinie częstotliwości
Charakterystyka amplitudowo-fazowa
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Podstawy Automatyki

Stabilność liniowych ciągłych układów dynamicznych

• Równanie charakterystyczne układu zamkniętego ma wszystkie pierwiastki w lewej półpłaszczyźnie 
zmiennej zespolonej s …

• … przy założeniu, że równanie charakterystyczne układu otwartego o transmitancji 𝐻 𝑗𝜔 ma 𝑘
pierwiastków w prawej półpłaszczyźnie (a zatem 𝑛 − 𝑘 w lewej półpłaszczyźnie)…

• … wtedy i tylko wtedy gdy …

• … przyrost argumenty wyrażenia 1 + 𝐻 𝑗𝜔 wynosi:

𝑘𝜋 przy zmianie 𝜔 od 0 do +∞

2𝑘𝜋 przy zmianie 𝜔 od −∞ do +∞

Argument liczby zespolonej – miara kąta skierowanego między wektorem reprezentującym liczbę 
zespoloną na płaszczyźnie zespolonej, a osią rzeczywistą. 

Stabilność w dziedzinie częstotliwości
Kryterium Nyquista
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Podstawy Automatyki

Stabilność liniowych ciągłych układów dynamicznych

• Układ zamknięty jest stabilny…

• … przy założeniu, że równanie charakterystyczne układu otwartego ma 𝑘 pierwiastków w prawej 
półpłaszczyźnie…

• …wtedy i tylko wtedy gdy …

• Charakterystyka amplitudowo-fazowa układu otwartego 𝐻 𝑗𝜔 obejmuje w kierunku dodatnim 
punkt −1, 𝑗0 :

𝑘

2
razy przy zmianie 𝜔 od 0 do +∞

𝑘 razy przy zmianie 𝜔 od −∞ do +∞

Stabilność w dziedzinie częstotliwości
Kryterium Nyquista
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Stabilność liniowych ciągłych układów dynamicznych

• Jeżeli chcemy wiedzieć ile zer 1 + 𝐾𝐺(𝑠) jest w prawej półpłaszczyźnie płaszczyzny 𝑠, weź funkcję 
𝐹 𝑗𝜔 = 1 + 𝐾𝐺 𝑗𝜔 i kontur A obejmujący całą prawą półpłaszczyznę.

• Użyj 𝑁 = 𝑍 − 𝑃

gdzie:

P jest dane: liczba biegunów 𝐺 𝑠

Narysuj 𝐹 𝑗𝜔 i policz liczbę okrążeni 𝑁 zgodnych z ruchem wskazówek zegara punktu 0, 0

Liczba biegunów układu zamkniętego leżących w prawej półpłaszczyźnie wynosi 𝑍 = 𝑁 + 𝑃

Stabilność w dziedzinie częstotliwości
Kryterium Nyquista



41

Podstawy Automatyki

Stabilność liniowych ciągłych układów dynamicznych

Stabilność w dziedzinie częstotliwości
Kryterium Nyquista - Przykład

2 > 𝐾 > 0 układ stabilny

𝐾 ≥ 2 układ niestabilny

0 > 𝐾 > −4 układ stabilny
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Podstawy Automatyki

Stabilność liniowych ciągłych układów dynamicznych

• Wzrost wzmocnienia, który powoduje, że układ 
znajduje się na granicy stabilności nazywamy 
zapasem wzmocnienia układu (ang. gain margin). 
Można go odczytać z wykresu Bode’go

• Druga miarą stabilności względnej jest gaza, którą 
należy dodać w punkcie i wzmocnieniu 
jednostkowym na wykresie Nyquista aby obrógić go 
do (-1,0j). Nazywa się – zapas fazy (ang. phase
margin)

Zapas wzmocnienia i zapas fazy
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Podstawy Automatyki

Stabilność liniowych ciągłych układów dynamicznych

• Zapasy wzmocnienia (amplitudy) i fazy pozwalają na 
określenie jak wiele brakuje układowi do znalezienia 
się na granicy stabilności

• Mogą być odczytane z wykresu Nyquista lub 
wykresów Boge’go układu otwartego

• Zapas wzmocnienia:
Δ𝐿1 = 20 ln 𝑘1 Δ𝐿2 = 20 ln 𝑘2

• Zapas fazy:

Kąt zawarty między osią liczb rzeczywistych a półprostą 
łączącą początek układu współrzędnych z punktem 
przecięcia charakterystyki amplitudowo-fazowej układu 
otwartego z okręgiem o promieniu 1

Zapas wzmocnienia i zapas fazy
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Podstawy Automatyki

Stabilność liniowych ciągłych układów dynamicznych

• Pojęcie zapasu wzmocnienia i fazy mają sens tylko dla układów, które nie mają biegunów wewnątrz 
konturu Nyquista – stabilnych

• Dla stabilnych układów rzędu pierwszego i drugiego wykres Nyquista nigdy nie przecina ujemnej 
półosi rzeczywistej i zapas wzmocnienia jest nieskończony

• Dla układów rzędów wyższych niż drugi może być więcej niż jedno przecięcie z ujemną półosią 
rzeczywistą. Taki układ ma więcej niż jeden zapas wzmocnienia

Zapas wzmocnienia i zapas fazy
Uwagi
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Podstawy Automatyki

Stabilność liniowych ciągłych układów dynamicznych

• Rozważmy następujący przypadek:

𝐾𝐺 𝑠 =
𝐾

(𝑠 + 𝑎)(𝑠 + 𝑏)(𝑠 + 𝑐)

• Jakie wzmocnienie przesunie ten punkt do (1,0j)? Czyli spowoduje, że układ zamknięty będzie na 
granicy stabilności?

• 𝐾 = 𝐾0 ∗ 𝐺𝑀

Zapas wzmocnienia i zapas fazy
Przykład
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Podstawy Automatyki

Stabilność liniowych ciągłych układów dynamicznych

Zapas wzmocnienia i zapas fazy
Przykład – układ niestabilny
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