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The capillary model of transport through charged membranes has been reformulated by
transport equations of non-equilibrium thermodynamics. Two geometries of pores has
been considered — a capillary and a slit. It has been assumed that the distribution of
mobile components is governed by the zero components of forces in the plane perpen-
dicular to the direction of transport. It has been shown that the part of transport
coefficients, describing the motion of the center of mass, depends on the distribution of
species inside the capillary and on the viscosity of the solution. The transport coeffi-
cients, averaged over Lhe cross-scction, are symmetrical.
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The capillary model of transport of clectrolyte solutions through charged mem-

branes has been discussed and applied by many authors, e.g. [1-13] and references
therein. Usually, for the description of transport the Nernst-Planck equation has been
used. The convective contribution has been calculated from the Navier-Stokes equ-

ation. Trying to find the analytical solutions of Poisson-Boltzmann equation, govern-
ing the distribution of ions, many simplifying assumptions have been introduced,
which make the final expressions of limited applicability. The Nernst-Planck equa-
tion, neglecting the couplings between ions, has also been used in papers correlating
the parameters of the capillary model with the coefficients of transport cquations of
non-equilibrium thermodynamics, which from the formal point of view is not correct.

Thus, the aim of this paper is to derive the general transport equations of the
capillary model basing on the non-equilibrium thermodynamics. Prior to the deriva-
tion one comment on the distribution of particles inside a capillary should be made.
In most cases (exceptions are [10,12]) the distribution of ions has been described by

the Boltzmann equation:
cj = ci(y = O)exp(— z;FY/RT) (1)

where ¢; is the concentration of ion i in the place of a potential y. This equation 1s
consistent with the Nernst-Planck equation:

. F
ji= —D,(z,f,- — Vy + W,-) (2)

in that sense, that after differentiating (1) is the same as the condition for j; to be zero:

F

i = ZiCi o Vy (2a)

Ve
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To be in agreement with applied transport equations (4) and (7) it is assumed here
that the distribution of mobile species is given by the assumption of the zero radial
[fows, i.e. by the equation (17). Two geometries of pores in a membrane are
considered (Fig. 1) —a capillary and a slit. The membrane is assumed to be rigid.

X
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Figure 1. Two pore geometries: capillary of radius a and slit - the distance of walls is 2a.

DISSTPATION FUNCTION

The system considered is isothermal, no chemical recaction takes place, the
rotation energy 1s not included. For such conditions the dissipation function at the
given point of the cross-section ol a capillary is [14,(7.30)]:

in—1
® = J;- X;—IL:Gradv (3)
=)

The indices denote 0 — solvent, I,.., n-1 — other mobile species (ions, efc.), n —
membrane.

In the solution, filling a capillary, the density of the membranc is zero, p, = 0,
i.e. the membrane is considered only as a wall of capillary. Because of a simpler form
of equations, the densities arc used instead of molar concentrations. The symbols
have their usual meaning. J; is the flow of i relative to the local center of mass, X; —
thermodynamic force coupled with J;, F; — external force, IT — viscosity tensor, v —
velocity of local center of mass:

H—|

J:' = pf(vi = V) = z!ﬁ: Xk Xi = —(vl-li)?“.p "vap + Fr' F{' == —Z{W\F (435153)

k=()
=1 n—|
V=D pvi/p p=)pi (6,62)
i=0 =0

Introducing the flows relative to the capillary:

n—|

Ji =pivi—=vy) =Ji + pi(v—vp) = Y 1 X (7)
k=0

(3) 1s rewritten to:
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n—1 n—1

D = Z Ji-Xi—(v- v,,}-z pr Xy — IL:Gradv (8)
=0 =0

Scalar multiplying of the motion equation [14,(4.18)]:

n—1|

= =_Vp-V.M+pF  where pF=Y pify (9,9a)
k=0

by (v — v,) and combining with the tensor identity:

IL:Grad(v - v,) = V-V - v,)) = (V= v (VID (10)
give:

d |
II:Grad(v —v,) = V-(II-(v—-v,) + (v=v,)(Vp - pF) + p(v — v,,)-:; (11)

For a rigid membrane and its constant velocity the following equations are valid
(there 1s no need to assume v,, = 0):

dv d(v—vy,)

—_— = g e + ]2 b
> R Grad(v - v,) = Gradv (12a,b)
Thus, with (11), (12) and:

n—|

> PiXg=-Vp+pF (13)

A=0

resulting from the Gibbs-Duhem equation and:

n—1
> pivi = 1 (14)
k=0

where V, is the partial specific volume of species k, the dissipation function (8) 1s
transformed to:

n—| n—1
dlv —
D= Z’T - Xi— PV —v,) (vdr Yo == "U’(ﬂ(v —Vp)) = ZJ? (X - d(v — v,)/dt) -
i=0 | i=0
—V-(II-(v=-v,)) (15)

In the mechanical equilibrium, defined as dv/dt = 0, the term d(v — v,)/dtf obviously
disappears (see (12a)). This condition is frequently postulated, however, it would be
interesting to compare d(v — v, )/dt with X;. For a rather small gradient of electrical
potential 10 mV/1 mm and a molccular weight M = 50 g/mol the electrical part ol X;
1s FVQ/M = 2 % 10’ m/s®. The concentration part of X; for the activity ratio of an
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electrolyte a;”/a;’ = 2 is (RT/M)VInay= 3.4 x 10’ m/s*. It is rather doubtful that such
accclerations could exist in the membranes filled with electrolyte solutions. Thus,
the term d(v - v,)/dt is negligible comparing with X; .

(15) expresses the dissipation function at a given point ol a cross-section of
capillary. Because these points are not cquivalent, one should integrate (15) to obtain
a representative quantity for the capillary. It will be assumed here that;

1) Viv=0 (16)
2) m the cross-section perpendicular to the z axis the components of X; are zero:
(Xe#, =0 i=0,1,.,n-1 and, consequently (J;})gzzr (V)azy =0 (17,17a).

From here the z components of these quantitics will be denoted simply by X;, J;, v.
After integrating the term V-(I1-v) disappears [15]. With (16) the viscosity tensor

1s expressed as [14, p.149]:

II = —2n(Gradv)® (18)
With (18) and (17) V-(IT-v) reduces to:

capillary [15]:  V-(IT-v) = A a%(rnv%] shit::  V(Il-v) = ga;[nv %] (19a,b)

r

Setting the boundary condition v(a) = 0, and for the slit additionally ov/dx(0) = 0,
the integrals ol (19) are zcro. Thus, neglecting d(v — v, )/dt the integrated, averaged
over the cross-section form of (15) is [3,15]:

n—1 n—1
(®) = Y ()X — (:Gradv) = P(I)X; (20)
(=) (=()

It 1s secn that the averaged flows <J/> and coupled forces X; absorbed the viscosity
part of the dissipation function. This would not be that case, if the coupled forces

with J; were X7, defined by (A4).

THE COEFFICIENTS OF TRANSPORT EQUATIONS

The coefficients /; in (4) are dependent, because of the dependence of J;, defined
relative to the local center of mass. From the definition (6) and (4) we obtain:

n—|

Nlx=0 k=0,1,.,n-1 (21)
i=0

It is assumed that they are symmetrical /;; = l;;. Contrary to [, [ from (7) are

independent, because they connect independent flows and forces. However, they are
not symmetrical. From (4), (6) and (7) we get:

-
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n—|

L_!L'I'_Z{?L (22)

=0

The erroneous symmetry assumption would lead to n(n-1)/2 equations relating
independent coefficients ﬂk [15, (35}]

n—1|

pIZﬂg kaf‘ (i#k=0,1,.n-1).

J=U

The asymmetry of [j; can be also demonstrated on the base of general transformation
rules of fluxes and forces (Appendix A). As it will be shown below, the averaged
I are symmetrical. The symmetry of averaged transport coeffcients under various
assumptions was proved in [3,4]. In [16] a proof can be found for two cases 1) without
any external lorces and 2) with the constant concentration. Here it is shown for the
case limited by (16), (17) and dv/dt = 0. In these conditions (9) is expressed as:

ary: 32 4 L9 [ 0¥ . 9p . O [ 0V ¢
capillary: az+r8r[ arJ“’F 0 slit: az+8x U +pF=0 (23)

Integrating (23) two times, with v(a) = 0 as a boundary condition and additionally
for a slit av/ax(0) = 0, we get:

| r l b
capillary: v(r) = o | — j (pr ~ L bidr st vx) =a? | nl [ [pF—- %’ (24)
r ﬁ X 0

In the integrals r, x are dimensionless — r = r/a, x = x/a. The meaning of a is explained
in Fig. 1. It is not assumed that the viscosity, 1, is constant, because it depends not
only on the concentration but also on the clectric field [17], strong in the charged
capillary. Substituting (13) into (24) we get for v:

n—|
V&) =D B &)X E=rx (25)
k=0
]

where capillary: By(r) = a _[ jp; rdr® slit: Bi(x)=u _[ Jp;‘ dx’® k= 0, I,n-1 (26)
X {]

Here a comment concerning the boundary condition v(«) = 0 should be given. If it
was non-zero, then v 1n (235) would be also non-zero, even if all X; = 0, explicable
only when the friction is zcro. Thus, v(a) = 0 is the only reasonable assumption. The
flows related to the membrane, according to (4), (7), and (25), are expressed as:

n—1 n—1
Jl=piv+Ji=piv+ Z lig X = Zl?k Xt i=0,1,n-1 L = piBk + Lik (27,27a)
k=0 k=0
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(27a) confirms the previous statement that [ are not symmetrical, because of the
inequality: p;B; # piB;. Only 1n the case of independent distributions of densities
would these cocfficients be symmetrical. After averaging the flows over cross-sec-

L1on:

| | | |
capillary: (J; ) = # 2na’ jjfrdr: 2 Jf?rdr slit: (J7) = i 2a I Jidx= _[J;’dx (28)
“ 0 0 0 0

n—1

we get:  (Ji)= Z (L)X 1=0,1,2 (29)
k=0
I I
where: capillary: ([j;) = 2(8,-;; + _[ l,:,;;rdr) slit: {li) = By + Il,-kdx (30)
0 0
1 r | r I 1 ! X
Bur=a [ pir | = | pirdr® By =d* [ p; |~ | prae® (31)
0 I HE 0 0 X " 0

(l};) = {I;;) under the conditions that:

1 |
I !jk rdr = j Ik;rdr and Bik - Bki (323,]3)
0 0

The first equality 1s fulfilled, if /;; = l;. The second one can be easily proved
expanding p;, pg, 1/1 into a power series of r or x (Appendix B). The averaged v is:

n—1

(V)= (BX (33)
k=0
1 1 1 1 v
where capillary: (B} = — 2na’ I Bi(r)rdr = 2a* _[ r _[ A j pkm'rz' (34a)
ke 0 o
] l | 1 )  ;
slit: (B =-2a [{ Bi(x)dx = o {{I;]— {J; o (34b)
X

(33) ditfers signilicantly from (45) in [15].

It should be noticed, that even if there is no coupling between the flows relative
to the local center of mass (/; = 0), </;;> is still non-zero because B;; does not
disappear. Whereas /i can be related with the frictional interactions and the Spiegler
model of transport [18], the meaning of By is different. This coefficient depends on
two factors: 1) the distribution of ions and other particles, influenced by the charged
wall of a capillary, and 2) viscosity, which is a common factor for all B;. Thus, the
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interpretation of interactions in a system with a membrane of ordered pore structure
on the base of the Spiegler model should be treated very carefully.

The number of independent </;;> is n(n + 1)/2. This number includes n(n — 1)/2
independent </;;> (the symmetry of </;> and (21) have been taken into account),
one viscosity coefficient, and n-1 independent distributions of concentration of 10ns.
The distribution of solvent concentration can be calculated using (14). The general
formula for the distribution of components is given by (17). Introducing (5) and
(Vui)r, = RTVIna,, it can be expressed in detail as:

(RTVIna; + ViV, + 2iF Ve, = 0 | (35)

If the Boltizmann equation is assumed, then the concentration profiles of 1ons are
dependent on the profile of electric potential only. In that case the number of
independent parameters of the capillary model decreases from n(n + 1)/2 to n(n— /2 +2.
The definition of a capillary model is finished by introducing the assumption of
equality of (electro)chemical potentials on the boundary: membranclexternal solu-
tion. The assumption enables to relate the driving forces X; with the parameters of
external solutions surrounding the membrane.

CONCLUSIONS

The equations describing transport of ions and solvent in a charged pore of two
geometries (capillary, slit) have been derived. In contrast to the previous derivations,
the present one includes all coupling effects between mobile species and is not based
on any simplifying assumption, like the ideality of electrolyte solutions, efc. The
transport coefficients are constituted of two parts —one relative to the local center of
mass and the second one — describing the contribution of the movement of the center
of mass. The last one depends on the distribution of mobile ions inside the pore and
on the viscosity of a solution filling the pore. The derived equations make possible
to simulate the transport of electrolyte solutions in the charged capillaries, which 1s

interesting from the practical point of view.

Appendix

A. Transformation of fluxes and symmetry of transport coefficients
Iet us assume that the matrix of coefficients, L, relating J and X is symmetrical. In
order to kecp the symmetry of the coeffcients and the invariance of entropy produc-

tion:

Ox=J Xx=J"x* (A1)

when the referencc system s changed:
J=AJ (A2)
the forces X have to be transformed according to [19]:

X‘=A""% (A3)
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ln this paper the forces in (4) and (7) are the same. Thus, assuming the symmetry of

Ly in (4), [}, in (7) cannot be symmetrical. From (4), (6) and (7) the following relation
results:

n—1

J,-=J§‘-%ZJ}5, ie.  ag =8y pip (A4)

From (A3) and (A4) we get the forces X} coupled with J!

r.t—l

Xi=X;—— z PLX L (AS)
l—ﬂ

X? , contrary to J; , arc dependent:

n—1 n-1
ZP.X" ZPIX Spi Y pXip=0 (A6)
=0 k=0

(AS) and (A6) are the same as (18) and (4) in [20]. Introducing (13) into (A4) we get
the form cited in [21,15]. Il should be added, that because of the dependence of J,

(and/or X ), the matrix [uﬂl] defined by (A4) is singular and cannot be the inverse
of [ayl, “=17" has only a symbolic meaning. The problem of inverting the lincar
relations betwuen fluxes and forces in the case when the matrix of conductance
coefficients is singular is solved in [22].

[t should be stated here that the form of thermodynamic forces given by (5) 1s
based on the global relations for the kinetic energy and the lincar momentum [14,16].
However, using the individual balance equations the form of thermodynamic forces
1s different ((14) in [23], (108) in [24]. The fcature of these forces is that. contrary
to the forces given by (5), they are linear dependent. Consequently, they can be
apphed to any flow of the arbitrary framc of reference without violation of the
invariance of entropy production. In the case when both fluxes and forces are
dependent, the phenomenological coefficients are not uniquely defined and can be
chosen in such a manner that the Onsager reciprocity holds [16].

B. Proof of the symmetry of B,
Expanding p;, ps,1/m:

Za,ﬂr Pk = Zamr I = Zl;.r (B1)

o=0)

~and substituting into (31) yield:

capillary: B;; = 22 Z z J’amrml _[b rr IJ‘{TJLE}II}HI’!I (B2a)
o= y=0 =0 0 r
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0 o Dy

| l X
slil: Bi= e Z z Z Ja,ﬂ 2 _[ b-f x! I a;{‘]jx”dx?’ (B2b)
o=0v=0 =0 0 X 0

Intcgrating (B2) the following expressions are obtained:

. capillary: Bj. = a’ 2 2 Z R =By; (B3a)
: 00 120 D (+y+B+4)o+2)B+2)

o ol %ty ey
slit:  Bjy=a Z Z Z ({x+?+|3+3)((x+l)(|3+l)“3k' (B3b)
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