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ON THE DETERMINATION OF TRANSPORT COEFFICIENTS
OF ION EXCHANGE MEMBRANES

by S. KOTER

Institute of Chemisiry, N. Copernicus University, Torun

The limitation of application of additivity rule to the measurement of diffusion is shown. The
exact expressions for practical flows and forces for the system with concentration and
pressure differences as driving forces for different definitions of mean concentration are
denved.

Some of the transport coefficients of ion-exchangc membranes, like

— permeability coefficients of diffusion and osmosis,

— apparent transport number of ions,
are usually determined for the finite concentration difference of electrolyte solutions
separatcd by a membranc in zero-currcnt, isobaric-isothermal conditions. Because the
state of the membrane is a function of the concentration of the external solution, the
coefficients determined arc the mean values for that concentration range, In order to
obtain the coefficients corresponding to a given concentration (SO called differential
coefficients) one of the two methods can be applied:

1) described by Pusch [1}],

2) proposed and used by Mcares ef al. [2-4].

The first one consists in the measurement of a given quantity y (y = diffusional flow,
osmotic flow, electromotive force of concentration membrane cell) with increasing
concentration difference, Ac,, keeping as constant the mcan concentration. The gradient

of the curve y = f(Ax), where x is a function of the concentration (x =c,, Infas), us, I,
etc.), at Acg— 0

y = (9y/0AX)5c= 0 (1)

is the differential coefficient for a given concentration cs (¥ = permeability coefficient,
apparent transport number of ions).
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The above method is, however, tedious and at higher concentrations the determina-
tion of small concentration changes in the casc of the measurement of diffusion is not

very accurate and time consuming,
The sccond method consists in the mcasurcment of quantity y in narrow concentra-

tion intcrvals (cg,, + cg;) and the calculation of y for (cgy + c¢g,) according to the
additivity rule

Y =Yolegp+ Cs=C50) =0

(2)

Y=¥n (CS,U - Cs - Csln) = Z y(CS.H + CSJ) n=1 ,2,..113

=1

where 1, is the number of measurements,
Next y 1s approximated as a function of x. The differential transport coefficient is

equal to the derivative
Yy’ = dy/ox 3)

In the case of diffusional and osmotic flows (y = J) the additivity rule, the base for
Meares’ method, 1s fulfilled for stationary states. The proof given in [5] should be
supplemented by two remarks.

I/ The additivity rule 1s fulfilled, if the transport coeffcients do not depend on the

pressure.
Deriving once morc the flow equation under the assumption that the flow is constant

in each layer of a membranc, perpendicular to the direction of the flow, we get

CSn Pn=Po CSn
dmJ = [ Pydx+ L, = [P )
Csp Py €s.0

Here the pressure part, although equal to zero, is taken into account to stress the fact that
the pressures of hypothetical solutions belween layers can be different [6], even if the
pressures on both sides of the membranc are equal. Thus, if Px depends not only on the
concentration, but also on the pressure, then the equality (5) (additivity rule) need not to
be fulfilled

Csn €s.1 CS.n
| Pxtespydx = | Pylesp)de+ .4 [ Pofesp)dx (5)
Csp Csp CSn-1

because in the concentration intervals ¢g, + Cgj,.., 5, + Csp the pressure profiles are

different from that in ¢g, + cg,
1/ With a negligiblc pressure effect, but a not negligible influence of concentration
on the thickness of the membrane, the additivity rule should be written according to

equations (4,5) as
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(dmn(cs_u ‘*’“csm): z (dm/ X C i il Cs.i) (6)
i=1

and transport coefficient should be calculated from the formula
Py = 3(dm))/0x ( | L

In the case of diffusional flows determined only from the concentration changes of a
diluted solution it is not possible to apply the additivity rule, unless the measurements
of volume osmotic flow are made. ,

From the definitions of flow of a solute, J,, and of volume osmotic flow, Jy, across
the membrane of area A

. 1 dﬂsg - | dv{_}_ — —
Js= A dr Jv—A dr =vels + Valw (8,9)
and from the equation (10)
nssu — CSI_.VG (10)
we gel
Vo dc
J¥o=Js—csoly= " =" (11)

In equations (8-11) cg, is the concentration of a diluted solution, g - the number of
a moles of solute in volume V, of a diluted solution, J, — flux of the solvent in respect

to the membrane, and v, vy, are ther partial molar volumes of the solute and solvent,
respectively.

It results from equation (11) that only mcasurements of the diffusion always to the
same solution cg, i.e. 5o+ Cs s Cs0+ € 59» - CIC., allows the calculation of a well
defined flow J¥°, which can be diffcrentiated. In the case of measurcments in interval,
Cs;1*  Cs,, according to schema (2) or (6), it is not possible to calculate J$O cg g+ C5y)s
because in each interval cg in cquation (11) changes to ¢g;y, 1.€. is not constant. Only
additional measurements of J, allow the application of the additivity rule in this case,
making possible the calculation of the flux Jg = J§° + ¢ o/v from equation (11).

The expression (12), resulting by differentiating d /Y0 (equation (11)) by x,

A/ ¥0)/0x = Hdm/ )/0x — c510(dm/  )/0x (12)
tends towards d(d/J)/0x, if cg, 1s small enough.

Otherwise, again the mcasurements of volume osmotic flow Jy, should be carried out
in order to calculate both d(dy/)/0x and I(dm/w)/ OX.

Equation (11) resolves additionally ambiguity rclated to the kind of diffusional flux
determined from the changes of the solution concentration [7].
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Choice of the practical transport equations

In literature different expressions for diffusionai flux (Jp=J¢/Cs— vilw [8]
Jp=Js/cs— Jwl ¢y [1,9] = (sufficient approximations for diluted solutions) and different
definitions of thc mean concentration cg (arithmetic, logarithmic, defined by equation
(16) ) [7-10] can be met. Therefore it would be useful o derive the correct equations,

necessary for the exact calculation of transport coefficients.
The starting transport equations are

Jo =L ALy + LawAllw  Jw = LysAls + LAy | (13a,b)

The transformations of fluxes and forces, with invariant entropy production and Onsager
reciprocity relation (under the condition that equations (13) fulfil it) are given by
equations (14) [11]

J=A)] F=AYF L’=ALAT (14a,b,c)

where J, F are vectors of fluxes and forces to be transformed, J’, F* — vectors of new
fluxes and forces, A — transformation matrix, L,L." — matrices of the old and new transport
coefficients.

Transforming fluxes and forces from cquations (13) with the help of (14) one gets
the following practical fluxes and forces listed in Table 1, for two definitions of mean

concentration aﬂ, and ¢t
The notation in Table 1 is as follows:

ATT = —ApS /vy (15)
c2 is defined by formula [7,8]
2 = ATT/Au§ (16)
whereas ¢ — by formula (17)

Lk (17)
l -+ Vﬁﬁm ﬁ“,E

resulting from equations (18,19)

CsANS + CwANS =0 veCs+ vwew=1 (18,19)

Cwis determined by ¢ and equation (19),

The examination of expressions listed in Table 1 shows that the simplest and the most
comfortable (from the experimental point of view) transport equations are obtained for
the mean concentration defined by equation (17). The transport equations with new fluxes
and forces are valid as long as linear equations (13) are, whereas the mean concentration
1s a transformation parameter, which determines the form of the transformed flows and
forces.

{ ~




On the determination of transport coefficients 1163

Table 1

Last of chosen trans fmafms of fluxes and forces for two mean concentrations,
A and ¢, (formulae (16,17)).

. l l .
Jy J Fy Fs
R S L A, A
Js Iy (1+ v_._?,) All/ 2 Ap-All
J, | o ATV P Ap-ATl
Jy— caJ, | J, | (Q+v,ad)arve Ap
Ji= cval, s, ATV Ay
J— &, & ATV Ap
Jjé - J, T (1 + vec)AI Ap
JEa- v, | 4 ATl Ap
Jr"a:" Jrv J\r All AP
JJ@ = ISy | Ty | (1=(v@3)*)AIT | Ap+v,C3 Al
It ttea| S (1-v,cD)AM Ap
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