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Abstract
Support vector regression is a promising method for time-series prediction, as it has good generalisability and an overall stable
behaviour. Recent studies have shown that it can describe the dynamic characteristics of financial processes andmakemore accurate
forecasts than other machine learning techniques. The first main contribution of this paper is to propose a methodology for dynamic
modelling and forecasting covariance matrices based on support vector regression using the Cholesky decomposition. The proce-
dure is applied to range-based covariance matrices of returns, which are estimated on the basis of low and high prices. Such prices
are most often available with closing prices for many financial series and contain more information about volatility and relationships
between returns. Themethodology guarantees the positive definiteness of the forecasted covariance matrices and is flexible, as it can
be applied to different dependence patterns. The second contribution of the paper is to show with an example of the exchange rates
from the forex market that the covariance matrix forecasts calculated using the proposed approach are more accurate than the
forecasts from the benchmark dynamic conditional correlation model. The advantage of the suggested procedure is higher during
turbulent periods, i.e., when forecasting is the most difficult and accurate forecasts matter most.

Keywords Support vector regression . Machine learning . Multivariate volatility models . High and low prices . Range-based
models . Covariance forecasting

1 Introduction

Artificial intelligence (AI) offers new approaches tomodelling
and forecasting real-time data. In the context of financial data
analysis, one of the most relevant AI methods is machine
learning (ML). Generally, machine learning includes methods
that help computer systems automatically improve their per-
formance with experience. These data-driven, self-adaptive
techniques require very few assumptions about the models

used for the investigated data. In recent years, several ML
methods have been successfully used for forecasting pur-
poses. One of them is the support vector machine (SVM)
method proposed by Vapnik [1]. This method, applied to
solve both classification and regression problems, is designed
to have good generalisability and an overall stable behaviour,
implying good out-of-sample performance.

The literature on SVM has been systematically expanding,
both in the area of methodology and practical applications. In
particular, new methodological approaches, including some
modifications of the original SVM models or specific SVM-
based hybrid models, have been proposed (e.g., [2–7]).

Originally, the SVM method was developed to solve clas-
sification problems; later, however, it was extended to the
domain of regression problems [8]. In the literature, the term
SVM is typically applied in the context of classification prob-
lems, while the term support vector regression (SVR) is used
to describe regression with support vector methods.

The econometric literature extensively discusses the empir-
ical properties of financial time series, which include volatility
clustering, weak autocorrelation of returns, occurrence of an
asymmetric impact of positive and negative shocks on condi-
tional volatility (the so-called leverage effect), long memory,
existence of strong dependencies between returns of various
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financial instruments, and some characteristics of return dis-
tributions, such as fat tails, leptokurtosis and asymmetry.
Many empirical studies have shown that the dynamics of fi-
nancial processes can be nonlinear (see, e.g., [9–14]; and ref-
erences therein). Support vector methods, such as other non-
parametric statistical analysis techniques, tend to be useful
tools of nonlinear forecasting, as they do not presume the
linearity of the data-generating process but let the data speak
for themselves. They have been successfully applied to fore-
cast financial time series, such as stock indices [3, 15–19],
stock prices [20–23], volatility indices [24], derivatives
[25–27], exchange rates [15, 28–32], exchange-traded funds
[33, 34] and corporate bonds [35].

In the literature, volatility models are usually constructed
on the basis of only closing price data. However, databases
also usually contain daily low and high prices. These values
come from intraday prices and are very important for the mea-
surement of price changes during day. It has been shown that
the use of low and high daily prices leads to more accurate
estimates and forecasts of variances (see, e.g., [36–40]), co-
variances (see, e.g., [41–44]) and value-at-risk measures (see,
e.g., [45, 46]). Moreover, in contrast to very-high-frequency
data, the application of low and high prices does not suffer
from a large computational burden. For these reasons, the use
of these prices in forecasting is very important from a practical
viewpoint.

The main motivation of our paper is to combine two
gaining importance and popularity approaches, namely, the
application of SVR and low and high prices, to create a new
forecasting procedure for the covariance matrix of returns
based on daily prices. Modelling and forecasting covariance
matrices are vital because financial institutions and investors
usually possess portfolios of assets. In the process of construc-
tion, valuation and management of financial instruments port-
folios, knowledge about the relationships between assets is as
important as knowledge about the dynamics of returns and
volatilities. Forecasting the covariance matrix is also crucial
in applications such as risk management, option pricing and
hedging strategies. Such applications require a multivariate
approach, whereas most of the SVR studies in finance are
univariate. In contrast, in this study, SVR was applied to fore-
cast not only variances of financial returns but also covari-
ances. Modelling and forecasting the covariance matrix are
much more demanding tasks because the matrix constructed
from the forecasts of variances and covariances obtained by
the disjoint models is not guaranteed to be positive definite.

We apply range-based variances and covariances of
returns, which are formulated on the basis of low and high
prices. Our approach is nonparametric, which makes it more
general than the papers mentioned above. Chou et al. [41]
combined the conditional autoregressive range (CARR) mod-
el by Chou [36] with the dynamic conditional correlation
(DCC) model by Engle [47] to propose the range-based

DCC model. Fiszeder et al. [44] proposed the DCC model
constructed using the range generalised autoregressive condi-
tional heteroskedasticity (R-GARCH) model by Molnár [39].
Fiszeder and Fałdziński [43] suggested the DCC model for-
mulated using the CARR model and the range-based estima-
tor of covariance of returns. Themodel introduced by Fiszeder
[42] was based on the BEKKmodel by Engle and Kroner [48]
and the use of range-based estimators of variances and covari-
ances of returns. All the above papers are methodologically
different from the approach considered in this paper because
we do not use any parametric range-based volatility models.

The paper has four contributions:

& First, we propose a new method for dynamic modelling
and forecasting covariance matrices based on SVR. This
approach guarantees the positive definiteness of the fore-
casted covariance matrices and is flexible, as it can be
applied to different dependence patterns. At the begin-
ning, we decompose the range-based covariance matrices
of returns into the Cholesky factors, and then we forecast
the univariate series of the entries of the Cholesky factors
using the SVR model. Afterwards, we reconstruct the co-
variance matrix from these forecasts as a result of the
reverse operation of the Cholesky decomposition. We
use the range-based variances and covariances; the pro-
posed approach, however, is quite general and can be ap-
plied to other proxies of covariance matrices formulated
on the basis of daily data (e.g., squared returns and prod-
ucts of returns) or intraday data (e.g., realised variances
and covariances).

& Second, we provide empirical evidence that the forecasts
of both the whole covariance matrix and each single co-
variance obtained by the proposed procedure are more
accurate than those obtained by the DCC model. This
model is a natural benchmark because it is one of the most
popular multivariate volatility models and can even be
applied to very large portfolios. To the best of our knowl-
edge, this is the first attempt in the literature to use SVR to
forecast covariance matrices.

& Third, we demonstrate that the variance forecasts based on
the proposed procedure are more precise than the forecasts
from the univariate GARCH model [49]. It has already
been shown in the literature that variance forecasts based
on the SVRmodel can be more accurate than the forecasts
calculated from the GARCH model (see, e.g., [15, 28, 31,
50]); however, range data have not been used in such
applications so far.

& Fourth, we show that the forecasting advantage of the
proposed method over the DCC model is higher during
high market volatility and dependence between assets.
This conclusion is important since such periods are often
associated with market turmoil and high market uncertain-
ty, i.e., when forecasting is the most difficult and accurate

7030 P. Fiszeder and W. Orzeszko



forecasts matter most. Such a finding for the range-based
estimators has not been formulated in the literature so far.

The rest of the paper is organised as follows. Section 2
provides an outline of the SVR model, describes the range-
based covariance estimator and, most importantly, introduces
the proposed method for covariance matrix forecasting.
Section 3 presents the empirical research aimed at assessing
the performance of the proposed procedure, the data applied,
and a detailed description of the study and its results. Section 4
provides the conclusions.

2 Theoretical background

2.1 SVR model

Let us assume the following regression model:

y ¼ r xð Þ þ δ ð1Þ
where r(x) is the regression function, y is the dependent var-
iable, x is the vector of regressors and δ is additive zero-mean
noise with variance σ2. On the basis of a training dataset
{(xt, yt)}t = 1,…T, we want to approximate the unknown regres-
sion function by a function f(x) that has a deviation of at most
ε from the outputs yt and is as flat as possible [51]. In SVR, the
input x is first mapped onto a high-dimensional feature space
using fixed (nonlinear) mapping, and then a linear model is
constructed in this feature space:

f xð Þ ¼ ∑d
i¼1ωiφi xð Þ þ b ð2Þ

where d is the dimension of the feature space, φi(x) denotes
(nonlinear) transformations, ωi are the coefficients and b is the
bias term [52]. It should be noted that the dimension of the
feature space determines the capacity of the SVR model to
approximate a smooth input-output mapping; higher values
of the dimension d lead to a more accurate approximation
[15].

According to Eq. (2), to derive the function f(x), one must
estimate ω = (ω1, ω2,…, ωd)′ and b. To measure the estima-
tion quality, Vapnik [1] proposed the ε-insensitive loss func-
tion:

Lε y; f xð Þð Þ ¼ 0; jy− f xð Þj≤ε;
jy− f xð Þj−ε; otherwise

�
ð3Þ

which means that errors below ε are not penalised. SVR per-
forms linear regression in the d-dimensional feature space
using the ε-insensitive loss function and, at the same time,
tr ies to reduce model complexity by minimising
‖ω‖2 =ω′ω. The optimal regression function is given by
the minimum of the functional:

Φ ω;ξð Þ ¼ 1

2
ωk k2 þ C∑n

t¼1 ξt þ ξ*t
� � ð4Þ

where C is a pre-specified positive value and ξt and ξ*t are
nonnegative slack variables representing the upper and lower
constraints, respectively, on the outputs of the system; i.e.,

yt− f xtð Þ≤εþ ξ*t ð5Þ
f xtð Þ−yt ≤εþ ξt ð6Þ
for all t = 1, 2, …, T. The parameter C controls the
penalty imposed on observations that lie outside the ε-
margin and, consequently, helps to prevent overfitting.
Both the ε and the C parameters of SVR must be de-
termined by the user.

The optimisation problem described above can be trans-
formed into a dual problem SVR for which the solution is
given by:

f xð Þ ¼ ∑TSV
t¼1 αt−α*

t

� �
K xt; xð Þ s:t: 0≤αt ≤C; 0≤α*

t ≤C
ð7Þ

where αt and α*
t are Lagrange multipliers, TSV is the number

of support vectors and K is the kernel function of the form:

K xt; xð Þ ¼ ∑d
i¼1φi xð Þφi xtð Þ ð8Þ

The dual problem can be solvedmore easily than the primal
problem. The use of the kernel function prevents the need to
explicitly compute the functional form of φi, which greatly
reduces the computational complexity of the high-
dimensional hidden space. Instead, the kernel functionK com-
putes the inner product of the vector φ(x) = (φ1(x), φ2(x),
…,φd(x))′ [31].

In practice, the most popular kernel functions are the
following:

– Linear (dot product): K(xt, x) = xt′x,
– Gaussian: K(xt, x) = exp(−‖xt − x‖2),
– Polynomial: K(xt, x) = (1 + xt

Tx)p; p = 2, 3, …

The application of the linear kernel leads to linear SVR,
while the Gaussian and polynomial kernels allow nonlinear
SVR to be performed.

2.2 Range-based covariance estimator

We apply the estimator of covariance of returns calculated on
the basis of low and high prices (see [53–55]). This estimator
has an advantage over that based on only the closing prices
because it uses information about the price changes during the
day. It is given by:

cov X ; Yð Þ ¼ 0:5 var X þ Yð Þ−var Xð Þ−var Yð Þ½ � ð9Þ
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where variances var(X + Y), var(X), var(Y) are estimated using
low and high prices.

The Parkinson [56] estimator of variance can be used to
calculate all the variances in Eq. (9). It is expressed as:

varPt ¼ ln Ht=Ltð Þ½ �2= 4ln2ð Þ ð10Þ
whereHt and Lt are the daily high and low prices, respectively.
The Parkinson estimator was advocated by Brunetti and
Lildholdt [53] and Brandt and Diebold [55]; however, other
range-based variance estimators can also be applied.

Equation (9) can be applied when the range of the sum of
variables X and Y is known, although, in practice, this range is
not easy to calculate. It can be computed from tick-by-tick
prices; however, such data are difficult to obtain for many
financial assets. However, in the case of foreign exchange
rates, the aforementioned range can be easily calculated. Let
us consider two exchange rates of currencies x and y in terms
of currency z, denoted by x/z and y/z, respectively. In the
absence of triangular arbitrage opportunities, the return of
the cross rate can be written as:

Δln x=y ¼ Δln x=z−Δln y=z ð11Þ

Then, the range-based estimator of covariance for the cur-
rency pairs can be represented as:

cov Δln x=z;Δln y=zð Þ
¼ 0:5 var Δln x=zð Þ þ var Δln y=zð Þ−var Δln x=yð Þ½ � ð12Þ

This approach was used by some authors to analyse covari-
ance of returns (see, e.g., [53, 57, 58]). Such an estimator was
also employed for the construction of multivariate GARCH
models by Fiszeder [42] for the BEKKmodel and by Fiszeder
and Fałdziński [43] for the DCC model.

The estimator of covariance based on low and high prices is
less efficient than the most common estimator based on intra-
day prices, i.e., realised covariance, although it is more robust
to microstructure noise, which makes the estimators biased
[55]. Chou et al. [41] and Martens and van Dijk [59] showed
how this bias of the range-based covariance estimator can be
eliminated. Compared with the estimator calculated on the
basis of closing prices, the estimator calculated on the basis
of low and high prices is highly efficient. Monte Carlo simu-
lations have indicated that when the Parkinson estimator is
applied to all the variances in Eq. (9), the range-based covari-
ance estimator is approximately five times more efficient (see,
e.g., [53, 55]).

2.3 Forecasting the range-based covariance matrix
using SVR

In this subsection, we introduce a methodology for dynamic
modelling and forecasting of covariance matrices based on

SVR models using the Cholesky decomposition. The ap-
proach guarantees the positive definiteness of the forecasted
covariance matrices and is flexible, as it can be applied to
different dependence patterns.

It should be noted that the matrix constructed from the
variance and covariance forecasts obtained from the disjoint
application of the forecasting models is not guaranteed to
be positive definite. In this paper, we apply the Cholesky
decomposition to preserve the positive definiteness of the
forecasted covariance matrices. The Cholesky decomposi-
tion, also known as the Cholesky factorisation, is a method
of decomposing a symmetric positive-definite matrix A into
the product of a unique upper triangular matrix U with real
and positive diagonal entries and its conjugate transpose U′;
i.e., A =U ′U. The matrix U is known as the Cholesky
factor of A and can be interpreted as the square root of
A. The motivation for modelling and forecasting the
Cholesky factors instead of the elements of the range-
based covariance matrix of returns directly is that we do
not need to impose any restrictions. The idea of using the
Cholesky factorisation in financial modelling is not new.
For example, Tsay [60] applied it to re-parameterise the
conditional covariance matrix of returns in the multivariate
GARCH model. The idea of using the Cholesky decompo-
sition of the realised covariance matrix in modelling and
forecasting was put forward by Andersen et al. [58] and
initially implemented in empirical studies by Chiriac and
Voev [61].

To forecast the covariance matrix for the forecast horizon τ,
we follow five steps:

Step 1. We calculate the N ×N range-based covariance ma-
trices of returns Gt, t = 1, 2, …, T, where T is the
time-series length. In general, the range-based vari-
ances of the returns are the diagonal entries of these
matrices, while the range-based covariances based
on Eq. (9) are the other entries. To estimate the
range-based covariance matrices for the currency
pairs, we use the estimator of the covariance of the
returns given by Eq. (12) and the Parkinson estima-
tor of the variance expressed in Eq. (10).

Step 2. The matrices Gt (t = 1, 2, …, T) are decomposed
using the Cholesky decomposition into the form
Gt = P′tPt.

Step 3. For each entry pijt (1 ≤ i ≤ j ≤N) of the Cholesky fac-
tor Pt, we construct and train the autoregressive SVR
model of the form:

pijtþτ ¼ f pijt ; p
ij
t−1;…; pijt−lþ1

� � ð13Þ

where l is the lag length. The SVR model (13) is
estimated separately for each (i, j) based on univari-

ate series pijt (t = 1, 2, …, T).
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Step 4. We forecast the Cholesky factor PTþτ ¼ pijTþτ

� �
. To

achieve this aim, the forecasts bpijTþτ are calculated
using the models trained in Step 3.

Step 5. The forecast of the covariance matrix is reconstruct-
ed using the reverse operation of the Cholesky de-

composition; i.e., bGTþτ ¼ bP0
Tþτ bPTþτ , where bPTþτ

is the forecast of the Cholesky factor.

The outline of the proposed algorithm is depicted in Fig. 1.

2.4 Alternative forecasting methods

Modelling a covariance matrix is a challenging task for two
reasons. First, the chosen model must guarantee the positive
definiteness of the estimated and forecasted covariance matri-
ces. Second, to limit the inflation of the number of estimated
parameters and computational difficulties, severe restrictions
on the model dynamics must be imposed. To model condi-
tional covariance matrices, many methods have been

proposed in the literature. Two of the most popular ap-
proaches are (1) modelling and forecasting realised covariance
matrices and (2) applying multivariate GARCH models (see,
e.g., [62]). The first method relies on the usage of intraday data
to calculate nonparametric measures of variances and covari-
ances, such as realised variances and covariances. Models
based on these measures provide more precise estimates and
forecasts than models based on daily closing prices; however,
high-frequency data are not commonly available and are sig-
nificantly more expensive than daily data. In this paper, we
apply daily low and high prices, which are usually available
with closing prices but contain much more information about
volatility and relationships between returns. The use of such
prices also has more advantages than intraday data, such as
wider availability, lower acquisition costs, considerably lower
database requirements, and greater robustness to some micro-
structure effects. Furthermore, the direct application of intra-
day data means some problems, such as the existence of daily
cyclical fluctuations, the existence of strong autocorrelation or
a significant impact of the publication of macroeconomic in-
formation on quoted prices. The goal of this study is to create a
forecasting procedure based on daily data, which is whywe do
not consider models for realised covariance matrices.

The second most popular approach is to apply multivariate
GARCHmodels. These are parametric models where, by def-
inition, the structure of dependencies between variables is
restricted to a specific analytical form. When dealing with
large portfolios, many multivariate GARCH models present
unsatisfactory performance or problems with estimation.
Therefore, we choose for our forecasting study the dynamic
conditional correlation (DCC) model by Engle [47], which
has important advantages, such as the positive definiteness
of the conditional covariance matrices and the ability to de-
scribe time-varying conditional correlations and covariances
in a parsimonious way. Furthermore, the parameters of the
DCC model can be estimated in two stages by the quasi-
maximum likelihood method, which makes this approach rel-
atively simple and possible to apply even to very large port-
folios. The DCCmodel is one of the most popular multivariate
GARCH models used to describe financial time series.
Moreover, many papers, such as [63–66], show that it is very
difficult for other multivariate GARCH models to outperform
the DCC model.

There are also alternative methods to forecast conditional
covariance matrices that are not included in the two above
approaches. The method based on an SVR model that we
propose in this paper is one of them. There are several benefits
of applying SVR models to forecast time series. First, it pre-
serves the common advantages of other machine learning
methods. It is widely claimed that machine learning offers a
more general approach than parametric models (cf. [67, 68]).
It is capable of approximating nonlinear functions based on
noisy and nonstationary data. Machine learning concentrates

Output: forecast of the covariance matrix

Reverse of the Cholesky decomposi�on

Forecas�ng of the Cholesky factors

Cholesky decomposi�on

Training of the SVR models

Calcula�on of the range-based covariance matrices

Input: high and low daily prices

Fig. 1 Outline of the algorithm for covariance matrix forecasting
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on prediction by using general-purpose learning algorithms to
find patterns in often rich and unwieldy data. This approach
makes minimal assumptions about the data-generating sys-
tems; it can be effective even when the data are gathered
without a carefully controlled experimental design and in the
presence of complicated nonlinear interactions. Moreover, it
can be particularly helpful when the number of input variables
exceeds the number of subjects. It should also be noted that
empirical studies in the literature are promising since they
confirm that specific ML methods can outperform economet-
ric models (cf. [69]). In particular, one can find first attempts
to forecast conditional covariance matrices by applying ML
methods [70, 71]. In both cited papers, artificial neural net-
works (ANNs) were used. However, in contrast to our meth-
od, both studies can be included in the first mentioned ap-
proach since realised covariance matrices are modelled there.

The most important ML forecast methods are artificial neu-
ral networks, support vector machines, random forests, the
nearest neighbours algorithm, Bayesian regression, kernel
ridge regression and generalised linear models. We decided
to apply the SVRmodel due to its promising properties. It has
been shown that SVR combines the training efficiency and
simplicity of linear algorithms with the accuracy of the best
nonlinear techniques. In many practical applications, this ap-
proach can tolerate high-dimensional or incomplete data and
is robust to outliers [28, 72]. One of the main advantages of
SVR is that its computational complexity does not depend on
the dimensionality of the input space. Additionally, it has ex-
cellent generalisation capability and high prediction accuracy
[73].

Many of the conducted studies have confirmed that SVR
can make more accurate forecasts than other machine learning
techniques, including ANNs (see, e.g., [28, 74, 75]; however,
some authors have claimed that the superiority of SVR over
ANN is not obvious and can depend on the type of neural
network [76, 77]. Moreover, unlike neural network training,
which requires nonlinear optimisation with the risk of falling
into the local minima, the SVR solution is always unique and
globally optimal [75]. It has also been shown that SVR has
advantages over artificial neural networks for real-world data
of limited size: (i) fewer calibration samples are required to
obtain a desired model performance, (ii) SVR is less sensitive
to sampling variations in small datasets and (iii) cross-
validation is an approximately unbiased option for evaluating
the true support vector regression model performance even for
small datasets [78].

3 Application of the SVR models
for forecasting exchange rates

In the empirical study, we applied the proposed methodology
for dynamic modelling and forecasting covariance matrices

based on SVR models to exchange rates from the forex mar-
ket. We assessed the accuracy of several SVR models with
different lags and kernels and compared this approachwith the
DCC model.

3.1 Data applied

The three most heavily traded currency pairs in the forex mar-
ket, namely, EUR/USD, USD/JPY and GBP/USD, were in-
vestigated. The analysis of currencies uses triangular arbitrage
to calculate the covariance of the returns.

First, we evaluated the data for the 11-year period from 2
January 2006 to 30 December 2016 (2853 returns). The de-
scriptive statistics for the returns, squared returns and products
of the returns are presented in Table 1. The daily returns were
calculated as rt = 100 ln(pt/pt − 1), where pt is the closing price
at time t.

The variability of the returns, measured by the standard
deviation, was quite similar for all the currency pairs; howev-
er, there were significant differences in the skewness and kur-
tosis of the distributions. Owing to perturbations caused by the
2016 Brexit referendum, the distribution of returns was more
leptokurtic, and the minimum return was significantly lower
for GBP/USD than for the remaining pairs. A weak autocor-
relation was present in the returns of the GBP/USD rate. The
autocorrelation of the squared returns and products of the
returns was much stronger than the autocorrelation of the
returns. Moreover, there were considerably higher deviations
from the normal distribution for the squared returns and the
products of the returns. This finding means that modelling the
covariance matrices of the returns is a much more demanding
task than modelling the returns.

3.2 Description of the models and procedures

We applied autoregressive SVR models (cf. Eq. (13)) with
different lags and two kernels: a linear kernel (which leads
to linear SVR) and a Gaussian kernel (which leads to nonlin-
ear SVR). We also applied several lag values; however, we
present only the results for lags l = 1 and l = 15; lag l = 1 leads
to the simplest specification, in which only one lagged vari-

able, i.e., pijT , is used as the regressor. Our calculations showed
that larger lags may lead to more accurate forecasts; however,
this effect ceased to be visible for l > 15. According to the
results, lag l = 15 seemed to be optimal when considering
the accuracy of the forecasts and the computation time.

Finally, we considered four specifications of the SVR
models:

1) SVR with a linear kernel and l = 1 (hereinafter
SVR_lin_1),
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2) SVR with a linear kernel and l = 15 (hereinafter
SVR_lin_15),

3) SVR with a Gaussian kernel and l = 1 (hereinafter
SVR_Gauss_1),

4) SVR with a Gaussian kernel and l = 15 (hereinafter
SVR_Gauss_15).

All the above models were repeatedly constructed on
the basis of a rolling sample with a fixed size of T= 527
(i.e., the number of observations in the first 2-year peri-
od, from 3 January 2006 to 31 December 2007, which
was used as the initial sample). In the case when the
range-based covariance matrices of the returns Gt were
not positive definite, a simple method based on eigen-
values was applied (see, e.g., [79, 80]); however, this
procedure did not significantly affect the dynamic depen-
dencies between the covariance matrices. According to
the methodology described in Subsection 2.3, the SVR

models were constructed for the series pijt (t = 1, 2, …, T)
obtained from the Cholesky decomposition. The
decomposed series were standardised, i.e., centred by
subtracting the mean and divided by the standard
deviation.

As described in Subsection 2.1, the values of the ε
and C parameters (also called meta-parameters) must be
determined to create the SVR models. There are compet-
itive propositions in the literature on how to tune these
parameters (see, e.g., [50, 52, 81–83]; and references
therein); however, previous studies did not demonstrate
a clear superiority for any of them. Therefore, we applied
two tuning methods in our study. In the first method, we
determined the parameters using the default settings in
MATLAB (in our study, we used the function fitrsvm
in MATLAB (R2015b) to perform SVR); i.e., C = 1 for

the linear kernel and C ¼ Iqr Yð Þ
1:349 for the Gaussian kernel,

where Iqr(Y) is the interquartile range of the response
variable Y. For both kernels, the default value of the ε

parameter was ε ¼ Iqr Yð Þ
13:49 . The main advantage of this

method is its simplicity and time effectiveness. The sec-
ond method we applied was the grid search technique.
This method consists of constructing many SVR models
for different values of the parameters and selecting the
optimal model on the basis of a validation set. We per-
formed a grid search for the C and ε parameters by
considering consecutive values of C = 2−5, 2−4, …, 24,
25 and ε = 2−5, 2−4, …, 24, 25. To select the optimal
parameters, we applied a 10-fold cross-validation proce-
dure. According to this approach, the investigated sample
was randomly partitioned into 10 equal-sized subsam-
ples. Nine of these subsamples were used to construct
the SVR model, while the remaining one was used to
validate the model. To this end, the mean squared error
(MSE) was computed on the observations in the valida-
tion subsample. This procedure was repeated 10 times
(for each of the 10 subsamples used as the test set),
and the average of the 10 obtained MSEs was calculated.
Finally, the parameters that led to the smallest MSE were
considered optimal. It should be noted that this approach
can be very time consuming. However, this problem can
be avoided because it is reasonable to assume that the
optimal parameters for consecutive rolling samples
should be very similar (as these samples differ only in
1 of 527 observations), which means that there is no
need to determine these parameters for each sample. In
our study, we decided to perform the grid search tech-
nique to tune the parameters every 100 days.

Our study results showed that the grid search method pro-
duced better values than the default values in MATLAB

Table 1 Summary statistics of the
daily currency pairs Currency pairs Mean ×102 Min Max SD Skew Kurt LB(10)

Returns

EUR/USD −0.417 −2.554 3.503 0.623 0.088 2.035 6.655

JPY/USD 0.026 −5.448 3.779 0.670 0.051 4.549 12.592

GBP/USD - 1.173 −8.322 2.870 0.612 −1.198 14.041 25.432*

Squared returns

EUR/USD 38.796 0.000 12.272 0.779 5.351 44.756 542.085

JPY/USD 44.811 0.000 29.675 1.147 10.059 179.258 263.955

GBP/USD 37.461 0.000 69.252 1.504 34.598 1543.373 190.737

Products of returns

EUR/USD-JPY/USD 8.886 −9.653 8.545 0.654 −1.154 64.028 201.952

EUR/USD-GBP/USD 23.235 −2.157 21.255 0.677 12.777 336.127 245.532

JPY/USD-GBP/USD 1.815 −31.449 8.555 0.866 −18.536 636.843 99.220

Mean is the arithmetic mean,Min is theminimum,Max is themaximum, SD is the standard deviation, Skew is the
skewness, Kurt is the excess kurtosis, and LB(10) is the Ljung-Box statistic for 10 lags
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(according to the in-sample MSE calculated by the cross-
validation and to the out-of-sample prediction errors).
Therefore, in the next subsection, we will present only the
results from the SVR models with parameters tuned using
the grid search technique.

3.3 Forecasting performance

Based on all the considered models, 1-day-ahead forecasts of

covariance matrices – bGTþτ (i.e., τ = 1) for the 9-year period
from 2 January 2008 to 30 December 2016 were calculated
(i.e., 2336 forecasts). The considered period was relatively
long, and it covered both turbulent periods, such as the global
financial crisis of 2008, European sovereign debt crisis and
2016 Brexit referendum, and tranquil periods; therefore, the
results should be robust to the state of the global economy.

As a proxy of the daily covariance for the evaluation of
forecasts, the sum of products of intraday returns (the realised
covariance) was employed, while as a proxy for the daily
variance, the sum of squared intraday returns (the realised
variance) was used. This is a commonly accepted approach
in the literature (see, e.g., [84–86]). One major problem of
using such data is the choice of the appropriate frequency of
observations (see, e.g., [87]). In this study, 15-min returns
were applied; however, the main results did not change for
the 5- or 30-min returns. It should be noted that we used
intraday data only to evaluate the forecasts; we did not use
them to construct the models or to calculate the forecasts.

First, following Laurent et al. [88]), we evaluated the fore-
casts of the whole conditional covariance matrix using the
squared Frobenius loss function given by:

LF ¼ 1=mð Þ∑m
t¼1Tr bGt−GtR

� �0 bGt−GtR

� �h i
ð14Þ

where m is the number of forecasts, Tr is the trace of a matrix,bGt is a forecast of the conditional covariance matrix andGtR is
the realised covariance matrix (with the realised variances on
the diagonal and the realised covariances on the off-diagonal).

The proposed method of covariance matrix forecasting
using SVR models utilises the Cholesky decomposition.
Unfortunately, the forecasting performance of the procedure
may be sensitive to the order of the variables in the covariance
matrix because each permutation of the elements in the orig-
inal matrix yields a different decomposition and different fac-
tors. Therefore, we considered all possible permutations of the
analysed currency pairs (permutation 1: EUR/USD, USD/JPY
and GBP/USD; permutation 2: EUR/USD, GBP/USD and
USD/JPY; permutation 3: USD/JPY, EUR/USD and GBP/
USD; permutation 4: USD/JPY, GBP/USD and EUR/USD;
permutation 5: GBP/USD, EUR/USD and USD/JPY; and per-
mutation 6: GBP/USD, USD/JPY and EUR/USD).

To evaluate the statistical significance of the results, we
applied the model confidence set (MCS) of Hansen et al.
[89]. The objective of the MCS procedure is to determine
the set of models that consists of the best model(s) from a
given collection of models. The best models are selected with
a given level of confidence in terms of a user-specified crite-
rion. In our analysis, a criterion based on the squared
Frobenius loss function was applied. The values of the
squared Frobenius loss function and the corresponding p-
values (calculated by the bootstrap method) of the MCS test
are presented in Table 2. It can be seen in the table that the
forecasts from the SVR_lin_15 model were significantly more
accurate than those from the other SVR models and the DCC
model for all permutations.1 This finding means that the order
of the variables in the covariance matrix did not affect the
forecasting superiority of the SVR_lin_15 model.

The results of the analysis of the whole covariance matrix
did not show whether the superiority of one model was due to
more accurate forecasts of the variances, covariances or both.
This question is important since, in some applications, only
the volatility of financial processes is used, and in other cases,
the relationship between processes plays a key role. Therefore,
from a practical point of view, it is advisable to analyse the
forecasts of the variances and covariances separately. To this
end, the mean squared error (MSE), mean absolute error
(MAE) and coefficient of determination from the Mincer-
Zarnowitz regression were calculated. These criteria are often
used to evaluate volatility forecasts in empirical studies (see,
e.g., [90, 91]). We also tried other loss functions, and they
yielded similar results. The statistical significance of the re-
sults was verified again by the MCS test. To save space, we
present only the results for permutation 2, which was the worst
permutation according to the squared Frobenius loss function
for the SVR_lin_15 model. The other permutations also led to
more accurate forecasts for the separate series of the variances
and covariances. The results for the forecasts of the covari-
ances are presented in Table 3.

According to the results of the MCS test, only the
SVR_lin_15 model belonged to the MCS. The forecasting
superiority of the SVR_lin_15 model did not depend on the
type of loss function; all the considered criteria indicated that
the covariance forecasts based on this model were the most
accurate.

We also compared the forecasts of the variances. To this
end, we applied the GARCH models, which were previously
used in the DCC model. The obtained results are presented in
Table 4.

The results for variance forecasting were not unequivocal
but also indicated the advantage of the SVR_lin_15 model.

1 This model was also the best in terms of the in-sampleMSE calculated by the
cross-validation procedure. This finding proves that the cross-validation meth-
od can be effectively used to construct the best SVR model.
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Based on the MSE measure, the forecasts from this model
were the most accurate for all the series, with the single ex-
ception of the JPY/USD pair (when only the GARCH model
was included in the MCS). Additionally, for the EUR/USD
pair, two models (the GARCH model and the SVR_lin_15
model) belonged to the MCS, and there was no evidence to

reject the null hypothesis of equal predictive ability for these
models. However, under theMAE criterion, which is less sen-
sitive to outliers than theMSEmeasure, the SVR_lin_15 mod-
el was the best forecasting model for all the currency pairs.
The superiority of the SVR_lin_15 model was also confirmed
by the R2 criterion.

Table 2 Evaluation results of the covariance matrix forecasts based on the squared Frobenius loss function

Method of forecasting Permutation 6 Permutation 4 Permutation 1 Permutation 3 Permutation 5 Permutation 2

LF p value LF p value LF p value LF p value LF p value LF p value

DCC model 2.870 0.041 2.870 0.048 2.870 0.061 2.870 0.064 2.870 0.094 2.870 0.094

SVR_lin_1 2.921 0.000 2.918 0.000 2.932 0.000 2.933 0.000 2.948 0.000 2.952 0.000

SVR_lin_15 2.615 1.000* 2.619 1.000* 2.633 1.000* 2.636 1.000* 2.658 1.000* 2.659 1.000*

SVR_Gauss_1 2.964 0.000 3.058 0.000 3.039 0.000 3.057 0.000 2.960 0.000 3.043 0.000

SVR_Gauss_15 3.282 0.000 3.337 0.000 3.306 0.000 3.341 0.000 2.960 0.000 3.335 0.000

LF is the squared Frobenius loss function for the conditional covariance matrix, the p values are for theMCS test and ‘*’ indicates that the model belongs
to the MCS, with a confidence level of 0.90. The evaluation period was from 2 January 2008 to 30 December 2016; the realised covariance and the
realised variance, which were used in the evaluation of the forecasts, were based on 15-min returns. The permutations were ordered according to the LF
for the SVR_lin_15 model

Table 3 Evaluation results of the covariance forecasts based on the
MSE, MAE and R2 criteria

Method of forecasting Forecast evaluation criteria

MSE p value MAE p value R2

EUR/USD-GBP/USD

DCC model 0.123 0.096 0.131 0.000 0.344

SVR_lin_1 0.150 0.000 0.149 0.000 0.231

SVR_lin_15 0.116 1.000* 0.121 1.000* 0.398

SVR_Gauss_1 0.144 0.000 0.145 0.000 0.247

SVR_Gauss_15 0.180 0.000 0.167 0.000 0.054

EUR/USD-JPY/USD

DCC model 0.097 0.000 0.140 0.000 0.163

SVR_lin_1 0.096 0.001 0.135 0.000 0.165

SVR_lin_15 0.084 1.000* 0.119 1.000* 0.275

SVR_Gauss_1 0.106 0.000 0.141 0.000 0.077

SVR_Gauss_15 0.113 0.000 0.148 0.000 0.013

JPY/USD-GBP/USD

DCC model 0.220 0.003 0.119 0.000 0.058

SVR_lin_1 0.206 0.007 0.113 0.000 0.104

SVR_lin_15 0.195 1.000* 0.102 1.000* 0.140

SVR_Gauss_1 0.212 0.007 0.116 0.000 0.063

SVR_Gauss_15 0.225 0.002 0.126 0.000 0.003

The p values are for the MCS test; ‘*’ indicates that the model belongs to
the MCS, with a confidence level of 0.90; and R2 is the coefficient of
determination from the Mincer-Zarnowitz regression. The evaluation pe-
riod was 2 January 2008 to 30 December 2016; the realised covariance
and the realised variance, which were used in the evaluation of the fore-
casts, were based on 15-min returns

Table 4 Evaluation results of the variance forecasts based on theMSE,
MAE and R2 criteria

Method of forecasting Forecast evaluation criteria

MSE p value MAE p value R2

EUR/USD

GARCH model 0.168 0.412* 0.206 0.000 0.367

SVR_lin_1 0.203 0.000 0.222 0.000 0.269

SVR_lin_15 0.164 1.000* 0.185 1.000* 0.410

SVR_Gauss_1 0.209 0.000 0.226 0.000 0.241

SVR_Gauss_15 0.264 0.000 0.258 0.000 0.047

GBP/USD

GARCH model 1.190 0.013 0.230 0.010 0.097

SVR_lin_1 1.091 0.013 0.245 0.000 0.133

SVR_lin_15 0.999 1.000* 0.198 1.000* 0.192

SVR_Gauss_1 1.087 0.013 0.239 0.000 0.120

SVR_Gauss_15 1.195 0.003 0.271 0.000 0.028

JPY/USD

GARCH model 0.631 1.000* 0.313 0.019 0.193

SVR_lin_1 0.751 0.003 0.318 0.000 0.180

SVR_lin_15 0.706 0.010 0.295 1.000* 0.226

SVR_Gauss_1 0.822 0.003 0.327 0.000 0.043

SVR_Gauss_15 0.839 0.002 0.337 0.000 0.031

The p values are for the MCS test; ‘*’ indicates that the model belongs to
the MCS, with a confidence level of 0.90; and R2 is the coefficient of
determination from the Mincer-Zarnowitz regression. The evaluation pe-
riod was from 2 January 2008 to 30 December 2016; the realised covari-
ance and the realised variance, which were used in the evaluation of the
forecasts, were based on 15-min returns
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For both the covariances and variances, the differences
between the values of theMAE amongst the different currency
pairs were much smaller than those in the case of theMSE and
R2 criteria. These differences were associated with the exis-
tence of numerous outliers in the currency pairs returns, which
have a much stronger impact on the latter measures.

Our research showed the superiority of the linear kernel
over the nonlinear (Gaussian) kernel, which means that the
autoregressive relations in each forecasted series were linear
or almost linear. It can be concluded that the applied linear
SVR models have a form similar to that of the ARCH model;
however, it should be noted that they are not applied directly
to the raw series of the variances and covariances but to the
series transformed by the Cholesky decomposition. By the
same analogy, one can easily explain the superiority of the
SVR_lin_15 model over the SVR_lin_1 model. Many empir-
ical studies have shown that the conditional variance
(covariance) usually appears to be a function of many lagged
past squared errors (products of errors), which is why a more
parsimonious parametrisation in the form of the GARCH
model is frequently used. Additionally, it should be noted that
our calculations showed that, in the case of linear SVR, longer
lags led to more accurate forecasts; however, this effect ceased
to be clearly visible for l > 15.

3.4 Influence of market conditions on the superiority
of forecasts

Two recent studies suggest that the application of low and
high prices in volatility models leads to the largest improve-
ment in the estimation and forecasting of volatility during
turbulent periods [38, 39]. For this reason, in this section, we
examine whether market conditions, i.e., market volatility and
dependencies between assets, can affect the accuracy of the
proposed forecasting procedure based on the SVR model.

For this aim, we applied a quantile regression model and
tested whether extreme improvements in forecasts can be ex-
plained by the level of market volatility (for variance fore-
casts) or dependence (for covariance forecasts) on the previ-
ous day. Let dvar,T and dcov,T denote loss differentials defined
for the variance and covariance forecasts, respectively, as:

dvar;T ¼ varDCC;T−varR;T
� �2− varSVR lin 15;T−varR;T

� �2 ð15Þ
dcov;T ¼ covDCC;T

		 		− covR;T
		 		� �2− covSVR lin 15;T

		 		− covR;T
		 		� �2

ð16Þ
where varDCC,T and varSVR _ lin _ 15,T are the forecasts of the
conditional variances based on the DCC and SVR_lin_15
models, respectively, varR,T is the realised variance;
covDCC,T and covSVR _ lin _ 15,T are the forecasts of the condi-
tional covariances based on the DCC and SVR_lin_15
models, respectively, and covR,T is the realised covariance.

When dvar,T and dcov,T are positive, then the forecasts based
on the SVR_lin_15model are more accurate than the forecasts
from the DCC model. The loss differentials described in Eqs.
(15)–(16) are based on theMSE loss function, but very similar
formulas can be written for the MAE loss function.

The τ-th linear quantile regression model can be specified
for the variance and covariance as follows:

dvar;T ¼ β0 τð Þ þ β1 τð Þ varR;T−1 þ εvar;T τð Þ ð17Þ
dcov;T ¼ α0 τð Þ þ α1 τð Þ covR;T−1

		 		þ εcov;T τð Þ ð18Þ

The parameter estimation results for the above quantile
regression models are presented in Tables 5 and 6. We report
the results based on the 90th percentile because we are inter-
ested in analysing large forecast improvements; however, very
similar results were achieved for other high quantiles (e.g., the
75th and 95th percentiles).

The estimates of the coefficient β1 were positive and sig-
nificant for all the currency pairs, which means that higher
forecast improvement of the SVR_lin_15 model over the
DCC model was observed when the realised variance was
large. This conclusion is important since highmarket volatility
is associated with turbulent periods and high market uncer-
tainty, i.e., when forecasting is the most difficult and accurate
forecasts matter most.

The results reported in Table 5 show that the estimates of
the coefficient of interest α1 were positive and highly signif-
icant for all the analysed relations, which means that the fore-
casting advantage of the SVR_lin_15 model over the DCC
model was higher when the dependence between currency
pairs was large. This conclusion is also important and, in par-
ticular, confirms the previous results concerning the impact of
the realised variance, since strong relations between assets
often exist during turbulent periods (see, e.g., [92]). Such a
finding for the range-based estimators has not been formulated
in the literature so far.

We have presented the results only for the loss differentials
based on theMSE loss function; however, the main results did
not change for the MAE loss function.

Table 5 The parameter estimation results for the 90th percentile
regression of the loss differential dvar,T on the lagged realised variance

Currency pairs β0 s(β0) p value β1 s(β1) p value

EUR/USD 0.002 0.006 0.778 0.187 0.026 0.000

GBP/USD −0.035 0.029 0.226 0.499 0.211 0.018

JPY/USD 0.011 0.013 0.411 0.405 0.049 0.000

White’s heteroskedastic-consistent standard errors are used. The evalua-
tion period was 2 January 2008 to 30 December 2016; the realised vari-
ance was calculated based on 15-min returns
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4 Conclusions

We have proposed a methodology for dynamic modelling and
forecasting covariance matrices based on SVR, which is our
main contribution. The procedure guarantees the positive def-
initeness of the forecasted covariance matrices and is flexible,
as it can be applied to different dependence patterns. The
range-based covariance matrices of returns are decomposed
into the Cholesky factors, and then SVR models are applied
to forecast the elements of these factors. Afterwards, the fore-
cast of the covariance matrix of returns is reconstructed from
the forecasts of these elements as a result of the reverse oper-
ation of the Cholesky decomposition.

The procedure is based on the decomposed range-based
covariance matrices; however, the proposed approach is quite
general and can be applied to other proxies of the covariance
matrices formulated on the basis of daily data (e.g., squared
returns and products of returns) or intraday data (e.g., realised
variances and covariances).

The proposed procedure was applied to analyse the most
heavily traded currency pairs in the forex market: EUR/USD,
USD/JPY and GBP/USD. Our second primary contribution
was to show that the forecasts of each separate covariance
and the whole covariance matrix obtained by the SVRmodels
were more accurate than those obtained by the competing
benchmark multivariate GARCH model. Moreover, the vari-
ance forecasts based on the proposed procedure were more
precise than those from the univariate GARCH model. It
should be emphasised that the advantage of the suggested
procedure was higher during turbulent periods, i.e., when
forecasting is the most difficult and accurate forecasts matter
most. Furthermore, we showed that the order of the variables
in the covariance matrix, which yields different Cholesky de-
composition results, did not affect the forecasting superiority
of the SVR model. The main conclusions of the study were
also robust to the forecast evaluation criterion employed.

We applied the DCC model as a benchmark because it is
one of the most popular multivariate volatility models; more-
over, the estimation of its parameters is relatively simple, and
it is possible to apply it even to very large portfolios. The
comparison can be performed with other more or less complex
models. However, the search for such models was not the
purpose of this investigation. Similarly, other variants of the

SVR models or even other machine learning techniques can
also be considered in future research. The procedure proposed
in this paper was an effective approach to forecast the covari-
ance matrices; however, there are some potential directions on
how to improve it. For example, one can apply other kernel
functions or other methods for tuning the meta-parameters.
These issues were not the primary objective of this work but
can be investigated in future studies.
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