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A B S T R A C T   

Volatility models based on the daily high-low range have become increasingly popular. The high 
and low prices are easily available, yet the range contains very useful information about vola
tility. It has been established in the literature that range-based volatility models outperform 
standard volatility models based on closing prices. However, little is known about which range- 
based model performs the best. We therefore evaluate two range-based volatility models, i.e. 
CARR and Range-GARCH with the standard GARCH model and two asymmetric GARCH models, 
i.e., GJR and EGARCH, based on the Monte Carlo experiments and a wide sample of currencies 
and stock indices. For simulated time series, the range-based models outperform the standard 
GARCH model and asymmetric models, and the performance of the Range-GARCH model and the 
CARR model is similar. However, for real financial time series (six currency pairs and nine stock 
indices) the Range-GARCH model outperforms the standard GARCH, GJR, EGARCH, and CARR 
models, while ranking of the competing models is ambiguous. We argue that Range-GARCH is the 
best from the competing models.   

1. Introduction 

Volatility plays a crucial role in many areas of finance, including investments, risk management, hedging, assets valuation, and 
allocation but also in various economic applications, such as macroeconomic modelling. The first models for time-varying volatility 
were introduced by Engle (1982) and Bollerslev (1986). The GARCH (generalized autoregressive conditional heteroskedastic) model of 
Bollerslev (1986) is still the most popular volatility model. 

The GARCH models are formulated based only on the data of closing prices. Meanwhile, more accurate estimates of variance can be 
constructed from daily low and high prices (Parkinson,1980; for an overview of range-based volatility estimators see Molnár, 2012), 
and this insight has led to more precise volatility models (see e.g. Chou, 2005; Brandt and Jones, 2006; Asai, 2013; Fiszeder and 
Perczak, 2016; Molnár, 2016; Xie, 2019; Fiszeder and Małecka, 2022; Fiszeder et al., 2023a; Fiszeder et al., 2023b). Daily low and high 
prices are almost always commonly available with closing prices for financial series. Therefore, their utilization in volatility models is 
very important from a practical viewpoint and quite easy to implement. 

There is an agreement in the existing literature that range-based volatility models outperform models based on closing prices (see 
the reviews in Chou et al., 2015; Petropoulos et al., 2022). However, a comparison of range-based models is lacking in the literature. 
We therefore compare two range-based models, i.e. the CARR (conditional autoregressive range) model of Chou (2005) and the range- 
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GARCH (RGARCH) model of Molnár (2016). We also compare these models with the standard GARCH model and two asymmetric 
models, i.e., the GJR (Glosten, Jagannathan, Runkle) model of Glosten et al. (1993) and the EGARCH (exponential GARCH) model of 
Nelson (1991). The GARCH, GJR, and EGARCH models belong to the most popular univariate volatility models formulated based on 
returns constructed on closing prices, while the CARR model is based on price ranges. The RGARCH model uses range data, but at the 
same time it is simple and can be easily applied. 

We carry out Monte Carlo experiments by fitting the five volatility models formulated on closing or low and high prices to systems 
that are simulated by the stochastic volatility models. We then analyze the implications of the usage of different kinds of data for the 
estimation and prediction of conditional variance. Additionally, we perform an empirical analysis for a relatively large sample of 
currencies and stock indices. 

This study has four main contributions. Firstly, we show that the way in which low and high prices are applied in the model is 
crucial. For currencies and stock indices, the performance of the CARR model is not generally significantly better than the perfor
mances of the standard GARCH, GJR, and EGARCH models, but at the same time the RGARCH model is significantly better than the 
standard GARCH, GJR, and EGARCH models. 

Secondly, we compare forecasts from the two range-based models, i.e. CARR and RGARCH, and show that RGARCH is significantly 
more accurate for financial series and no worse than the CARR model for simulated series. These models have not been previously 
compared in the literature. Although, Fiszeder et al. (2019) analyzed the CARR and RGARCH models, they applied the multivariate 
DCC-CARR and DCC-RGARCH models. 

Thirdly, we analyze the influence of the level of currencies and stock indices’ volatility on the performance of the models. We show 
that for very high volatility, the CARR model performs better than the standard GARCH model. This result could explain the relatively 
good behavior of the CARR model in other studies (Chou, 2005; Chou and Wang, 2007; Liu and Wu, 2017; Fiszeder and Fałdziński, 
2019). However, the RGARCH model outperforms not only the GARCH models, but also the CARR model during periods of extreme 
high market volatility. This conclusion is important, since such periods are often associated with market turmoil and high market 
uncertainty. 

Fourthly, we perform Monte Carlo experiments and analyze the finite sample properties of the predictions of the conditional 
variances that are obtained by fitting the GARCH, GJR EGARCH, CARR, and RGARCH models to returns generated by the stochastic 
volatility (SV) model. According to our knowledge, it is the first comparison of daily range-based models on simulated data generated 
by the SV model for both daily and intraday data. In earlier studies based on a simulation experiment with the SV model, it was 
assumed that variance is constant during the day (e.g. Alizadeh et al., 2002; Molnár, 2016). 

The rest of the paper is organized in the following way. Section 2 describes the applied models, i.e. GARCH, GJR, EGARCH, CARR, 
and RGARCH. Section 3 compares the models by carrying out Monte Carlo experiments to analyze the effects of their specifications on 
the estimation and forecasting of conditional variance. In Section 4, the performance of the models is compared for six currency pairs 
and nine stock indices. Section 5 provides conclusions. 

2. Theoretical background 

2.1. GARCH models 

The GARCH model of Bollerslev (1986) is the most popular univariate volatility model and is based solely on closing prices. We 
apply this model in the paper as a benchmark for comparison with the range-based models. The GARCH model describes the dynamics 
of the conditional variance of returns. 

Let us assume that the εt is the univariate innovation process for the conditional mean (or in a particular case the return process) 
and can be written as: 

εt|ψt− 1 ∼ N(0, ht), (1)  

where ψ t− 1 is the set of all information available at time t − 1, N is the conditional normal distribution, ht is the conditional variance. 
The GARCH (1, 1) model is the most frequently used model in empirical studies. It is presented as: 

ht = α0 + α1ε2
t− 1 + β1ht− 1, (2)  

where α0 > 0,α1 ≥ 0,β1 ≥ 0. 
The parameters of the GARCH model can be estimated by the quasi-maximum likelihood (QML) method. The log-likelihood 

function can be written as: 

L(ϛ) = −
n
2

ln(2π) − 1
2
∑n

t=1

(

lnht +
ε2
t

ht

)

, (3)  

where ϛ is a vector containing unknown parameters of the model, n is the number of daily observations used in estimation. 
The estimates obtained by the QML method are consistent and asymptotically normal (see Weiss, 1986; Bollerslev and Wooldridge, 

1992; Straumann, 2005). 
Hansen and Lunde (2005) found that, for exchange rate data, more sophisticated GARCH models do not outperform the simple 

GARCH (1,1) model. Nevertheless, we select two asymmetric GARCH models, i.e., the GJR and EGARCH models and compare them 
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with the competing models. These two models are based solely on closing prices and belong to the most popular extensions of the 
standard GARCH model. 

The GJR (1, 1) model introduced by Glosten et al. (1993) is given as: 

ht = α0 + α1ε2
t− 1 + θ1It− 1ε2

t− 1 + β1ht− 1, (4)  

where It− 1 is a dummy variable which satisfies It− 1 = 1 when εt− 1 ≤ 0 and It− 1 = 0 when εt− 1 > 0, and the parameters meet the 
following requirements: α0 > 0, α1 ≥ 0, α1 + θ1 ≥ 0, β1 ≥ 0. 

The EGARCH (1, 1) model of Nelson (1991) can be specified as: 

lnht = α0 +α1
|εt− 1| + θ1εt− 1

h0.5
t− 1

+ β1lnht− 1 (5) 

The logarithmic form of the conditional variance means that it is not necessary to introduce any restrictions on parameters to 
ensure the positivity of the conditional variance. 

The parameters of the GJR and EGARCH models can be estimated by the QML method and the likelihood function is similar to the 
standard GARCH model. 

2.2. CARR model 

The CARR model of Chou (2005) is a popular univariate volatility model based on price range. It is the main competitor of the 
RGARCH model in the class of range-based models. 

When Ht and Lt are high and low prices over a day, respectively, and the observed price range is given as Rt = ln(Ht) − ln(Lt), the 
CARR (1, 1) model can be written as: 

Rt= λtut, (6)  

ut|ψt− 1 ∼ exp(.), (7)  

λt = α0 +α1Rt− 1 + β1λt− 1, (8)  

where α0 > 0,α1 ≥ 0,β1 ≥ 0, λt is the conditional mean of the range and ut is the disturbance term, exp(.) is the exponential distribution 
with unit mean. The exponential distribution is a natural choice for the conditional distribution of ut because it takes positive values. 

The CARR model describes the dynamics of the conditional mean of the price range, that is why in order to estimate values of the 
conditional standard deviation of returns the conditional price range has to be scaled according to the formula: λ*

t = adjλt where adj =

σ/λ, σ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

t=1(εt − ε)2
√

, ε = 1
n
∑n

t=1εt , the εt term is described in equation (1), λ = 1
n
∑n

t=1λt. It means that the scaling factor adj is 
estimated as the quotient of the unconditional standard deviation of returns by the sample mean of the conditional range. 

The parameters of the CARR model can be estimated by the QML method. The log-likelihood function can be described as: 

L(ϛ) = −
∑n

t=1

(

lnλt +
Rt
λt

)

. (9)  

The estimators obtained by the QML method are consistent (see Engle and Russell, 1998; Engle, 2002; Chou, 2005). 
In order to compare the values of the log-likelihood function between the CARR and GARCH models, it is possible to calculate the 

likelihood function of the CARR model based on the scaled conditional price range according to the following formula: 

L(ϛ) = −
n
2

ln(2π) − 1
2
∑n

t=1

(

2lnλ*
t +

ε2
t

λ*2
t

)

, (10)  

where λ*
t is the scaled conditional price range, and εt is the same as in equation (3). 

2.3. Range-GARCH model 

The Range-GARCH model was introduced by Molnár (2016). It is, like the CARR model, a range-based model, but its specification is 
more similar to the standard GARCH model. The RGARCH (1,1) model can be formulated as: 

εt|ψt− 1 ∼ N(0, ht), (11)  

ht = α0 + α1σ2
Pt− 1 + β1ht− 1, (12)  

where α0 > 0,α1 ≥ 0,β1 ≥ 0, σ2
P,t is the Parkinson estimator (Parkinson, 1980) given as σ2

P,t = [ln(Ht/Lt)]
2
/(4ln2). 

The parameters of the RGARCH model can be estimated by the QML method and the likelihood function is similar to the standard 
GARCH model. The RGARCH model, like the standard GARCH model based on closing returns, describes the dynamics of conditional 
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variance of returns. 
The advantage of both the RGARCH and CARR models over the GARCH model comes from the usage of additional information 

about quotations during a day. The standard GARCH model is based on returns of closing prices. It means that the path of price during a 
day is totally ignored when volatility is estimated by such a model. Especially in turbulent days with drops and recoveries in the 
markets, the traditional close-to-close volatility indicates a low level, while the daily price range shows correctly that the volatility is 
high. Both the RGARCH and CARR model are based on high-low range, that is why they can estimate volatility more accurately. The 
CARR model describes the price range directly, whereas in the RGARCH model, the Parkinson estimator σ2

P,t− 1 is implemented in place 
of ε2

t− 1. The Parkinson estimator is several times more efficient at estimating variance than the squared closing return (it is 4.9 times 
more efficient on the assumption of Brownian motion, see Parkinson, 1980). 

In the place of the Parkinson estimator, other range-based estimators like Garman-Klass (Garman and Klass, 1980) or Rogers- 
Satchell (Rogers and Satchell, 1991) can be applied in the RGARCH model. Molnár (2016) additionally implemented the Garman- 
Klass estimator in his study of stocks and stock indices and found that this estimator does not improve results. Moreover, opening 
price, which is used in Garman-Klass estimator, is sensitive to microstructure effects associated with low liquidity during the start of 
quotations. On the other hand, the Rogers-Satchell estimator has another drawback, namely it can take zero value despite big changes 
during a day. It happens when the opening price is equal to the low price, and the closing price is equal to the high price or vice versa, i. 
e., the opening price is equal to the high price and the closing price is equal to the low price. For these reasons, we apply only the 
Parkinson estimator in the RGARCH model. 

3. Monte Carlo simulation 

First, we check the performance of the considered models on simulated data. For this purpose, we conduct Monte Carlo experiments 
and analyze the finite sample properties of the predictions of conditional variances that are obtained by fitting the GARCH, GJR, 
EGARCH, CARR, and RGARCH models to returns generated by the stochastic volatility model. The SV model is chosen as the data 
generating process because of its flexibility. The SV model assumes two error processes, while the GARCH model allows for a single 
error term. The volatility under a stochastic volatility model is a random variable, in contrast to the GARCH model in which the 
conditional variance is a deterministic function of the model parameters and past data. This implies that the SV model can be more 
flexible than the GARCH model in fitting the data. Carnero et al. (2004) find that in the GARCH model, the parameters explaining 
persistence and kurtosis are closely linked, whereas these features can be modelled independently in the SV model, so the latter can 
better represent the empirical regularities often observed in financial time series (see also Danielsson, 1994; Kim et al., 1998). 

Daily volatility is simulated by a stochastic volatility model similar to the one described by Alizadeh et al. (2002): 

lnσt = lnσ+ ρH(lnσt− 1 − lnσ)+ βεt− 1
̅̅̅̅
H

√
, for t = 1, 2,⋯, nd, (13)  

where nd is the number of days and εt is N(0, 1) innovation, i.e. following the normal distribution with zero mean and unit variance. 
We start with the same values as Alizadeh et al. (2002), i.e. H = 1/257 and the first set of values (1) lnσ = − 2.5, β = 0.75, ρH =

0.985. These volatility dynamics are broadly consistent with the literature on stochastic volatility. To check if the results are sensitive 
to accepted parameters values we consider also additional six sets of values: (2) lnσ = − 2, β = 0.75, ρH = 0.985, (3) lnσ = − 3, β =

0.75, ρH = 0.985, (4) lnσ = − 2.5, β = 0.7, ρH = 0.985, (5) lnσ = − 2.5, β = 0.8, ρH = 0.985, (6) lnσ = − 2.5, β = 0.75, ρH = 0.98, 
(7) lnσ = − 2.5, β = 0.75, ρH = 0.99. 

For each day t, we simulate intraday prices with the following formulae: 

sit = si− 1t + σitεs,it
̅̅̅̅̅
Δt

√
, (14)  

lnσit = lnσt + ρH(lnσi− 1t − lnσt)+ βεν,i− 1t
̅̅̅̅
H

√
, for i = 1, 2,⋯, ni, (15)  

where sit is the logarithm of price, εs,it and εν,it are independent N(0, 1) innovations, H = 1/257, dt = H/ni. 
The discrete time increment Δt, a small fraction of the discrete sampling interval H, approximates the continuous time dt. We 

assume the same sets of parameters as in equation (13) except lnσ, which equals the current daily value lnσt. As starting values for sit 
and lnσit , we take the last values from the previous day, i.e., snit− 1 and lnσnit− 1, respectively. We simulate 3,610 daily volatilities by 
equation (13) (this value is close to the average length of daily data of currencies and stock indices analyzed in the next section), where 
each daily price path is generated by ni = 100,000 intraday price quotes based on equations (14) and (15). Observations from 1 to 
3600 are applied for the in-sample analysis, while the last 10, i.e., from 3601 to 3610 are used for the evaluation of the out-of-sample 
performance for forecasts of variance of returns. More precisely, the 3,601st observation is used for the evaluation of the one-day- 
ahead forecasts, the 3,605th observation is used for the evaluation of five-day-ahead (i.e. for the fifth day ahead) forecasts, and the 
3,610th observation is used for the evaluation of ten-day-ahead (i.e. for the tenth day ahead) forecasts. We apply 1,000 repetitions in 
the Monte Carlo simulations. Based on intraday series daily low, high, and closing prices are recorded and the percentage logarithmic 
returns and ranges, i.e. multiplied by 100, are used to estimate the parameters of the competing models. 

It needs to be emphasized that we tried to simulate the data in such a way that it should not favor either of the competing models 
directly i.e. GARCH, GJR, EGARCH, CARR or RGARCH. Simulated data have already been applied to evaluate daily range-based 
variance estimators (e.g. Shu and Zhang, 2006; Buescu, et al., 2013), and daily range-based volatility models (e.g. Alizadeh et al., 
2002; Molnár, 2016; Fiszeder and Fałdziński, 2019), but in these studies it was assumed that intraday prices were generated by the 
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geometric Brownian motion. Such an assumption means that intraday returns have constant volatility. In contrast, in this study we 
assume that for simulated data, volatility is time-varying both for daily and intraday data. 

3.1. The in-sample evaluation of models 

The five volatility models described in Section 2 are considered:  

1) The standard GARCH model of Bollerslev (1986) summarized by equations (1)-(2). Its parameters are estimated based on closing 
prices. It is a benchmark model for the range-based models;  

2) The GJR model of Glosten et al. (1993) given by equations (1) and (4). Its parameters are estimated based on closing prices. It is a 
benchmark model for the range-based models;  

3) The EGARCH model of Nelson (1991) defined by equations (1) and (5). Its parameters are estimated based on closing prices. It is a 
benchmark model for the range-based models;  

4) The CARR model of Chou (2005) described by equations (6), (7), and (8). It is based on price range data;  
5) The RGARCH model of Molnár (2016) given by equations (11) and (12). It is a competitor of the CARR model and is also the range- 

based volatility model. 

The parameters of all models are estimated for each repetition of the Monte Carlo simulation using the QML method. This means 
that all models are estimated 1,000 times. In Table 1, we present the means of estimated parameters and their standard deviations for 
all sets of parameter values. The estimates of parameter β1 are much higher and the estimates of parameter α1 much lower in the 
standard GARCH model in comparison to the CARR and RGARCH models. The range-based volatility proxies are less noisy than 
squared returns, which is why more weight is put on the new information. 

In the standard GARCH, GJR, and EGARCH models, both the conditional variance and the likelihood function are obtained only 
with returns of closing prices. In the RGARCH model, the Parkinson estimator with the high-low range is used as an explanatory 
variable in the conditional variance, but the likelihood function is formulated based on returns of closing prices. Interestingly, in the 

Table 1 
The results of the parameter estimates for the GARCH, CARR, RGARCH, GJR and EGARCH models for Monte Carlo simulation.  

Parameters of simul. series GARCH CARR RGARCH  

γ0 α0 α1 β1 α0 α1 β1 γ0 α0 α1 β1 

lnσ = − 2.5, β = 0.75, ρH = 0.985  0.001  0.005  0.052  0.933  0.0015  0.134  0.850  0.001  0.005  0.136  0.851  
(0.010)  (0.002)  (0.009)  (0.012)  (0.004)  (0.010)  (0.012)  (0.010)  (0.003)  (0.027)  (0.030) 

lnσ = − 2.0, β = 0.75, ρH = 0.985  0.002  0.014  0.052  0.933  0.024  0.134  0.850  0.002  0.014  0.136  0.851  
(0.016)  (0.005)  (0.009)  (0.012)  (0.006)  (0.010)  (0.012)  (0.016)  (0.008)  (0.027)  (0.030) 

lnσ = − 3.0, β = 0.75, ρH = 0.985  0.001  0.002  0.052  0.933  0.009  0.132  0.852  0.001  0.002  0.130  0.857  
(0.012)  (0.001)  (0.009)  (0.012)  (0.002)  (0.012)  (0.012)  (0.006)  (0.001)  (0.025)  (0.028) 

lnσ = − 2.5, β = 0.7, ρH = 0.985  0.001  0.005  0.048  0.937  0.014  0.124  0.860  0.001  0.005  0.125  0.861  
(0.010)  (0.002)  (0.009)  (0.012)  (0.004)  (0.010)  (0.012)  (0.010)  (0.003)  (0.026)  (0.029) 

lnσ = − 2.5, β = 0.8, ρH = 0.985  0.001  0.005  0.057  0.929  0.014  0.142  0.843  0.001  0.005  0.140  0.848  
(0.010)  (0.002)  (0.009)  (0.012)  (0.003)  (0.001)  (0.012)  (0.001)  (0.003)  (0.026)  (0.028) 

lnσ = − 2.5, β = 0.75, ρH = 0.98  0.001  0.007  0.048  0.931  0.019  0.129  0.849  0.001  0.007  0.131  0.849  
(0.010)  (0.003)  (0.009)  (0.015)  (0.004)  (0.010)  (0.013)  (0.010)  (0.004)  (0.027)  (0.032) 

lnσ = − 2.5, β = 0.75, ρH = 0.99  0.001  0.004  0.052  0.939  0.010  0.127  0.862  0.001  0.003  0.125  0.867  
(0.01)  (0.001)  (0.008)  (0.010)  (0.011)  (0.010)  (0.011)  (0.010)  (0.002)  (0.024)  (0.025)  

Parameters of simul. series GJR EGARCH  

γ0 α0 α1 β1 θ1 γ0 α0 α1 β1 θ1 

lnσ = − 2.5, β = 0.75, ρH = 0.985  0.001  0.005  0.052  0.934  0.000  0.001  − 0.019  0.113  0.983  0.001   
(0.010)  (0.001)  (0.012)  (0.012)  (0.002)  (0.010)  (0.007)  (0.018)  (0.006)  (0.010) 

lnσ = − 2.0, β = 0.75, ρH = 0.985  0.002  0.014  0.052  0.933  0.000  0.002  − 0.001  0.113  0.981  0.001   
(0.016)  (0.005)  (0.011)  (0.012)  (0.013)  (0.016)  (0.002)  (0.018)  (0.018)  (0.010) 

lnσ = − 3.0, β = 0.75, ρH = 0.985  0.001  0.002  0.051  0.934  0.001  0.001  − 0.035  0.112  0.983  0.000   
(0.006)  (0.001)  (0.011)  (0.012)  (0.013)  (0.006)  (0.012)  (0.017)  (0.006)  (0.010) 

lnσ = − 2.5, β = 0.7, ρH = 0.985  0.001  0.005  0.047  0.937  0.000  0.001  − 0.020  0.103  0.982  0.001   
(0.010)  (0.002)  (0.011)  (0.012)  (0.013)  (0.010)  (0.007)  (0.017)  (0.006)  (0.017) 

lnσ = − 2.5, β = 0.8, ρH = 0.985  0.001  0.005  0.056  0.930  0.001  0.001  − 0.018  0.121  0.983  0.000   
(0.010)  (0.002)  (0.011)  (0.012)  (0.014)  (0.010)  (0.007)  (0.018)  (0.006)  (0.010) 

lnσ = − 2.5, β = 0.75, ρH = 0.98  0.001  0.007  0.048  0.931  0.000  0.001  − 0.026  0.104  0.977  0.001   
(0.010)  (0.003)  (0.011)  (0.015)  (0.013)  (0.010)  (0.010)  (0.019)  (0.008)  (0.010) 

lnσ = − 2.5, β = 0.75, ρH = 0.99  0.001  0.004  0.051  0.939  0.001  0.001  − 0.012  0.112  0.988  0.000   
(0.010)  (0.001)  (0.010)  (0.010)  (0.013)  (0.010)  (0.005)  (0.016)  (0.004)  (0.010) 

The γ0 parameter is the constant in the mean equation; α0, α1, β1 are the parameters of the GARCH model (equation (2)), the CARR (equation (8)), and 
the RGARCH model (equation (12)); α0 α1 β1, θ1 are the parameters of the GJR model (equation (4)) and the EGARCH model (equation (5)). The means 
of the estimated parameters and their standard deviations (in parentheses) are reported. 
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Table 2 
The in-sample evaluation of the models for Monte Carlo simulation: the logarithm of the likelihood function and the Rivers-Vuong test.  

Parameters of simulated 
series 

Log-likelihood Percentage of rejections by RV test  

GARCH CARR RGARCH GJR EGARCH GARCH vs 
CARR 

GARCH vs 
RGARCH 

CARR vs 
RGARCH 

RGARCH vs 
CARR 

GJR vs 
RGARCH 

EGARCH vs 
RGARCH 

lnσ = − 2.5, β = 0.75, ρH =

0.985  
− 2566.02  − 2525.40  ¡2524.84  − 2565.32  − 2565.04 100 % 100 %  4.8 %  2.6 % 100 % 100 % 

lnσ = − 2.0, β = 0.75, ρH =

0.985  
− 4066.83  − 4026.21  ¡4025.64  − 4066.13  − 4125.47 100 % 100 %  4.8 %  2.8 % 100 % 100 % 

lnσ = − 3.0, β = 0.75, ρH =

0.985  
− 1044.39  − 1005.32  ¡1004.29  − 1043.82  − 1046.28 100 % 100 %  5.2 %  1.0 % 100 % 100 % 

lnσ = − 2.5, β = 0.7, ρH =

0.985  
− 2525.45  − 2488.69  ¡2488.47  − 2524.77  − 2527.98 100 % 100 %  3.3 %  3.0 % 100 % 100 % 

lnσ = − 2.5, β = 0.8, ρH =

0.985  
− 2524.87  − 2482.15  ¡2480.64  − 2524.28  − 2526.78 100 % 100 %  9.0 %  0.9 % 100 % 100 % 

lnσ = − 2.5, β = 0.75, ρH =

0.98  
− 2528.75  ¡2492.24  − 2492.62  − 2528.05  − 2530.05 100 % 100 %  1.2 %  5.4 % 100 % 100 % 

lnσ = − 2.5, β = 0.75, ρH =

0.99  
− 2614.20  − 2575.70  ¡2573.05  − 2613.63  − 2616.66 100 % 100 %  18.1 %  0.3 % 100 % 100 % 

The means of the logarithm of the likelihood function are reported; the highest values are marked in bold. The percentage of rejections of the null hypothesis (at 10% significance level) by the Rivers- 
Vuong test indicates the cases for which the second model is superior to the first model in the pair. 
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Table 3 
The out-of-sample evaluation of the one-day-ahead variance forecasts for Monte Carlo simulation: the real variance used for the MAE criterion.  

Parameters of simulated series MAE P-value of SPA test P-value of MCS test  

GARCH CARR RGARCH GJR EGARCH GARCH CARR RGARCH GJR EGARCH GARCH CARR RGARCH GJR EGARCH 

lnσ = − 2.5, β = 0.75, ρH = 0.985  0.171  0.164  0.159  0.171  0.170  0.000  0.000  0.567  0.000  0.000  0.000  0.000  1.000*  0.000  0.000 
lnσ = − 2.0, β = 0.75, ρH = 0.985  0.466  0.447  0.434  0.467  0.464  0.000  0.000  0.595  0.000  0.000  0.000  0.000  1.000*  0.000  0.000 
lnσ = − 3.0, β = 0.75, ρH = 0.985  0.067  0.064  0.063  0.067  0.067  0.000  0.000  0.551  0.000  0.000  0.000  0.001  1.000*  0.000  0.000 
lnσ = − 2.5, β = 0.7, ρH = 0.985  0.157  0.149  0.145  0.157  0.166  0.000  0.000  0.557  0.000  0.041  0.001  0.001  1.000*  0.001  0.001 
lnσ = − 2.5, β = 0.8, ρH = 0.985  0.175  0.167  0.163  0.176  0.175  0.000  0.000  0.564  0.000  0.000  0.000  0.000  1.000*  0.000  0.000 
lnσ = − 2.5, β = 0.75, ρH = 0.98  0.153  0.145  0.143  0.153  0.153  0.000  0.000  0.582  0.000  0.000  0.000  0.001  1.000*  0.000  0.000 
lnσ = − 2.5, β = 0.75, ρH = 0.99  0.216  0.212  0.205  0.216  0.217  0.000  0.000  0.639  0.000  0.000  0.000  0.000  1.000*  0.000  0.000 

The lowest values of the MAE measure are in bold; p-values for the SPA and MCS tests are computed by the bootstrapping methodology (Hansen, 2005). We apply the SPA test five times, each time 
changing which model is the benchmark. It means that the given SPA p-value refers to the benchmark model specified in the heading of the table. The MCS test is performed for the five models jointly; * 
indicates that model belongs to the model confidence set with a confidence level of 0.90. 
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Table 4 
The out-of-sample evaluation of the one-day-ahead variance forecasts for Monte Carlo simulation: the real variance used for the MSE criterion.  

Parameters of simulated series MSE P-value of SPA test P-value of MCS test  

GARCH CARR RGARCH GJR EGARCH GARCH CARR RGARCH GJR EGARCH GARCH CARR RGARCH GJR EGARCH 

lnσ = − 2.5, β = 0.75, ρH = 0.985  0.060  0.055  0.054  0.060  0.059  0.000  0.187  0.818  0.000  0.001  0.000  0.369*  1.000*  0.000  0.001 
lnσ = − 2.0, β = 0.75, ρH = 0.985  0.446  0.404  0.401  0.447  0.439  0.000  0.204  0.798  0.000  0.001  0.000  0.413*  1.000*  0.000  0.001 
lnσ = − 3.0, β = 0.75, ρH = 0.985  0.0123  0.011  0.011  0.013  0.013  0.007  0.491  0.297  0.008  0.018  0.008  1.000*  0.587*  0.007  0.013 
lnσ = − 2.5, β = 0.7, ρH = 0.985  0.047  0.043  0.042  0.047  0.146  0.000  0.518  0.936  0.000  0.076  0.080  0.443*  1.000*  0.080  0.080 
lnσ = − 2.5, β = 0.8, ρH = 0.985  0.084  0.075  0.075  0.084  0.084  0.001  0.443  0.558  0.005  0.016  0.006  0.866*  1.000*  0.005  0.007 
lnσ = − 2.5, β = 0.75, ρH = 0.98  0.045  0.040  0.040  0.045  0.045  0.000  0.659  0.341  0.000  0.000  0.000  1.000*  0.706*  0.000  0.000 
lnσ = − 2.5, β = 0.75, ρH = 0.99  0.151  0.141  0.141  0.151  0.153  0.018  0.483  0.517  0.015  0.017  0.012  0.964*  1.000*  0.012  0.012 

The lowest values of the MSE measure are in bold; p-values for the SPA and MCS tests are computed by the bootstrapping methodology (Hansen, 2005). We apply the SPA test five times, each time 
changing which model is the benchmark. It means that the given SPA p-value refers to the benchmark model specified in the heading of the table. The MCS test is performed for the five models jointly; * 
indicates that model belongs to the model confidence set with a confidence level of 0.90. 
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CARR model, both the conditional range and the likelihood function are calculated only with price ranges. That is why the value of the 
likelihood function of the CARR model is not directly comparable with values of two other models. However, it is possible to compute 
the likelihood function based on the scaled conditional price range according to formula (10). The means of the logarithm of the 
likelihood function based on 1,000 repetitions are given in Table 2. 

For six out of seven sets of parameters, the means of the logarithm of the likelihood function are highest for the RGARCH model. We 
compare the five models and assess whether the differences between the values of the likelihood function are statistically significant 
according to the Rivers and Vuong (2002) test. It allows verification of the hypothesis that the likelihood functions of two non-nested 
competing models are asymptotically equivalent. In Table 2, we present the percentage of rejections of the null hypothesis (at 10% 
significance level) for pairs of models. In all cases, both the CARR and RGARCH models are superior to the standard GARCH model. The 
RGARCH model is also always superior to the GJR and EGARCH models. On the other hand, in most cases it is not possible to indicate a 
better model between the CARR and RGARCH models, although the percentages pointing to the RGARCH model are most often 
considerably higher, especially when the persistence of volatility is high (for ρH = 0.99 in simulated series of the SV model in equation 
(13)). 

3.2. The out-of-sample forecasting performance 

For each competing model, 1,000 one-day-ahead, five-day-ahead, and ten-day-ahead out-of-sample forecasts of conditional vari
ance are formulated. The evaluation of forecasts is performed on the basis of two basic measures, namely the mean squared error (MSE) 
and the mean absolute error (MAE). The MSE is the most frequently used criterion in forecasting studies. It can be written as: 

MSE =
1
m
∑m

t=1

(
σ2
R,t − σ2

F,t

)2
, (16)  

where σ2
R,t is the true daily variance of returns calculated as (exp(lnσt) )

2, lnσt is given by formula (13), σ2
F,t is the forecast of variance of 

returns at time t, and m is the number of forecasts. 
The MSE is robust to the use of a noisy volatility proxy (it yields the same ranking of competing forecasts using an unbiased 

volatility proxy, see Hansen and Lunde, 2006 and Patton, 2011). 
The MAE is less sensitive to outliers, which is very important when evaluating extraordinary events. It is given as: 

MAE =
1
m
∑m

t=1

⃒
⃒
⃒σ2

R,t − σ2
F,t

⃒
⃒
⃒. (17) 

Two tests were applied to evaluate the significance of the results, namely the test of superior predictive ability (SPA) of Hansen 
(2005) and the model confidence set (MCS) of Hansen et al. (2011). In the first test, each of the considered models is checked to 
determine if it could be outperformed significantly by any of the alternatives. The MCS procedure is used for all models, i.e., GARCH, 
GJR, EGARCH, CARR, and RGARCH, jointly, and the model confidence set contains the best forecasting models with a certain 
probability. The results for the one-day-ahead forecasts are presented in Tables 3 and 4 for the MAE and MSE criteria, respectively. 

According to the MAE measure, both tests clearly indicate the RGARCH model is superior. Moreover, the forecasts based on the 
CARR model are more accurate than the forecasts from the standard GARCH, GJR, and EGARCH models. 

The results for the MSE loss function are less explicit. The lowest values of this measure are again for the RGARCH model, but for 
four sets of parameters of simulated series, the MSE values are equal for the RGARCH and CARR models. The advantage of the RGARCH 
model is not statistically significant according to the applied tests. The forecasts based on both the CARR and RGARCH are more precise 
than the forecasts based on the standard GARCH, GJR, and EGARCH models, but at the same time there is no significant difference 
between the forecasts based on the CARR and RGARCH models. 

The results for the five-day-ahead forecasts are presented in the Appendix in Tables A1 and A2 for the MAE and MSE criteria, 
respectively, and the results for the ten-day ahead forecasts are given in Tables A3 and A4 for the MAE and MSE measures, respectively. 
For almost all sets of parameters of simulated series, forecasts based on the RGARCH model are significantly more accurate than 
forecasts based on the standard GARCH, GJR, EGARCH, and CARR models. This indicates that the advantage of the RGARCH model is 
more visible for the five- and ten-day-ahead forecasts than for the one-day-ahead. Whereas, it is impossible to indicate a better model 
between the standard GARCH, GJR, EGARCH, and CARR models. 

3.3. Robustness check 

In this section, a robustness check of the results is performed. We check whether the application of a volatility proxy in place of the 
true volatility changes the forecasting results. For this purpose, we apply the realized variance. In this study, the realized variance is 
estimated as the sum of squared 5-min returns which is a common procedure: 

RVt =
∑K

k=1
r2
kt, (18)  

where rkt is a 5-min return, K is the number of intraday observations during a day. 
The results of such a comparison are given in the Appendix in Tables A5 and A6, for the MAE and MSE criteria, respectively. In the 
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case of the usage of realized variance, the advantage of the RGARCH model is still visible for the MAE measure, but there is no sig
nificant difference between the forecasts based on the CARR and RGARCH models for the MSE measure. We can conclude that the 
application of the volatility proxy has no significant influence on the results. 

3.4. Influence of high volatility on the predictive ability 

Following Horpestad et al. (2019), we test whether extreme forecast improvements can be explained by the level of market 
volatility on the previous day. In this regard, lets denote dt = (σ2

A,t − σ2
R,t)

2
− (σ2

B,t − σ2
R,t)

2 as a loss differential between two models MA 

and MB. If dt is positive, then the forecast based on the model MB is more precise than the forecast from the model MA. The loss 
differential dt is based on the MSE loss function, but an analogous formula can be presented for the MAE loss function. 

The τ-th conditional quantile regression model can be written as: 

dt = φ0(τ) + φ1(τ)σ2
R,t− 1 + ηt(τ). (19)  

The results of the parameter estimates for the above quantile regression model are presented in Table 5. We are interested in analyzing 
high forecast improvements, which is why we use the 90th quantile, however, there are similar results for other high quantiles (e.g. 
75th and 95th). For all pairs of models, all estimates of φ1(τ) are not significantly different from zero at the 10% level. This means that 
an increase of the true daily variance does not lead to a higher forecast advantage of any of the models. 

4. Analysis of currency rates and stock indices 

4.1. Data 

We also apply the analyzed models on real financial data, i.e. selected six currency rates and nine stock indices. The currency rates 
are heavily traded currency pairs in the Forex market, namely: AUD/USD, EUR/USD, GBP/USD, NZD/USD, USD/CAD, and USD/JPY. 
The studied stock indices represent both developed and emerging markets, i.e. Brazil (Bovespa), France (CAC 40), Germany (DAX), the 
United Kingdom (FTSE 100), Hong Kong (Hang Seng, or HSI), Mexico (IPC), South Korea (KOSPI), Japan (NIKKEI 225), and the United 
States (S&P 500). The Forex market is open 24 h a day, and thus there is no problem measuring the overnight volatility. The dynamics 
of the opening jump (the difference between the today’s opening price and the yesterday’s closing price) is arguably different from the 
dynamics of the volatility of the trading part of the day. In order to avoid the noise induced by measuring the overnight volatility, we 
analyze open-to-close returns instead of close-to-close returns for stock indices. It is the standard approach in the realized variance 
literature. 

An evaluation of the considered models is performed for daily data spanning over fourteen years and one quarter, from January 2, 
2003, to March 31, 2017. It includes both very volatile periods like the collapse of Lehman Brothers- the worst phase of the global 
financial crisis, the European sovereign debt crisis, and the Brexit vote but also tranquil periods with low volatility. 

The GARCH, GJR, and EGARCH models are formulated based on squared returns. The CARR model is built on ranges, whereas in 
the RGARCH model, the Parkinson estimator is used. It is vital to compare properties of those volatility proxies and compare them with 
properties of realized variances, which are used in the paper as true daily variances in a forecasting evaluation. 

The descriptive statistics for all considered volatility proxies are presented in Table 6. The percentage of logarithmic returns and 
ranges, i.e. multiplied by 100, are used in the paper. It is worth noting that the range is not a direct measure of volatility, and it must be 

Table 5 
The out-of-sample evaluation of the one-day-ahead variance forecasts for Monte Carlo simulation: the 90th quantile regression of the loss differential 
dt between two models on the lagged real variance.  

Parameters of simulated series GARCH vs CARR GARCH vs RGARCH CARR vs RGARCH GJR vs RGARCH EGARCH vs RGARCH  

φ0(τ) φ1(τ) φ0(τ) φ1(τ) φ0(τ) φ1(τ) φ0(τ) φ1(τ) φ0(τ) φ1(τ) 

lnσ = − 2.5, β = 0.75, ρH = 0.985  0.045  − 0.019  0.038  − 0.012  0.014  − 0.004  0.036  − 0.010  0.035  − 0.006   
(0.006)  (0.012)  (0.005)  (0.008)  (0.002)  (0.005)  (0.004)  (0.008)  (0.004  (0.007) 

lnσ = − 2.0, β = 0.75, ρH = 0.985  0.337  − 0.057  0.279  − 0.034  0.103  − 0.013  0.269  − 0.027  0.272  − 0.025   
(0.042)  (0.031)  (0.037)  (0.021)  (0.0135)  (0.013)  (0.03)  (0.02)  (0.02)  (0.01) 

lnσ = − 3.0, β = 0.75, ρH = 0.985  0.004  0.000  0.004  0.001  0.002  0.001  0.005  − 0.001  0.005  − 0.001   
(0.001)  (0.003)  (0.001)  (0.003)  (0.001)  (0.002)  (0.001)  (0.003)  (0.001)  (0.003) 

lnσ = − 2.5, β = 0.7, ρH = 0.985  0.035  − 0.015  0.030  − 0.011  0.011  − 0.005  0.031  − 0.012  0.031  − 0.006   
(0.005)  (0.011)  (0.003)  (0.007)  (0.001)  (0.003)  (0.004)  (0.008)  (0.003)  (0.006) 

lnσ = − 2.5, β = 0.8, ρH = 0.985  0.037  − 0.001  0.034  − 0.000  0.011  0.001  0.034  0.003  0.033  0.004   
(0.004)  (0.011)  (0.006)  (0.012)  (0.002)  (0.004)  (0.005)  (0.009)  (0.005)  (0.011) 

lnσ = − 2.5, β = 0.75, ρH = 0.98  0.034  − 0.017  0.029  − 0.012  0.009  − 0.003  0.027  − 0.006  0.026  − 0.003   
(0.004)  (0.010)  (0.004)  (0.007)  (0.001)  (0.003)  (0.004)  (0.009)  (0.003)  (0.009) 

lnσ = − 2.5, β = 0.75, ρH = 0.99  0.044  − 0.002  0.004  0.002  0.021  − 0.001  0.045  − 0.004  0.047  − 0.005   
(0.005)  (0.008)  (0.006)  (0.007)  (0.002)  (0.004)  (0.007)  (0.008)  (0.007)  (0.008) 

φ0(τ), φ1(τ) are parameters of the regression (equation (19)); standard errors are reported in parentheses and are calculated using the Markov chain 
marginal bootstrap method. 
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Table 6 
Summary statistics of squared returns, range, Parkinson estimator and the realized variance for currency pairs and stock indices.  

Assets Squared returns Range Parkinson estimator Realized variance  

M SD S EK LB M SD S EK LB M SD S EK LB M SD S EK LB 

Currency pairs 
AUD/USD 0.71 2.43 15.16 314.00 3 658 1.18 0.74 3.98 31.19 10 408 0.70 1.65 14.34 292.94 7 450 0.77 1.51 11.99 212.11 15 763 
EUR/USD 0.38 0.74 5.16 43.95 550 0.93 0.48 1.87 6.55 5 599 0.39 0.51 5.36 46.21 3 781 0.40 0.40 4.92 43.89 11 179 
GBP/USD 0.36 1.34 37.49 1 874.86 246 0.88 0.52 5.16 78.57 7 414 0.38 1.12 38.50 1 928.41 705 0.40 0.83 30.09 1 312.88 2 547 
NZD/USD 0.72 1.57 9.86 204.12 1 415 1.29 0.69 2.66 13.81 7 349 0.77 1.22 8.83 131.82 5 281 0.91 1.21 8.18 114.35 13 391 
USD/CAD 0.36 0.78 6.72 79.70 2 374 0.91 0.48 2.25 10.73 8 791 0.38 0.55 8.44 134.27 6 621 0.42 0.43 4.90 40.45 17 298 
USD/JPY 0.42 1.04 10.52 204.89 331 0.95 0.56 3.10 21.01 3 308 0.44 0.84 12.64 249.71 1 066 0.46 0.70 10.98 189.15 3 301 
Stock indices 
BOVESPA 2.83 8.26 14.76 339.92 2 322 2.13 1.26 3.36 21.67 8 376 2.20 4.32 11.29 193.29 8 455 2.24 3.76 8.95 110.43 12 572 
CAC 40 1.26 3.22 7.71 85.91 1 405 1.52 0.99 2.31 8.56 10 185 1.18 2.06 5.96 51.24 7 238 1.27 2.22 10.33 174.19 9 580 
DAX 1.45 4.16 10.61 174.37 1 553 1.60 1.08 2.47 10.25 11 642 1.34 2.50 6.88 69.33 8 766 1.45 2.62 9.74 158.02 10 202 
FTSE 100 0.73 2.04 9.52 146.67 1 684 1.15 0.80 2.75 12.78 12 795 0.71 1.44 8.12 103.83 9 067 0.73 1.37 9.37 141.51 10 884 
HSI 0.89 4.14 26.19 845.45 1 635 1.23 0.83 5.67 71.61 4 949 0.79 2.66 27.51 1 028.65 2 018 0.80 1.61 14.43 297.03 5 585 
IPC 1.44 4.18 10.93 191.99 1 806 1.42 0.95 2.99 15.19 7 956 1.05 2.15 8.64 114.32 6 639 0.87 1.89 13.20 270.03 4 189 
KOSPI 1.09 3.85 19.19 555.41 1 804 1.36 0.97 4.10 34.23 10 369 1.00 2.76 16.89 421.90 6 056 1.01 2.11 12.37 241.01 12 286 
NIKKEI 225 1.31 5.28 14.48 268.93 2 307 1.34 0.96 4.09 30.25 6 187 0.98 2.62 12.90 230.32 3 506 1.01 1.83 8.49 99.32 7 727 
S&P 500 1.24 4.44 12.54 218.37 3 308 1.26 1.00 3.69 21.96 14 135 0.93 2.52 9.67 120.17 10 652 1.08 2.71 11.52 222.89 11 277 

M – mean, SD - standard deviation, S – skewness, EK - excess kurtosis, LB – the Ljung-Box statistic for 10 lags. The sample period is January 2, 2003 to March 31, 2017. 
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Table 7 
The results of the parameter estimates for the GARCH, CARR, RGARCH, GJR, and EGARCH models for currency pairs and stock indices.  

Assets GARCH CARR RGARCH  

γ0 α0 α1 β1 α0 α1 β1 γ0 α0 α1 β1 

AUD/USD 0.012 0.006 0.061 0.930 0.014 0.127 0.861 0.009 0.006 0.100 0.888 
(0.011) (0.002) (0.009) (0.009) (0.004) (0.012) (0.013) (0.011) (0.003) (0.017) (0.018) 

EUR/USD 0.006 
(0.009) 

0.001 
(0.001) 

0.033 
(0.004) 

0.964 
(0.005) 

0.005 
(0.002) 

0.080 
(0.008) 

0.914 
(0.008) 

0.002 
(0.009) 

0.001 
(0.001) 

0.047 
(0.009) 

0.949 
(0.009) 

GBP/USD 0.003 
(0.008) 

0.003 
(0.001) 

0.064 
(0.023) 

0.930 
(0.022) 

0.007 
(0.002) 

0.100 
(0.010) 

0.892 
(0.011) 

− 0.001 
(0.008) 

0.004 
(0.002) 

0.108 
(0.037) 

0.879 
(0.033) 

NZD/USD 0.015 
(0.013) 

0.010 
(0.003) 

0.056 
(0.009) 

0.930 
(0.011) 

0.024 
(0.007) 

0.133 
(0.015) 

0.849 
(0.019) 

0.009 
(0.012) 

0.010 
(0.004) 

0.081 
(0.019) 

0.900 
(0.023) 

USD/CAD − 0.004 
(0.008) 

0.002 
(0.001) 

0.049 
(0.006) 

0.945 
(0.006) 

0.007 
(0.002) 

0.099 
(0.008) 

0.893 
(0.009) 

− 0.003 
(0.008) 

0.002 
(0.001) 

0.077 
(0.010) 

0.913 
(0.012) 

USD/JPY 0.008 
(0.010) 

0.008 
(0.003) 

0.057 
(0.012) 

0.926 
(0.016) 

0.018 
(0.005) 

0.119 
(0.014) 

0.862 
(0.017) 

0.000 
(0.009) 

0.009 
(0.004) 

0.115 
(0.023) 

0.860 
(0.027) 

BOVESPA 0.037 
(0.024) 

0.045 
(0.013) 

0.063 
(0.010) 

0.919 
(0.013) 

0.073 
(0.015) 

0.172 
(0.015) 

0.792 
(0.020) 

0.010 
(0.023) 

0.044 
(0.019) 

0.134 
(0.026) 

0.875 
(0.025) 

CAC 40 0.024 
(0.014) 

0.017 
(0.007) 

0.089 
(0.019) 

0.897 
(0.022) 

0.037 
(0.008) 

0.203 
(0.017) 

0.772 
(0.020) 

− 0.011 
(0.014) 

0.033 
(0.01) 

0.245 
(0.037) 

0.746 
(0.036) 

DAX 0.041 
(0.016) 

0.016 
(0.005) 

0.079 
(0.013) 

0.909 
(0.014) 

0.034 
(0.007) 

0.184 
(0.015) 

0.794 
(0.017) 

0.007 
(0.015) 

0.028 
(0.010) 

0.187 
(0.039) 

0.804 
(0.039) 

FTSE 100 − 0.011 
(0.010) 

0.006 
(0.003) 

0.097 
(0.020) 

0.896 
(0.021) 

0.025 
(0.005) 

0.206 
(0.016) 

0.772 
(0.018) 

− 0.027 
(0.010) 

0.011 
(0.004) 

0.248 
(0.031) 

0.751 
(0.027) 

HIS − 0.026 
(0.013) 

0.013 
(0.004) 

0.058 
(0.010) 

0.925 
(0.012) 

0.026 
(0.008) 

0.122 
(0.017) 

0.857 
(0.021) 

− 0.036 
(0.013) 

0.014 
(0.006) 

0.089 
(0.019) 

0.899 
(0.022) 

IPC 0.070 
(0.015) 

0.021 
(0.006) 

0.084 
(0.012) 

0.900 
(0.014) 

0.042 
(0.009) 

0.169 
(0.017) 

0.801 
(0.021) 

0.046 
(0.016) 

0.018 
(0.007) 

0.164 
(0.026) 

0.864 
(0.021) 

KOSPI − 0.031 
(0.013) 

0.011 
(0.004) 

0.086 
(0.013) 

0.903 
(0.014) 

0.025 
(0.006) 

0.193 
(0.018) 

0.788 
(0.021) 

− 0.045 
(0.013) 

0.013 
(0.005) 

0.183 
(0.028) 

0.821 
(0.027) 

NIKKEI 
225 

− 0.006 
(0.016) 

0.049 
(0.016) 

0.136 
(0.028) 

0.827 
(0.028) 

0.053 
(0.013) 

0.203 
(0.026) 

0.757 
(0.033) 

− 0.025 
(0.015) 

0.034 
(0.018) 

0.289 
(0.064) 

0.753 
(0.050) 

S&P 500 0.050 
(0.012) 

0.019 
(0.005) 

0.102 
(0.013) 

0.878 
(0.015) 

0.031 
(0.006) 

0.200 
(0.014) 

0.774 
(0.016) 

0.018 
(0.012) 

0.016 
(0.006) 

0.253 
(0.028) 

0.789 
(0.021)  

Assets GJR EGARCH  

γ0 α0 α1 β1 θ1 γ0 α0 α1 β1 θ1 

AUD/USD  0.004  0.006  0.031  0.939  0.040  0.001  − 0.004  0.125  0.990  − 0.035   
(0.011)  (0.002)  (0.009)  (0.009)  (0.012)  (0.011)  (0.003)  (0.015)  (0.003)  (0.009) 

EUR/USD  0.001  0.001  0.016  0.969  0.025  0.000  − 0.003  0.066  0.995  − 0.020   
(0.009)  (0.001)  (0.006)  (0.004)  (0.007)  (0.009)  (0.002)  (0.009)  (0.002)  (0.006) 

GBP/USD  0.002  0.003  0.062  0.930  0.004  0.000  − 0.009  0.135  0.989  − 0.010   
(0.008)  (0.001)  (0.032)  (0.021)  (0.022)  (0.008)  (0.005)  (0.053)  (0.005)  (0.018) 

NZD/USD  0.005  0.009  0.017  0.944  0.049  0.002  − 0.005  0.113  0.985  − 0.031   
(0.012)  (0.003)  (0.010)  (0.012)  (0.012)  (0.012)  (0.002)  (0.017)  (0.004)  (0.010) 

USD/CAD  − 0.002  0.002  0.054  0.945  − 0.012  − 0.001  − 0.009  0.112  0.991  0.015   
(0.008)  (0.001)  (0.008)  (0.006)  (0.010)  (0.008)  (0.003)  (0.012)  (0.002)  (0.008) 

USD/JPY  0.003  0.009  0.041  0.918  0.040  0.001  − 0.022  0.147  0.970  − 0.037   
(0.010)  (0.003)  (0.010)  (0.017)  (0.020)  (0.010)  (0.008)  (0.020)  (0.009)  (0.016) 

BOVESPA  0.004  0.053  0.015  0.921  0.086  − 0.006  0.017  0.126  0.983  − 0.064   
(0.024)  (0.016)  (0.008)  (0.014)  (0.019)  (0.024)  (0.006)  (0.016)  (0.006)  (0.013) 

CAC 40  − 0.010  0.019  0.000  0.909  0.148  − 0.017  0.001  0.125  0.976  − 0.132   
(0.014)  (0.007)  (0.000)  (0.019)  (0.031)  (0.014)  (0.003)  (0.021)  (0.005)  (0.016) 

DAX  0.097  0.018  0.004  0.917  0.124  0.004  0.005  0.135  0.977  − 0.098   
(0.015)  (0.005)  (0.007)  (0.013)  (0.023)  (0.015)  (0.003)  (0.016)  (0.005)  (0.014) 

FTSE 100  − 0.029  0.007  0.027  0.906  0.113  − 0.033  − 0.005  0.163  0.986  0.163   
(0.010)  (0.002)  (0.012)  (0.018)  (0.022)  (0.010)  (0.004)  (0.027)  (0.005)  (0.027) 

HIS  − 0.035  0.014  0.035  0.926  0.040  − 0.038  − 0.001  0.135  0.983  − 0.034   
(0.013)  (0.004)  (0.013)  (0.012)  (0.017)  (0.013)  (0.003)  (0.023)  (0.005)  (0.014) 

IPC  0.043  0.022  0.014  0.909  0.115  0.037  0.006  0.150  0.981  − 0.086   
(0.015)  (0.006)  (0.007)  (0.014)  (0.021)  (0.015)  (0.003)  (0.017)  (0.005)  (0.013) 

KOSPI  − 0.044  0.013  0.042  0.903  0.082  − 0.049  − 0.001  0.164  0.982  − 0.068   
(0.013)  (0.004)  (0.010)  (0.014)  (0.023)  (0.013)  (0.003)  (0.019)  (0.005)  (0.015) 

NIKKEI 225  − 0.025  0.051  0.070  0.833  0.110  − 0.026  0.009  0.232  0.956  − 0.083   
(0.015)  (0.016)  (0.037)  (0.025)  (0.048)  (0.014)  (0.008)  (0.040)  (0.013)  (0.030) 

S&P 500  0.018  0.020  0.000  0.888  0.175  0.021  − 0.003  0.133  0.977  − 0.139   
(0.012)  (0.004)  (0.000)  (0.013)  (0.023)  (0.012)  (0.003)  (0.019)  (0.005)  (0.016) 

The γ0 parameter is the constant in the mean equation; α0, α1, β1 are the parameters of the GARCH model (equation (2)), the CARR (equation (8)), and 
the RGARCH model (equation (12)); α0 α1 β1, θ1 are the parameters of the GJR model (equation (4)) and the EGARCH model (equation (5). Standard 
errors are reported in parentheses. The sample period is January 2, 2003 to March 31, 2017. 
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scaled for this purpose (see Sections 2.2). 
Squared returns contain substantial noise, and thus their standard deviations are considerably higher than for other volatility 

proxies. The distributions of all analyzed series exhibit strong skewness and high kurtosis. We can observe that the distribution of 
realized variances is visibly more similar to the distributions of volatility estimated from the Parkinson estimator than from squared 
returns. All values for the Ljung-Box statistic show the existence of significant autocorrelation, however, much stronger relations were 
present for range-based volatility proxies than for squared returns. The presented statistics indicate that the use of range-based 
measures in volatility models can be useful. 

4.2. Modelling volatility 

An initial evaluation of the five considered models is performed for the whole range of data. The results of estimation are presented 
in Table 7. Likewise, in the Monte Carlo simulation the estimates of parameter α1 are much lower, and the estimates of parameter β1 
are much higher in the standard GARCH model compared with the CARR and RGARCH models. This means that more weight is put on 
the new information. Such a behavior allows the range-based models to respond faster to changing market conditions. This empirical 
characteristic has already been reported in the literature (see e.g. Chou et al., 2009; Wu and Liang, 2011; Molnár, 2016; Fiszeder et al., 
2019). Parameter θ1 in the GJR and EGARCH models is responsible for the description of a phenomenon known as the leverage effect, i. 
e., the negative correlation between volatility and past returns. Estimates of this parameter are statistically significant for most cur
rencies and stock indices. 

We compare the five models based on the likelihood function and the Rivers-Vuong test (see Table 8). For eleven out of fifteen 
assets, the highest values of the likelihood function are for the RGARCH model. It is significantly better (at the 10 % significance level) 
than the standard GARCH model for all assets except the EUR/USD currency pair and significantly better than the CARR model for all 
assets except the EUR/USD, GBP/USD, and USD/JPY currency pairs. The RGARCH model is also superior to the GJR and EGARCH 
models for ten out of fifteen currency pairs and stock indices. On the other hand, the CARR model describes the analyzed series 
significantly better than the standard GARCH model in eight out of fifteen assets. 

4.3. Forecasting volatility 

The forecasting performance of the five univariate models is compared in this section. Out-of-sample one-day ahead, five-day- 
ahead (i.e. for the fifth day ahead), and ten-day-ahead (i.e. for the tenth day ahead) forecasts of variance are formulated based on 
the GARCH, GJR, EGARCH, CARR, and RGARCH models. The parameters of these models are estimated separately for each day based 
on a rolling sample of a fixed size 500 (approximately a two-year period; the first in-sample period is from January 2, 2003, to 
December 31, 2004. The evaluation of forecasts is performed for the period from January 3, 2005, to March 31, 2017. The MSE and 
MAE measures given in equations (16) and (17) are applied. As the true daily volatility, we use the realized variance calculated as the 
sum of the squared 5-minute returns, but there are similar conclusions for 15-minute returns. We apply the SPA and MCS tests to 
analyze whether differences in forecasts are statistically significant. The results of the tests for the one-day-ahead forecasts for the MAE 
and MSE loss functions are presented in Tables 9 and 10, respectively. 

According to the MAE and MSE measures and the SPA and MCS tests, it is not possible to obtain statistically more accurate forecasts 

Table 8 
The in-sample evaluation of the models for currency pairs and stock indices: the logarithm of the likelihood function and the Rivers-Vuong test.  

Assets Log-likelihood P-value of RV test  

GARCH CARR RGARCH GJR EGARCH GARCH vs 
CARR 

GARCH vs 
RGARCH 

CARR vs 
RGARCH 

GJR vs 
RGARCH 

EGARCH vs 
RGARCH 

AUD/USD  − 4031.82  − 4041.13  ¡4000.49  − 4024.87  − 4033.78  0.752  0.000  0.000  0.003  0.000 
EUR/USD  − 3224.31  − 3220.35  − 3217.14  ¡3216.70  –3222.03  0.307  0.101  0.260  0.523  0.272 
GBP/USD  − 3015.01  − 2998.86  ¡2991.30  − 3014.96  − 3017.78  0.048  0.004  0.161  0.004  0.002 
NZD/USD  − 4368.84  − 4350.78  ¡4341.66  − 4357.31  − 4363.96  0.046  0.000  0.076  0.046  0.007 
USD/CAD  − 3011.49  − 2996.72  ¡2981.44  − 3010.49  − 3013.89  0.044  0.000  0.004  0.000  0.000 
USD/JPY  − 3403.01  ¡3363.88  − 3367.92  − 3396.85  − 3392.72  0.003  0.001  0.725  0.007  0.030 
BOVESPA  − 6374.79  − 6368.43  ¡6336.22  − 6348.44  − 6360.60  0.327  0.000  0.000  0.071  0.001 
CAC 40  − 5057.37  − 5013.05  − 4992.55  − 4998.09  ¡4978.71  0.003  0.000  0.010  0.339  0.994 
DAX  − 5210.83  − 5176.04  ¡5146.19  − 5161.76  − 5156.82  0.035  0.000  0.001  0.148  0.242 
FTSE 100  − 3860.22  − 3826.32  ¡3783.88  − 3827.44  − 3822.85  0.027  0.000  0.000  0.002  0.004 
HSI  − 3965.24  − 3969.07  ¡3928.06  − 3960.36  − 3963.07  0.602  0.000  0.000  0.000  0.012 
IPC  − 5173.66  − 5198.91  − 5152.68  ¡5131.87  − 5140.03  0.901  0.029  0.000  0.965  0.852 
KOSPI  − 4511.62  − 4482.24  ¡4442.95  − 4494.43  − 4481.22  0.037  0.000  0.000  0.000  0.001 
NIKKEI 

225  
− 4778.86  − 4773.81  ¡4729.17  − 4764.31  − 4748.93  0.409  0.000  0.007  0.008  0.058 

S&P 500  − 4523.08  − 4551.41  ¡4456.87  − 4456.97  − 4460.05  0.911  0.000  0.000  0.497  0.413 

The highest values of the logarithm of the likelihood function are marked in bold. The p-values of the Rivers-Vuong test are presented for the pairs of 
models. A p-value lower than the significance level means that the second model is superior to the first model in pair. The sample period is January 2, 
2003 to March 31, 2017. 
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Table 9 
The out-of-sample evaluation of the one-day-ahead variance forecasts for currency pairs and stock indices: the realized variance used as a true variance proxy for MAE criterion.  

Assets MAE  P-value of SPA test  P-value of MCS test  

GARCH CARR RGARCH GJR EGARCH  GARCH CARR RGARCH GJR EGARCH  GARCH CARR RGARCH GJR EGARCH 

Currency pairs 
AUD/USD  0.299  0.383  0.236  0.347  0.345   0.000  0.000  0.598  0.000  0.000   0.000  0.000  1.000*  0.000  0.000 
EUR/USD  0.150  0.154  0.137  0.173  0.186   0.000  0.000  0.563  0.000  0.000   0.000  0.000  1.000*  0.000  0.000 
GBP/USD  0.162  0.160  0.137  0.174  0.176   0.000  0.003  0.528  0.001  0.000   0.000  0.001  1.000*  0.000  0.000 
NZD/USD  0.355  0.345  0.323  0.369  0.370   0.000  0.000  0.606  0.000  0.000   0.000  0.000  1.000*  0.000  0.000 
USD/CAD  0.140  0.140  0.123  0.153  0.161   0.000  0.000  0.532  0.000  0.000   0.000  0.000  1.000*  0.000  0.000 
USD/JPY  0.220  0.227  0.190  0.254  0.243   0.000  0.000  0.518  0.000  0.000   0.000  0.000  1.000*  0.000  0.000 
Stock indices 
BOVESPA  1.351  1.490  1.224  1.266  1.224   0.000  0.000  0.729  0.168  0.675   0.003  0.000  1.000*  0.511*  0.991* 
CAC 40  0.654  0.631  0.588  0.669  0.633   0.000  0.000  0.591  0.000  0.000   0.000  0.000  1.000*  0.000  0.000 
DAX  0.693  0.733  0.609  0.672  0.640   0.000  0.000  0.959  0.001  0.041   0.000  0.000  1.000*  0.010  0.088 
FTSE 100  0.373  0.367  0.330  0.359  0.349   0.000  0.000  0.497  0.001  0.026   0.000  0.000  1.000*  0.005  0.031 
HSI  0.553  0.545  0.463  0.548  0.505   0.003  0.000  0.611  0.005  0.000   0.000  0.000  1.000*  0.000  0.000 
IPC  0.904  1.008  0.890  0.769  0.803   0.000  0.000  0.000  0.503  0.001   0.000  0.000  0.000  1.000*  0.002 
KOSPI  0.483  0.522  0.431  0.505  0.479   0.001  0.000  0.492  0.004  0.024   0.005  0.000  1.000*  0.003  0.017 
NIKKEI 225  0.835  0.881  0.684  0.792  0.698   0.002  0.000  0.779  0.006  0.221   0.000  0.000  1.000*  0.007  0.419* 
S&P 500  0.708  0.895  0.651  0.665  0.601   0.000  0.000  0.033  0.003  0.528   0.000  0.000  0.024  0.005  1.000* 

The realized variance is estimated as the sum of the squared 5-minute returns. The lowest values of the MAE measure are in bold; p-values for the SPA and MCS tests are computed by the bootstrapping 
methodology (Hansen, 2005). We apply the SPA test five times, each time changing which model is the benchmark. It means that the given SPA p-value refers to the benchmark model specified in the 
heading of the table. The MCS test is performed for the five models jointly; * indicates that model belongs to the model confidence set with a confidence level of 0.90. The evaluation period is January 3, 
2005 to March 31, 2017. 
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Table 10 
The out-of-sample evaluation of the one-day-ahead variance forecasts for currency pairs and stock indices: the realized variance used as a variance proxy for the MSE criterion.  

Assets MSE  P-value of SPA test  P-value of MCS test  

GARCH CARR RGARCH GJR EGARCH  GARCH CARR RGARCH GJR EGARCH  GARCH CARR RGARCH GJR EGARCH 

Currency pairs 
AUD/USD  0.809  1.737  0.383  1.145  1.005   0.019  0.006  0.959  0.036  0.058   0.026  0.008  1.000*  0.021  0.026 
EUR/USD  0.088  0.095  0.074  0.103  0.107   0.002  0.002  0.661  0.000  0.000   0.003  0.002  1.000*  0.001  0.000 
GBP/USD  0.500  0.661  0.336  0.819  0.769   0.052  0.519  0.910  0.205  0.258   0.342*  0.342*  1.000*  0.342*  0.342* 
NZD/USD  0.914  0.798  0.705  0.970  0.965   0.049  0.030  0.963  0.007  0.046   0.032  0.032  1.000*  0.002  0.025 
USD/CAD  0.079  0.086  0.059  0.090  0.099   0.000  0.001  0.549  0.000  0.000   0.000  0.000  1.000*  0.000  0.000 
USD/JPY  0.376  0.427  0.269  0.455  0.429   0.006  0.019  0.590  0.006  0.016   0.013  0.013  1.000*  0.012  0.013 
Stock indices 
BOVESPA  9.638  11.797  7.223  9.524  6.753   0.015  0.016  0.375  0.096  0.917   0.038  0.011  0.382*  0.105*  1.000* 
CAC 40  3.105  2.784  2.739  3.453  2.877   0.030  0.527  0.909  0.007  0.202   0.078  0.747*  1.000*  0.007  0.376* 
DAX  4.314  4.311  3.152  4.246  3.857   0.050  0.020  0.905  0.086  0.270   0.028  0.028  1.000*  0.028  0.256* 
FTSE 100  1.128  1.074  0.953  1.127  1.008   0.019  0.041  0.868  0.018  0.284   0.070  0.037  1.000*  0.070  0.482* 
HSI  4.320  3.830  2.695  4.356  2.910   0.028  0.170  0.979  0.048  0.336   0.013  0.103*  1.000*  0.026  0.312* 
IPC  4.085  4.466  4.060  3.215  3.045   0.011  0.020  0.032  0.062  0.945   0.006  0.005  0.010  0.075  1.000* 
KOSPI  1.748  4.142  2.229  2.044  1.956   0.977  0.108  0.535  0.392  0.598   1.000*  0.214*  0.302*  0.536*  0.600* 
NIKKEI 225  7.929  7.029  3.736  6.696  3.794   0.044  0.025  0.540  0.024  0.461   0.007  0.008  1.000*  0.020  0.885* 
S&P 500  4.363  8.105  4.025  4.396  3.190   0.011  0.010  0.049  0.034  0.630   0.012  0.001  0.038  0.015  1.000* 

The realized variance is estimated as the sum of the squared 5-minute returns. The lowest values of the MSE measure are in bold; p-values for the SPA and MCS tests are computed by the bootstrapping 
methodology (Hansen, 2005). We apply the SPA test five times, each time changing which model is the benchmark. It means that the given SPA p-value refers to the benchmark model specified in the 
heading of the table. The MCS test is performed for the five models jointly; * indicates that model belongs to the model confidence set with a confidence level of 0.90. The evaluation period is January 3, 
2005 to March 31, 2017. 
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of the variance than from the RGARCH model for all currency pairs and stock indices, except for the IPC and S&P 500 indices. On the 
other hand, it is difficult to indicate the second-best model when considering the GARCH, GJR, EGARCH, and CARR models. 

The results for the five-day-ahead forecasts are presented in the Appendix in Tables A7 and A8 for the MAE and MSE criteria, 
respectively, and the results for the ten-day-ahead forecasts are given in Tables A9 and A10 for the MAE and MSE measures, 
respectively. The advantage of the RGARCH model is rather minor for the five-day-ahead forecasts, and there is almost no difference 
between the analyzed models for the ten-day-ahead forecasts. For some of the tested time series, there is an indication favoring the 
RGARCH model, but it is not conclusive. 

4.4. Influence of market volatility on the predictive ability 

Similarly as for the data from to the Monte Carlo simulations, we test whether extreme forecast improvements can be explained by 
the level of market volatility in the previous day. Table 11 presents results for 90th conditional quantile regression model (equation 
(19)) for selected pairs of models. Comparable results were obtained for other high quantiles, the 75th and 95th quantile. 

All estimates of φ1(τ) are positive and significantly different from zero at the 10 % level. 
This means that for large improvements of variance forecasts, an increase of the realized variance leads to the higher forecast 

advantage of the RGARCH model over the GARCH, GJR, EGARCH, and CARR models. Likewise, an increase of market volatility leads 
to a rise in forecasting predominance of the CARR model over the GARCH model. This may explain why in other studies this model 
performs better than the GARCH model (see Chou, 2005; Chou and Wang, 2007; Liu and Wu, 2017; Fiszeder and Fałdziński, 2019). The 
presented results for the loss differentials are based on the MSE loss function, however, results for the MAE loss function are very 
similar. It is worth noting that these results for financial series are different than results for the simulated series presented in Section 
3.4. It seems that the behavior of prices on real financial markets during turbulent periods have different properties than simulated 
prices. This indicates that the dynamics of volatility in the real world differs from the dynamics of volatility in our simulation. 

5. Conclusions 

Due to availability of daily high and low prices, volatility models which utilize the high-low range, have emerged and become 

Table 11 
The out-of-sample evaluation of the one-day-ahead variance forecasts for currency pairs and stock indices: the 90th quantile regression of the loss 
differential dt between two models on the lagged variance proxy.  

Assets GARCH vs CARR GARCH vs RGARCH CARR vs RGARCH GJR vs RGARCH EGARCH vs RGARCH  

φ0(τ) φ1(τ) φ0(τ) φ1(τ) φ0(τ) φ1(τ) φ0(τ) φ1(τ) φ0(τ) φ1(τ) 

AUD/USD − 0.054 0.349 − 0.301 1.613 − 1.454 7.477 − 0.001 0.203 0.012 0.192 
(0.007) (0.020) (0.044) (0.124) (0.203) (0.598) (0.003) (0.009) (0.005) (0.015) 

EUR/USD − 0.008 0.121 − 0.008 0.112 − 0.014 0.173 − 0.708 3.772 − 0.275 1.632 
(0.001) (0.007) (0.001) (0.005) (0.001) (0.006) (0.102) (0.273) (0.042) (0.099) 

GBP/USD − 0.048 0.476 − 0.023 0.247 − 0.037 0.378 − 0.058 0.620 − 0.020 0.293 
(0.019) (0.105) (0.003) (0.017) (0.003) (0.014) (0.023) (0.108) (0.004) (0.017) 

NZD/USD − 0.163 0.692 − 0.151 0.646 − 0.122 0.529 − 0.239 0.997 − 0.207 0.894 
(0.022) (0.046) (0.027) (0.065) (0.014) (0.027) (0.032) (0.063) (0.037) (0.093) 

USD/CAD − 0.012 0.134 − 0.016 0.169 − 0.018 0.185 − 0.023 0.268 − 0.025 0.299 
(0.001) (0.005) (0.002) (0.009) (0.002) (0.008) (0.002) (0.011) (0.002) (0.010) 

USD/JPY − 0.016 0.230 − 0.023 0.302 − 0.029 0.335 − 0.055 0.704 − 0.022 0.408 
(0.004) (0.014) (0.004) (0.015) (0.004) (0.016) (0.014) (0.063) (0.004) (0.013) 

BOVESPA − 0.827 2.005 − 1.811 3.582 − 5.343 9.579 − 1.853 3.811 − 0.545 2.057 
(0.164) (0.1313) (0.207) (0.162) (0.690) (0.775) (0.228) (0.146) (0.370) (0.261) 

CAC 40 − 0.328 1.694 − 0.326 1.709 − 0.250 1.118 − 0.457 2.253 − 0.190 1.210 
(0.037) (0.072) (0.038) (0.097) (0.032) (0.081) (0.044) (0.069) (0.046) (0.069) 

DAX − 0.212 1.242 − 0.393 1.916 − 0.563 2.418 − 0.382 1.887 − 0.286 1.502 
(0.038) (0.065) (0.049) (0.096) (0.054) (0.094) (0.060) (0.116) (0.046) (0.062) 

FTSE 100 − 0.080 0.800 − 0.098 0.961 − 0.093 0.787 − 0.104 0.989 − 0.084 0.848 
(0.006) (0.016) (0.009) (0.033) (0.011) (0.040) (0.011) (0.040) (0.011) (0.040) 

HSI − 0.515 2.622 − 0.591 2.948 − 0.314 1.688 − 0.530 2.728 − 0.185 1.118 
(0.023) (0.042) (0.039) (0.117) (0.045) (0.100) (0.024) (0.036) (0.054) (0.141) 

IPC − 0.199 1.418 − 0.248 1.676 − 0.305 2.192 − 0.232 1.782 − 0.120 1.608 
(0.026) (0.064) (0.022) (0.042) (0.024) (0.053) (0.032) (0.064) (0.037) (0.051) 

KOSPI − 0.176 1.339 − 0.195 1.412 − 0.547 3.346 − 0.447 3.007 − 0.355 2.455 
(0.025) (0.076) (0.022) (0.063) (0.089) (0.248) (0.076) (0.203) (0.039) (0.093) 

NIKKEI 225 0.444 2.757 − 1.060 5.837 − 2.138 11.053 − 1.034 5.793 − 0.543 3.226 
(0.066) (0.136) (0.137) (0.291) (0.334) (0.906) (0.174) (0.550) (0.068) (0.171) 

S&P 500 − 0.184 1.693 − 0.175 1.722 − 1.782 13.893 − 0.201 2.058 − 0.153 1.599 
(0.025) (0.063) (0.024) (0.061) (0.244) (0.555) (0.032) (0.108) (0.029) (0.092) 

The realized variance used as the true daily variance and estimated as the sum of squared 5-minute returns; φ0(τ), φ0(τ) are parameters of the 
regression (equation (19)); standard errors are reported in parentheses and are calculated using the Markov chain marginal bootstrap method. The 
evaluation period is January 3, 2005 to March 31, 2017. 
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Table A1 
The out-of-sample evaluation of the five-day-ahead variance forecasts for Monte Carlo simulation: the real variance used for the MAE criterion.  

Parameters of simulated series MAE P-value of SPA test P-value of MCS test  

GARCH CARR RGARCH GJR EGARCH GARCH CARR RGARCH GJR EGARCH GARCH CARR RGARCH GJR EGARCH 

lnσ = − 2.5, β = 0.75, ρH = 0.985  0.179  0.186  0.169  0.180  0.175  0.000  0.000  0.496  0.000  0.000  0.000  0.000  1.000*  0.000  0.000 
lnσ = − 2.0, β = 0.75, ρH = 0.985  0.487  0.481  0.459  0.488  0.475  0.000  0.000  0.490  0.000  0.000  0.000  0.000  1.000*  0.000  0.000 
lnσ = − 3.0, β = 0.75, ρH = 0.985  0.066  0.076  0.062  0.066  0.064  0.000  0.000  0.512  0.000  0.000  0.000  0.000  1.000*  0.000  0.000 
lnσ = − 2.5, β = 0.7, ρH = 0.985  0.161  0.159  0.152  0.161  0.167  0.000  0.000  0.552  0.000  0.033  0.000  0.000  1.000*  0.000  0.000 
lnσ = − 2.5, β = 0.8, ρH = 0.985  0.175  0.181  0.163  0.175  0.170  0.000  0.000  0.507  0.000  0.000  0.000  0.000  1.000*  0.000  0.000 
lnσ = − 2.5, β = 0.75, ρH = 0.98  0.090  0.092  0.071  0.090  0.097  0.000  0.000  1.000  0.000  0.000  0.000  0.000  1.000*  0.000  0.000 
lnσ = − 2.5, β = 0.75, ρH = 0.99  0.214  0.220  0.203  0.214  0.207  0.000  0.000  0.966  0.000  0.034  0.000  0.000  1.000*  0.000  0.054 

The lowest values of the MAE measure are in bold, p-values for the SPA and MCS tests are computed by the bootstrapping methodology (Hansen, 2005). We apply the SPA test five times, each time 
changing the model which is the benchmark. It means that the given SPA p-value refers to the benchmark model specified in the heading of the table. The MCS test is performed for the five models jointly, * 
indicates that model belongs to the model confidence set with a confidence level of 0.90. 
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Table A2 
The out-of-sample evaluation of the five-day-ahead variance forecasts for Monte Carlo simulation: the real variance used for the MSE criterion.  

Parameters of simulated series MSE P-value of SPA test P-value of MCS test  

GARCH CARR RGARCH GJR EGARCH GARCH CARR RGARCH GJR EGARCH GARCH CARR RGARCH GJR EGARCH 

lnσ = − 2.5, β = 0.75, ρH = 0.985  0.070  0.066  0.063  0.070  0.075  0.000  0.000  0.528  0.000  0.000  0.000  0.000  1.000*  0.000  0.000 
lnσ = − 2.0, β = 0.75, ρH = 0.985  0.512  0.470  0.465  0.513  0.555  0.000  0.033  0.967  0.000  0.000  0.000  0.059  1.000*  0.000  0.000 
lnσ = − 3.0, β = 0.75, ρH = 0.985  0.012  0.012  0.011  0.012  0.013  0.000  0.000  0.545  0.000  0.000  0.000  0.000  1.000*  0.000  0.000 
lnσ = − 2.5, β = 0.7, ρH = 0.985  0.053  0.052  0.049  0.053  0.164  0.000  0.000  0.558  0.000  0.069  0.038  0.038  1.000*  0.038  0.038 
lnσ = − 2.5, β = 0.8, ρH = 0.985  0.084  0.077  0.073  0.084  0.091  0.000  0.000  0.568  0.000  0.001  0.000  0.000  1.000*  0.000  0.000 
lnσ = − 2.5, β = 0.75, ρH = 0.98  0.015  0.014  0.010  0.016  0.020  0.000  0.000  0.549  0.000  0.000  0.000  0.000  1.000*  0.000  0.000 
lnσ = − 2.5, β = 0.75, ρH = 0.99  0.147  0.137  0.134  0.146  0.157  0.001  0.000  0.683  0.001  0.005  0.001  0.002  1.000*  0.001  0.002 

The lowest values of the MSE measure are in bold, p-values for the SPA and MCS tests are computed by the bootstrapping methodology (Hansen, 2005). We apply the SPA test five times, each time 
changing the model which is the benchmark. It means that the given SPA p-value refers to the benchmark model specified in the heading of the table. The MCS test is performed for the five models jointly, * 
indicates that model belongs to the model confidence set with a confidence level of 0.90. 
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Table A3 
The out-of-sample evaluation of the ten-day-ahead variance forecasts for Monte Carlo simulation: the real variance used for the MAE criterion.  

Parameters of simulated series MAE P-value of SPA test P-value of MCS test  

GARCH CARR RGARCH GJR EGARCH GARCH CARR RGARCH GJR EGARCH GARCH CARR RGARCH GJR EGARCH 

lnσ = − 2.5, β = 0.75, ρH = 0.985  0.184  0.243  0.173  0.184  0.185  0.000  0.000  0.502  0.000  0.000  0.000  0.000  1.000*  0.000  0.000 
lnσ = − 2.0, β = 0.75, ρH = 0.985  0.499  0.534  0.472  0.500  0.503  0.000  0.000  0.505  0.000  0.000  0.000  0.000  1.000*  0.000  0.000 
lnσ = − 3.0, β = 0.75, ρH = 0.985  0.066  0.076  0.063  0.066  0.066  0.000  0.000  0.504  0.000  0.000  0.000  0.000  1.000*  0.000  0.000 
lnσ = − 2.5, β = 0.7, ρH = 0.985  0.163  0.225  0.154  0.163  0.175  0.000  0.000  0.540  0.000  0.002  0.000  0.000  1.000*  0.000  0.000 
lnσ = − 2.5, β = 0.8, ρH = 0.985  0.175  0.235  0.164  0.175  0.177  0.000  0.000  0.511  0.000  0.000  0.000  0.000  1.000*  0.000  0.000 
lnσ = − 2.5, β = 0.75, ρH = 0.98  0.163  0.243  0.154  0.163  0.166  0.000  0.000  1.000  0.000  0.000  0.000  0.000  1.000*  0.000  0.000 
lnσ = − 2.5, β = 0.75, ρH = 0.99  0.213  0.258  0.204  0.213  0.208  0.000  0.000  0.506  0.000  0.006  0.000  0.000  1.000*  0.000  0.007 

The lowest values of the MAE measure are in bold, p-values for the SPA and MCS tests are computed by the bootstrapping methodology (Hansen, 2005). We apply the SPA test five times, each time 
changing the model which is the benchmark. It means that the given SPA p-value refers to the benchmark model specified in the heading of the table. The MCS test is performed for the five models jointly, * 
indicates that model belongs to the model confidence set with a confidence level of 0.90. 
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Table A4 
The out-of-sample evaluation of the ten-day-ahead variance forecasts for Monte Carlo simulation: real variance used for the MSE criterion.  

Parameters of simulated series MSE P-value of SPA test P-value of MCS test  

GARCH CARR RGARCH GJR EGARCH GARCH CARR RGARCH GJR EGARCH GARCH CARR RGARCH GJR EGARCH 

lnσ = − 2.5, β = 0.75, ρH = 0.985  0.079  0.100  0.073  0.079  0.097  0.000  0.000  0.514  0.000  0.000  0.000  0.000  1.000*  0.000  0.000 
lnσ = − 2.0, β = 0.75, ρH = 0.985  0.582  0.569  0.536  0.583  0.711  0.000  0.000  0.550  0.000  0.000  0.000  0.000  1.000*  0.000  0.000 
lnσ = − 3.0, β = 0.75, ρH = 0.985  0.012  0.025  0.010  0.012  0.014  0.000  0.000  0.531  0.000  0.000  0.000  0.000  1.000*  0.000  0.000 
lnσ = − 2.5, β = 0.7, ρH = 0.985  0.058  0.081  0.053  0.058  0.191  0.000  0.000  0.547  0.000  0.026  0.003  0.003  1.000*  0.003  0.003 
lnσ = − 2.5, β = 0.8, ρH = 0.985  0.082  0.101  0.073  0.082  0.098  0.000  0.000  0.533  0.000  0.000  0.000  0.000  1.000*  0.000  0.000 
lnσ = − 2.5, β = 0.75, ρH = 0.98  0.057  0.091  0.053  0.058  0.070  0.000  0.000  0.517  0.000  0.000  0.000  0.000  1.000*  0.000  0.000 
lnσ = − 2.5, β = 0.75, ρH = 0.99  0.149  0.157  0.138  0.149  0.171  0.000  0.000  0.554  0.000  0.000  0.000  0.000  1.000*  0.000  0.000 

The lowest values of the MSE measure are in bold, p-values for the SPA and MCS tests are computed by the bootstrapping methodology (Hansen, 2005). We apply the SPA test five times, each time 
changing the model which is the benchmark. It means that the given SPA p-value refers to the benchmark model specified in the heading of the table. The MCS test is performed for the five models jointly, * 
indicates that model belongs to the model confidence set with a confidence level of 0.90. 
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Table A5 
The out-of-sample evaluation of the one-day-ahead variance forecasts for Monte Carlo simulation: the realized variance used as a true variance proxy for MAE criterion.  

Parameters of simulated series MAE P-value of SPA test P-value of MCS test  

GARCH CARR RGARCH GJR EGARCH GARCH CARR RGARCH GJR EGARCH GARCH CARR RGARCH GJR EGARCH 

lnσ = − 2.5, β = 0.75, ρH = 0.985  0.0937  0.071  0.069  0.094  0.094  0.000  0.028  0.497  0.000  0.000  0.000  0.057  1.000*  0.000  0.000 
lnσ = − 2.0, β = 0.75, ρH = 0.985  0.254  0.192  0.188  0.255  0.255  0.000  0.0278  0.973  0.000  0.000  0.000  0.059  1.000*  0.000  0.000 
lnσ = − 3.0, β = 0.75, ρH = 0.985  0.034  0.025  0.025  0.034  0.035  0.000  0.350  0.651  0.000  0.000  0.000  0.690*  1.000*  0.000  0.000 
lnσ = − 2.5, β = 0.7, ρH = 0.985  0.084  0.063  0.062  0.084  0.094  0.000  0.051  0.950  0.000  0.005  0.000  0.108*  1.000*  0.000  0.004 
lnσ = − 2.5, β = 0.8, ρH = 0.985  0.096  0.071  0.070  0.097  0.098  0.000  0.084  0.916  0.000  0.000  0.000  0.160*  1.000*  0.000  0.000 
lnσ = − 2.5, β = 0.75, ρH = 0.98  0.085  0.064  0.064  0.085  0.085  0.000  0.512  0.488  0.000  0.000  0.000  1.000*  0.975*  0.000  0.000 
lnσ = − 2.5, β = 0.75, ρH = 0.99  0.098  0.073  0.069  0.099  0.101  0.000  0.002  0.501  0.000  0.000  0.000  0.002  1.000*  0.000  0.000 

The realized variance is estimated as the sum of squared intraday returns. The lowest values of the MAE measure are in bold, p-values for the SPA and MCS tests are computed by the bootstrapping 
methodology (Hansen, 2005). We apply the SPA test five times, each time changing the model which is the benchmark. It means that the given SPA p-value refers to the benchmark model specified in the 
heading of the table. The MCS test is performed for the five models jointly, * indicates that model belongs to the model confidence set with a confidence level of 0.90. 
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Table A6 
The out-of-sample evaluation of the one-day-ahead variance forecasts for Monte Carlo simulation: the realized variance used as a true variance proxy for MSE criterion.  

Parameters of simulated series MSE P-value of SPA test P-value of MCS test  

GARCH CARR RGARCH GJR EGARCH GARCH CARR RGARCH GJR EGARCH GARCH CARR RGARCH GJR EGARCH 

lnσ = − 2.5, β = 0.75, ρH = 0.985  0.019  0.010  0.010  0.019  0.019  0.000  0.628 0.372  0.000  0.000  0.000  1.000*  0.746*  0.000  0.000 
lnσ = − 2.0, β = 0.75, ρH = 0.985  0.136  0.072  0.723  0.138  0.140  0.000  0.631 0.369  0.000  0.000  0.000  1.000*  0.741*  0.000  0.000 
lnσ = − 3.0, β = 0.75, ρH = 0.985  0.013  0.011  0.011  0.003  0.003  0.010  0.703 0.297  0.000  0.000  0.008  1.000*  0.587*  0.000  0.000 
lnσ = − 2.5, β = 0.7, ρH = 0.985  0.014  0.008  0.008  0.014  0.111  0.000  0.780 0.773  0.000  0.076  0.080  1.000*  0.999*  0.080  0.080 
lnσ = − 2.5, β = 0.8, ρH = 0.985  0.020  0.011  0.010  0.020  0.022  0.000  0.162 0.838  0.000  0.000  0.000  0.317*  1.000*  0.000  0.000 
lnσ = − 2.5, β = 0.75, ρH = 0.98  0.014  0.008  0.008  0.014  0.015  0.000  0.501 0.027  0.000  0.000  0.000  1.000*  0.049*  0.000  0.000 
lnσ = − 2.5, β = 0.75, ρH = 0.99  0.022  0.012  0.012  0.023  0.025  0.000  0.154 0846  0.000  0.000  0.000  0.282*  1.000*  0.000  0.000 

The realized variance is estimated as the sum of squared intraday returns. The lowest values of the MSE measure are in bold, p-values for the SPA and MCS tests are computed by the bootstrapping 
methodology (Hansen, 2005). We apply the SPA test five times, each time changing the model which is the benchmark. It means that the given SPA p-value refers to the benchmark model specified in the 
heading of the table. The MCS test is performed for the five models jointly, * indicates that model belongs to the model confidence set with a confidence level of 0.90. 

M
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Table A7 
The out-of-sample evaluation of the five-day-ahead variance forecasts for currency pairs and stock indices: the realized variance used as a true variance proxy for the MAE criterion.  

Assets MAE P-value of SPA test P-value of MCS test  

GARCH CARR RGARCH GJR EGARCH GARCH CARR RGARCH GJR EGARCH GARCH CARR RGARCH GJR EGARCH 

AUD/USD  0.373  0.432  0.369  0.382  0.370  0.608  0.000  0.705  0.319  0.820  0.974*  0.092  1.000*  0.778*  0.974* 
EUR/USD  0.164  0.176  0.159  0.178  0.190  0.007  0.000  0.510  0.000  0.000  0.007  0.000  1.000*  0.000  0.000 
GBP/USD  0.177  0.177  0.171  0.172  0.171  0.269  0.251  0.835  0.771  0.861  0.729*  0.592*  0.955*  0.955*  1.000* 
NZD/USD  0.394  0.395  0.434  0.382  0.390  0.028  0.096  0.000  0.964  0.037  0.008  0.014  0.000  1.000*  0.027 
USD/CAD  0.156  0.153  0.162  0.159  0.167  0.246  0.870  0.027  0.005  0.000  0.236*  1.000*  0.040  0.077  0.001 
USD/JPY  0.256  0.290  0.244  0.268  0.2650  0.011  0.000  0.528  0.000  0.000  0.004  0.000  1.000*  0.000  0.000 
BOVESPA  1.431  1.542  1.175  1.322  1.323  0.000  0.000  0.506  0.000  0.000  0.000  0.000  1.000*  0.000  0.000 
CAC 40  0.705  0.711  0.673  0.708  0.713  0.065  0.053  0.689  0.034  0.004  0.035  0.022  1.000*  0.022  0.009 
DAX  0.741  0.785  0.680  0.729  0.711  0.035  0.013  0.979  0.008  0.060  0.014  0.005  1.000*  0.007*  0.040 
FTSE 100  0.427  0.427  0.377  0.390  0.387  0.007  0.001  0.896  0.141  0.259  0.072  0.010  1.000*  0.269*  0.288* 
HSI  0.553  0.545  0.463  0.548  0.505  0.003  0.000  0.611  0.005  0.000  0.000  0.000  1.000*  0.000  0.000 
IPC  0.904  1.008  0.890  0.769  0.803  0.000  0.000  0.000  0.503  0.001  0.000  0.000  0.000  1.000*  0.002 
KOSPI  0.567  0.615  0.485  0.542  0.554  0.000  0.000  0.619  0.000  0.000  0.000  0.000  1.000*  0.000  0.000 
NIKKEI 225  0.955  0.993  0.643  0.854  0.751  0.000  0.000  0.679  0.000  0.000  0.000  0.000  1.000*  0.000  0.000 
S&P 500  0.768  0.950  0.644  0.709  0.671  0.000  0.000  0.940  0.000  0.095  0.000  0.000  1.000*  0.001  0.115* 

The realized variance is estimated as the sum of squared of 5-minute returns. The lowest values of the MAE measure are in bold, p-values for the SPA and MCS tests are computed by the bootstrapping 
methodology (Hansen, 2005). We apply the SPA test five times, each time changing the model which is the benchmark. It means that the given SPA p-value refers to the benchmark model specified in the 
heading of the table. The MCS test is performed for the five models jointly, * indicates that model belongs to the model confidence set with a confidence level of 0.90. The evaluation period is 3 January 
2005 to 31 March 2017. 
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Table A8 
The out-of-sample evaluation of the five-day-ahead variance forecasts for currency pairs and stock indices: the realized variance used as a true variance proxy for the MSE criterion.  

Assets MSE P-value of SPA test P-value of MCS test  

GARCH CARR RGARCH GJR EGARCH GARCH CARR RGARCH GJR EGARCH GARCH CARR RGARCH GJR EGARCH 

AUD/USD  1.721  2.158  1.393  1.538  1.306  0.078  0.014  0.464  0.237  0.954  0.122*  0.052  0.552*  0.179*  1.000* 
EUR/USD  0.105  0.108  0.104  0.107  0.112  0.648  0.323  0.849  0.419  0.009  0.628*  0.628*  1.000*  0.628*  0.389* 
GBP/USD  0.763  0.676  0.684  0.670  0.665  0.106  0.520  0.340  0.323  0.965  0.191*  0.358*  0.332*  0.358*  1.000* 
NZD/USD  1.131  1.051  1.293  1.063  1.117  0.113  0.754  0.001  0.598  0.017  0.224*  1.000*  0.008  0.809*  0.398* 
USD/CAD  0.101  0.101  0.103  0.101  0.110  0.875  0.591  0.504  0.895  0.007  0.999*  0.999*  0.923*  1.000*  0.205* 
USD/JPY  0.500  0.510  0.494  0.482  0.486  0.356  0.190  0.331  0.909  0.680  0.384*  0.298*  0.549*  1.000*  0.663* 
BOVESPA  10.566  11.822  9.155  9.438  8.884  0.086  0.018  0.471  0.442  0.938  0.282*  0.199*  0.590*  0.590*  1.000* 
CAC 40  3.585  3.494  3.922  3.761  3.801  0.675  0.838  0.166  0.274  0.295  0.693*  1.000*  0.420*  0.609*  0.609* 
DAX  5.030  5.666  4.588  4.738  4.826  0.561  0.223  0.906  0.734  0.522  0.706*  0.545*  1.000*  0.739*  0.739* 
FTSE 100  1.336  1.346  1.287  1.281  1.213  0.137  0.265  0.232  0.065  0.998  0.080  0.133*  0.225*  0.133*  1.000* 
HIS  4.320  3.830  2.695  4.356  2.910  0.028  0.170  0.979  0.048  0.336  0.013  0.103*  1.000*  0.026  0.312* 
IPC  4.085  4.466  4.060  3.215  3.045  0.011  0.020  0.032  0.062  0.945  0.006  0.005  0.010  0.075  1.000* 
KOSPI  2.770  3.262  2.476  2.418  2.992  0.151  0.153  0.731  0.974  0.209  0.116*  0.037  0.813*  1.000*  0.116* 
NIKKEI 225  11.670  9.838  3.370  6.386  4.216  0.039  0.016  0.928  0.006  0.073  0.013  0.011  1.000*  0.013  0.090 
S&P 500  5.169  8.537  4.473  4.696  4.348  0.056  0.016  0.556  0.365  0.818  0.179*  0.011  0.682*  0.604*  1.000* 

The realized variance is estimated as the sum of squared of 5-minute returns. The lowest values of the MSE measure are in bold, p-values for the SPA and MCS tests are computed by the bootstrapping 
methodology (Hansen, 2005). We apply the SPA test five times, each time changing the model which is the benchmark. It means that the given SPA p-value refers to the benchmark model specified in the 
heading of the table. The MCS test is performed for the five models jointly, * indicates that model belongs to the model confidence set with a confidence level of 0.90. The evaluation period is 3 January 
2005 to 31 March 2017. 
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Table A9 
The out-of-sample evaluation of the ten-day-ahead variance forecasts for currency pairs and stock indices: the realized variance used as true variance proxy for the MAE criterion.  

Assets MAE P-value of SPA test P-value of MCS test  

GARCH CARR RGARCH GJR EGARCH GARCH CARR RGARCH GJR EGARCH GARCH CARR RGARCH GJR EGARCH 

AUD/USD  0.431  0.535  0.448  0.429  0.396  0.131  0.000  0.067  0.059  0.974  0.056  0.001  0.045  0.045  1.000* 
EUR/USD  0.172  0.203  0.173  0.187  0.172  0.608  0.000  0.392  0.000  0.000  1.000*  0.000  0.759*  0.000  1.000* 
GBP/USD  0.192  0.202  0.189  0.173  0.173  0.093  0.000  0.001  0.910  0.586  0.040  0.000  0.005  1.000*  0.798* 
NZD/USD  0.402  0.426  0.497  0.400  0.402  0.394  0.002  0.000  0.897  0.401  0.580*  0.005  0.000  1.000*  0.580* 
USD/CAD  0.162  0.170  0.186  0.165  0.172  0.664  0.002  0.000  0.008  0.000  1.000*  0.000  0.000  0.003  0.000 
USD/JPY  0.271  0.342  0.259  0.278  0.266  0.087  0.000  0.996  0.000  0.080  0.031  0.000  1.000*  0.003  0.080 
BOVESPA  1.510  1.597  1.222  1.407  1.409  0.000  0.000  0.512  0.000  0.000  0.000  0.000  1.000*  0.000  0.000 
CAC 40  0.742  0.760  0.789  0.727  0.730  0.304  0.047  0.001  0.764  0.623  0.573*  0.191*  0.014  1.000*  0.808* 
DAX  0.805  0.885  0.840  0.773  0.751  0.097  0.000  0.000  0.064  0.992  0.059  0.000  0.000  0.059  1.000* 
FTSE 100  0.450  0.504  0.429  0.424  0.414  0.004  0.000  0.166  0.100  0.983  0.001  0.000  0.084  0.084  1.000* 
HSI  0.659  0.666  0.475  0.656  0.570  0.003  0.000  0.999  0.004  0.001  0.000  0.000  1.000*  0.000  0.000 
IPC  0.973  1.054  0.689  0.818  0.832  0.000  0.000  0.547  0.000  0.000  0.000  0.000  1.000*  0.000  0.000 
KOSPI  0.589  0.665  0.564  0.582  0.598  0.168  0.000  0.922  0.306  0.018  0.199  0.003  1.000*  0.239  0.082 
NIKKEI 225  1.109  1.037  0.656  0.873  0.758  0.001  0.000  0.687  0.000  0.000  0.000  0.000  1.000*  0.000  0.000 
S&P 500  0.792  0.926  0.674  0.749  0.713  0.000  0.000  0.571  0.002  0.007  0.000  0.000  1.000*  0.000  0.005 

The realized variance is estimated as the sum of squared of 5-minute returns. The lowest values of the MAE measure are in bold, p-values for the SPA and MCS tests are computed by the bootstrapping 
methodology (Hansen, 2005). We apply the SPA test five times, each time changing the model which is the benchmark. It means that the given SPA p-value refers to the benchmark model specified in the 
heading of the table. The MCS test is performed for the five models jointly, * indicates that model belongs to the model confidence set with a confidence level of 0.90. The evaluation period is 3 January 
2005 to 31 March 2017. 
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Table A10 
The out-of-sample evaluation of the ten-day-ahead variance forecasts for currency pairs and stock indices: the realized variance used as a true variance proxy for the MSE criterion.  

Assets MSE P-value of SPA test P-value of MCS test  

GARCH CARR RGARCH GJR EGARCH GARCH CARR RGARCH GJR EGARCH GARCH CARR RGARCH GJR EGARCH 

AUD/USD  2.710  2.679  3.127  2.319  1.733  0.031  0.013  0.041  0.017  0.626  0.011  0.011  0.011  0.011  1.000* 
EUR/USD  0.114  0.126  0.122  0.116  0.114  0.995  0.008  0.097  0.286  0.067  1.000*  0.001  0.033  0.152*  1.000* 
GBP/USD  0.900  0.706  0.720  0.673  0.676  0.047  0.050  0.015  0.996  0.395  0.018  0.018  0.018  1.000*  0.388* 
NZD/USD  1.189  1.112  1.534  1.184  1.243  0.223  0.927  0.000  0.253  0.061  0.195*  1.000*  0.000  0.195*  0.195* 
USD/CAD  0.110  0.112  0.131  0.109  0.119  0.568  0.398  0.027  0.995  0.006  0.545*  0.545*  0.000  1.000*  0.098* 
USD/JPY  0.560  0.587  0.539  0.493  0.513  0.113  0.025  0.008  0.974  0.257  0.025  0.010  0.114*  1.000*  0.279* 
BOVESPA  12.560  13.725  11.822  12.079  11.649  0.210  0.087  0.523  0.525  0.978  0.196*  0.196*  0.614*  0.333*  1.000* 
CAC 40  3.691  3.797  4.782  3.955  4.047  0.949  0.000  0.402  0.117  0.111  1.000*  0.403*  0.012  0.168  0.008 
DAX  5.822  7.430  6.311  5.454  5.514  0.394  0.044  0.011  0.940  0.569  0.633*  0.175*  0.175*  1.000*  0.739* 
FTSE 100  1.632  1.722  1.640  1.486  1.371  0.061  0.050  0.027  0.003  0.852  0.008  0.001  0.001  0.008  1.000* 
HIS  7.253  4.184  2.940  7.434  4.052  0.034  0.063  0.958  0.040  0.068  0.015  0.024  1.000*  0.020  0.024 
IPC  4.954  5.008  3.965  3.631  3.503  0.020  0.002  0.095  0.091  0.983  0.009  0.005  0.073  0.073  1.000* 
KOSPI  3.337  3.076  4.178  3.300  3.841  0.109  0.953  0.022  0.123  0.039  0.084  1.000*  0.019  0.084  0.056 
NIKKEI 225  19.539  11.711  3.783  6.760  4.290  0.016  0.017  0.830  0.033  0.299  0.005  0.014  1.000*  0.024  0.342* 
S&P 500  5.100  5.481  4.782  5.211  4.795  0.500  0.265  0.885  0.220  0.737  0.509*  0.420*  1.000*  0.420*  0.949* 

The realized variance is estimated as the sum of squared of 5-minute returns. The lowest values of the MSE measure are in bold, p-values for the SPA and MCS tests are computed by the bootstrapping 
methodology (Hansen, 2005). We apply the SPA test five times, each time changing the model which is the benchmark. It means that the given SPA p-value refers to the benchmark model specified in the 
heading of the table. The MCS test is performed for the five models jointly, * indicates that model belongs to the model confidence set with a confidence level of 0.90. The evaluation period is 3 January 
2005 to 31 March 2017. 
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increasingly popular. Existing literature shows that the range-based models outperform the standard GARCH models (see e.g. Chou, 
2005; Brandt and Jones, 2006; Asai, 2013; Fiszeder and Perczak, 2016; Molnár, 2016; Fiszeder and Fałdziński, 2019; Fiszeder et al., 
2019; Xie, 2019). However, a comparison of the performance of range-based volatility models is missing in the literature. This paper 
fills that gap by comparing five models, three based on closing prices, i.e., the GARCH, GJR, EGARCH models, and two incorporating 
high and low prices, namely the CARR model and the Range-GARCH model. The CARR model describes the dynamics of the condi
tional mean of the price range, while the Range-GARCH model is similar to the standard GARCH model, but instead of the squared 
returns, it utilizes a more efficient volatility estimator based on the daily range. 

We evaluate the competing models based on Monte Carlo experiments. For a simulated time series, the range-based models 
definitely win over the standard GARCH model and two asymmetric models, while the performance of the RGARCH model and the 
CARR model is similar. It is also crucial to compare models using real-world financial data. We therefore utilize two data sets: six 
currencies pairs and nine stocks indices. We find that the Range-GARCH model outperforms the GARCH, GJR, EGARCH, and CARR 
models both in in-sample and out-of-sample analysis. On the other hand, the CARR model performs sometimes better, but sometimes 
worse than the standard GARCH model and two asymmetric models. It means that the way in which low and high prices are used in the 
model is essential. 

Additionally, we test whether extreme forecast improvements can be explained by the level of volatility. We show that an increase 
of the realized variance leads to a higher forecast advantage of the CARR model over the GARCH model, and the predominance of the 
RGARCH model over the standard GARCH, GJR, EGARCH, and CARR models for empirical time series. Altogether, we conclude that 
range-based models are better than the standard GARCH model, and when considering these two range-based models, Range-GARCH 
is preferred. 

The study can be extended in the future to other variants of the GARCH models which describe other properties of financial time 
series like long memory or heavy tails of conditional distributions. Modelling such features can improve forecasts, but this applies to all 
models considered in this paper. It means that not only can the standard GARCH model be extended for this purpose, but so can the 
CARR and RGARCH models, as the GARCH model has many various extensions. We believe this as an interesting topic for further 
studies. 
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