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Foreword to the Polish edition [Pietruszczak, 2000]

Our aim in this book is not simply to provide an introduction to the topic
of mereology but also to undertake a thorough analysis of it. Hence its
name: Metamereology (in Polish: Metamereologia).

In Chapter I, entitled “Introduction to the problems of mereology”,
we introduce the philosophical problems connected with the concepts of
being a part of a whole and of being a set (both a collective set and a dis-
tributive set). In Section 1 of the chapter, we discuss the basic properties
of the relations of being a part of and of being an ingrediens of (i.e., being
a part of a whole or being the whole itself). In Section 2, we concern
ourselves with two meanings of the terms “set” and “element of a set”.
The following section, Section 3, is devoted to the logical foundations of
set theory. In Section 4, we present Leśniewski’s conception of classes
(sets) and their elements. We compare his view to those of Cantor, Frege,
and Whitehead and Russell. In order to better understand Leśniewski’s
theory, we introduce a sketch of his logic in Section 5. We compare
Leśniewski’s logic on the one hand with classical predicate calculus and
on the other hand with so-called free logic. This comparison enables us
to present an outline of Leśniewski’s mereology as a theory of certain
schemas based on the classical predicate logic (Section 6). Section 7, the
final section of Chapter I, is an introduction to mereology understood as
a theory of certain set-theoretic relational structures.

The rest of the book is divided into two parts and two appendices.
Both parts are devoted to the theoretical foundations of mereology.
Both appendices are fundamentally algebraic. Only in Section 1 of
Appendix II do we recall the basic concepts of (elementary) first-order
theories and their models. Such an analysis permits us to separate out
established algebraic facts  facts independent of the mereological ax-
ioms. The reader familiar with lattice theory may wish to take no more
than a glance at Appendix I in order simply to familiarise themselves
with the terminology used in this book. Appendix II is devoted to the
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‘elementary side’ of Boolean lattice theory. We will make use of it when
analysing the ‘elementary side’ of mereology.

In Part A (chapters II–V), mereology is treated a theory of certain
relational structures called mereological structures. We present our mo-
tivation for this approach in the introduction to this part on p. 70.

In Chapter II, we examine classical mereology. We start with the
axioms chosen by Leśniewski and show their basic consequences. We
finish the chapter with a representation theorem for mereological struc-
tures. In Chapter III, we introduce the connection between classical
mereology and the theory of complete Boolean lattices. This connection
allows us to show, for example, that the class of mereological structures
is not elementarily axiomatisable. We also examine the connection be-
tween Leśniewski’s axiomatization and the one used by Alfred Tarski. In
Chapter IV, we give various equivalent axiomatisations of mereological
structures using various primitive concepts. In Chapter V, the final
chapter of Part A, we examine the dependence of various conditions
that appear in the theory of mereological structures. This enables us to
undertake an examination of the lattice of superclasses of the class of
mereological structures itself.

Part B concerns certain elementary theories connected with mere-
ology. In Chapter VI, we formulate a theory which we call elementary
mereology. We examine the class of models of this theory, which is a
proper superclass of the class of mereological structures. As a rule, ele-
mentary mereology is formulated with an infinite number of axioms. We
prove that it is finitely axiomatisable. Although the class of mereological
structures is narrower than the class of models of elementary mereology,
it turns out that the theses of the elementary theory are all and only
those formulae which are true in each mereological structure.

In Chapter VIII, we concern ourselves with a certain elementary the-
ory in which it is possible to talk of collective sets composed both of
individuals and of distributive sets. Besides the concepts of a distribu-
tive set and the membership relation (for distributive sets), the theory
also employs three concepts: collective set, being a collective part of, and
being an individual. We call it the unitary theory of individuals and sets.

Acknowledgements. I would like to warmly thank the reviewers of
this book, Professors Jacek Malinowski and Jacek Paśniczek, for their
valuable comments which helped me as I prepared this book for the press.
I would also like to thank Professor Sergei P. Odintsov from the Sobolev
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Institute of Mathematics in Novosibirsk for many fruitful discussions on
the problems discussed in Appendix II.

I would like to thank finally KBN for the funding given to Research
Project 1 H01A 005 12, in which I was able to conduct the research that
ultimately led to this book.



Foreword to the English edition

The English edition is a revised and extended version of my book [Pie-
truszczak, 2000]. Alongside corrections to a number of minor errors of
content, it contains a greater amount of commentary and many of the
key claims in the book have had their proofs filled out. Chapter VII
in the Polish edition has become chapter VIII to allow for a new chap-
ter VII. Chapter VIII itself has two additional sections (sections 4 and 5).
Moreover, sections 1 and 13–18 in Appendix I are new.

The final part of the first section of chapter I has, however, been
removed. It introduced and discussed a problem concerning the con-
struction of a general theory of parts without assuming the transitivity
of the relation is a part of (and also with assuming the transitivity of the
relation is an ingrediens of ). The reason for its removal is that its proper
formulation and solution can be found in [Pietruszczak, 2012, 2014]. In
addition, problems for various theories of parts without the assumption
of transitivity and their solutions can also be found in Chapter IV of
[Pietruszczak, 2013].

Acknowledgements. I would like to thank the Ministry of Science and
Higher Education (Poland) for the funding the preparation and publica-
tion of this work as part of the National Programme for the Development
of the Humanities 2016–2017 (grant no. 0191/NPRH4/H3a/83/2016).

I would also like to thank Dr Matthew Carmody for translating the
original Polish version of this book into English.



Chapter I

An introduction to the problems of mereology

Mereology arose as a theory of collective sets. It was formulated by the
Polish logician Stanisław Leśniewski.1 Collective sets are certain wholes
composed of parts. In general, the concept of a collective set can be
defined with the help of the relation is a part of and mereology may
therefore be considered as a theory of “the relation of part to the whole”
(from the Greek: µερoς, meros, “part”).

1. Parts and ingredienses

In everyday speech, the expression “part” is usually understood as hav-
ing the sense of the expressions “fragment”, “bit”, and so forth. Thus
understood, the relation of part to the whole has two properties:

(a) no object is its own part;
(b) there are not two objects such that the first could be a part of the

second and the second is a part of the first.

Thanks to condition (a), we have no difficulty in interpreting the phrase
“two objects” in condition (b). One can see that it concerns ‘two differ-
ent’ objects.2

An example may be supplied in support of the properties (a) and
(b): if I read all of a book, it would seem unnatural to say that I read

1 Of course, Leśniewski did not invent the concept of a collective set. It is dis-
cussed, for example, by Whitehead and Russell in comments in Principia Mathematica

[Whitehead and Russell, 1919] concerning the theory of classes developed in that work.
Whitehead made use of such sets in his thoughts on the philosophy of space-time [cf.,
e.g., Whitehead, 1929].

2 Without condition (a), the possibility of ambiguity arises, for linguistic custom
permits us to talk of ‘two objects, which turn out to be identical’. Yet this ambiguity
does not, however, lead to complications. If we accept that the phrase “two objects”
allows for such an understanding, under which there is the possibility that the two
objects are identical, then condition (b) simply entails condition (a): there is no object

such that it may be a part of itself.
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a part of it; assuming the book has a number of chapters, then the first
chapter is a part of the book, but not conversely. In the literature, the
following kind of example is found: my left hand is not a part of my left
hand; my left hand is a part of my left arm, and not conversely. It would
appear that properties (a) and (b) are beyond question.

In the literature on mereology, the phrase “proper part” is often used
instead of the expression “part” we have so far been using. The practice
has become established of using “part” with a wider extension. It is that
a part of a given object is that object itself or each of its parts in the
everyday sense of that word. Each part of an object distinct from the
object itself is called a proper part. With this new meaning, the expres-
sion “part” meets a condition contrary to  in the sense of traditional
logic  condition (a). For it follows directly from the definition that every
object is its own (improper) part. We obtain moreover that no object
is its own proper part. If, however, one understands the phrase “two
objects” in the sense of ‘two different objects’, then “part” understood
this way meets condition (b).

Leśniewski did not ask us not to understand “part” with its everyday
sense. Instead, he introduced the word “ingrediens” (in an older Polish
form “ingredjens”). An ingrediens of a given object is the object itself
or each of its parts, where “part” is understood with its everyday sense
[cf. Leśniewski, 1928, p. 264, footnote 1 and definition I and hereafter
p. 47]. We shall also be using Leśniewski’s terminology. We shall there-
fore be using the word “part” (understood with its everyday sense) and
“ingrediens” (as defined above).3

Leśniewski took the view that the relation is a part of has properties
(a) and (b) and that it is transitive, i.e., that any part of a given object
is also its part. In support of this property the following example was
given: my left arm is a part of my body, which entails that my left hand
is also a part of my body. Rescher [1955, p. 10] shows, however, that
in the general case, the transitivity of the relation of a part to a whole
is essentially problematic. He provides the following counterexample:
a nucleus is a part of a cell, a cell is a part of an organ, but a nucleus
is not a part of an organ. In fact, if we consider a part to be a direct
functional constituent of a whole, a nucleus is not a part of an organism.

3 By accepting the convention broadening the sense of the word “part”, we may
sometimes be led to certain misunderstandings. The strange-sounding term “ingredi-
ens” is in this case an ‘ally’, as it reminds us that it is an ‘artificial’ concept.
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Yet Simons [1987, p. 107–108] shows that the concept of a part with
transitivity corresponds to spatio-temporal inclusion and in that sense
it is true that a nucleus is a part of an organ. Simons states that the
fact that the word “part” has an additional meaning does not undermine
the mereological concept of a part, because it is not being claimed that
the mereological concept includes all the meanings of the word “part”
but rather those that are fundamental and of greatest importance. He
says that the transitivity of the relation is a part of causes no special
difficulties when we refer to spatio-temporal relations, including those
between events.

In order to avoid difficulities of interpretation arising from the use of
everyday language, in this book we shall make use of a formal language.
In this language “y”, “z”, “u”, “v”, and “w” (with or without indices)
are individual variables ranging over arbitrary objects. The symbols
“¬”, “∧”, “∨”, “⇒”, and “⇔” are correspondingly the truth-connectives:
negation, conjunction, inclusive disjunction, material implication (con-
ditional), and material biconditional.4 The symbols “∀” and “∃” are the
universal and existential quantifiers, respectively, which shall be binding
individual variables.5 In this formal language, conditions (a) and (b) are
written as follows:

¬∃x x is a part of x, or ∀x ¬x is a part of x , 6 (irrP)

¬∃x,y(x 6= y ∧ x is a part of y ∧ y is a part of x), or

∀x,y ¬(x 6= y ∧ x is a part of y ∧ y is a part of x).7
(antisP)

We observe that the conjunction of (irrP) and (antisP) is logically equiv-
alent to the sentence below:

¬∃x,y(x is a part of y ∧ y is a part of x), or

∀x,y¬(x is a part of y ∧ y is a part of x).
(asP)

4 We may express these symbols in turn with the phrases: “it is not the case
that”, “and”, “or”, “if . . . then . . . ”, “if and only if” (hereafter abbreviated to “iff”).

5 We may express these symbols with the phrases “every object . . . is such that”
and “some object . . . is such that”.

6 Two forms are given, one employing the universal quantifier and one employing
the existential quantifier. Via Morgan’s law for quantifiers formulae p¬∃xϕ(x)q and
p∀x¬ϕ(x)q are logically equivalent.

7 In these formalised sentences the phrase “two objects” is to be interpreted so
as not to allow that they be ‘identical objects’.
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Remark 1.1. One may observe that these are formalisations of sentence
(b) in which we do allow the phrase “two objects” to be interpreted so
as to allow that those objects be identical (cf. footnote 2).

Sentences (irrP) and (antisP) state respectively that the relation of
part to a whole is reflexive and antisymmetric. The sentence (asP) states
that the relation of part to a whole is asymmetric. It is a known result
that a relation is asymmetric iff it is a reflexive and antisymmetric (cf.
Lemma 2.2(iii) in Appendix I).

We recall that the use of different variables does not mean that we
are referring to different objects. In order to understand better the how
variables ‘operate’, we may say by way of paraphrase that they refer to
the picking-out of objects and not directly to the objects themselves.8

Let us suppose, that x is an object picked out the first time and y an
object picked out the second time. If we pick out different objects at both
times (i.e., x 6= y), then condition (antisP) precludes the possibility that
both x is a part of y and y is a part of x. If we pick out the same object at
both times (i.e., x = y), then condition (irrP) precludes the possibility
that x is a part of x. Conditions (irrP) and (antisP) therefore entail
condition (asP). Conversely, under the preceding assumption concerning
x and y, condition (asP) rules out the possibility that both x is a part of
y and y is a part of x. If we therefore pick out the same object twice, we
obtain condition (irrP). If, however, we pick out two different objects,
we obtain condition (antisP).

Obviously, conditions (antisP) and (asP) may be formulated so as to
be logically equivalent:

∀x,y(x is a part of y ∧ x 6= y =⇒ ¬ y is a part of x), or

∀x,y(x is a part of y ∧ y is a part of x =⇒ x = y),
(antis′

P)

∀x,y(x is a part of y =⇒ ¬ y is a part of x). (as′
P)

Employing the paraphrase ‘pickings-out of objects’, we may read off
two versions of sentence (antis′

P): if x is the object picked out the first
time and y the object picked out the second time, then (i) if x is a part

8 We shall not paraphrase things so as to employ the concept of a valuation of
the variables since we want to use variables to talk about objects and not about the
variables themselves. Furthermore, an expression of the sort “a given object is the
value of the variable ‘x’ ” would not help us much. The formal phrase “object p is the
value of the variable ‘x’ ” clarifies nothing regarding the use of individual variables,
as it itself features the variable “p”.
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of y and x is distinct from y, then y is not a part of x; (ii) if x is a part
of y and y is a part of x, then we have picked out the same object both
times.

Remark 1.2. Since (irrP) says that if x is a part of y, then x 6= y, the
second assumption in the antecedent of (i) therefore seems inessential.
Irreflexivity and antisymmetry automatically yield asymmetry, such as
(as′

P). Analogously, the antecedent in (ii) seems contradictory. Via (ii),
it follows that x = y whereas via (irrP), it follows that x 6= y.

The formula (as′
P) may, however, be read: if x is the object picked

out the first time and y the object picked out the second time and x is
a part of y, then y is not a part of x. In this formulation, the logical
equivalence of the sentence (as′

P) with the conjunction of the sentences
(irrP) and (antis′

P) is easily displayed.
Let U be any non-empty set of objects.9 Let ⊏ be the binary relation

is a part of holding between objects from a set U , i.e., we put:

⊏ := { 〈x, y〉 ∈ U × U : x is part of y }.

Instead of “〈x, y〉 ∈ ⊏” and “〈x, y〉 6∈ ⊏” we will write for short: “x ⊏ y”
and “x 6⊏ y”, respectively. We extend this policy to other combinations
of variables ranging over objects from U . Condition (asP) (resp. (as′

P))
states that the relation ⊏ is asymmetric in the set U , i.e., we have:

∀x,y∈U ¬(x ⊏ y ∧ y ⊏ x), or
∀x,y∈U (x ⊏ y =⇒ y 6⊏ x).

(as⊏)

It logically follows from (as⊏) that the relation ⊏ is irreflexive in U ,10 i.e.,
we obtain:

∀x∈U x 6⊏ x . (irr⊏)

In accordance with the definition of the relation is an ingrediens of
accepted by Leśniewski (cf. p. 16), we have, for arbitrary x, y ∈ U :

x is an ingrediens of y :⇐⇒ x = y ∨ x ⊏ y . (df-ingr)

9 In this section, the term “set” is being used exclusively in the distributive sense
(compare the next few sections, in which we shall talk about collective sets and the
difference between the two types).

On the issue of terminology and notation, see Appendix I. In accordance with
the convention established there, in the later parts of this book, P(X) is the set of all
subsets of a freely chosen set X. Furthermore, let P+(X) := P(X) \ {∅}, i.e., P+(X) is
the set of all non-empty subsets of a set X.

10 Compare the sentence (irrP). As we have just observed, the asymmetry of the
relation ⊏ is equivalent to its irreflexivity and antisymmetry.
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Let ⊑ be the binary relation is an ingrediens of holding between objects
from the set U , i.e.:

⊑ := { 〈x, y〉 ∈ U × U : x is an ingrediens of y }.

We shall pursue the same policy of abbreviation with ⊑ as we are for ⊏.
We have, therefore, for arbitrary x, y ∈ U :

x ⊑ y :⇐⇒ x = y ∨ x ⊏ y . (df ⊑)

From Lemma 2.3(i,iii) in Appendix I, the relation ⊑ is reflexive and
antisymmetric,11 i.e., we have:

∀x∈U x ⊑ x , (r⊑)

∀x,y∈U (x ⊑ y ∧ y ⊑ x =⇒ x = y). (antis⊑)

Moreover, it follows from Lemma 2.3(ii,iii) in Appendix I that:

∀x,y∈U (x ⊏ y ⇐⇒ x ⊑ y ∧ x 6= y) (⊏=⊑\id)

∀x,y∈U (x ⊏ y ⇐⇒ x ⊑ y ∧ y 6⊑ x). (⊏=⊑\⊒)

We will not be assuming that the relation ⊏ is transitive in any set U
of objects. In mereology, however, only such structures 〈M,⊏〉 interest
us, where M is a non-empty set and ⊏ is also a transitive relation in M ,
i.e., we have:

∀x,y,z∈M (x ⊏ y ∧ y ⊏ z =⇒ x ⊏ z). (t⊏)

In such structures, by (df ⊑) and (t⊏), we obtain that also the relation
⊑ is transitive, i.e., we have:

∀x,y,z∈M (x ⊑ y ∧ y ⊑ z =⇒ x ⊑ z). (t⊑)

Remark 1.3. At this point in the Polish edition of this book [Pietru-
szczak, 2000], there featured a discussion of a problem concerning the
construction of a general theory of parts without the assumed transitivity
of the relation is a part of (and also for the assumed transitivity of the
relation is an ingrediens of ). We will not be presenting the problem
in this work, as its proper formulation and solution can be found in
[Pietruszczak, 2012, 2014]. Furthermore, problems for various theories
of parts without the assumption of transitivity and their solutions can
be found in Chapter IV of [Pietruszczak, 2013] (at present, this work is
only available in Polish but an English version is in the pipeline).

11 Concerning the other meaning of term “part”, which allows for so-called im-
proper parts.
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2. Two meanings of the terms “set” (“class”) and
“element of a set” (“element of a class”)

When we talk about sets (resp. classes) and their elements, certain mis-
understandings can arise because of the multiplicity of meanings the
terms “set” and “element of a set” (resp. “member of set”) possess.
Consider following passage from [Borkowski, 1977]:12

The terms “set” and “element of a set” are used with two meanings.
Understood with the first of these meanings, the term “set” signifies
objects composed of parts, collections and conglomerations of a different
kind. The elements of such type of set are to be understood as arbitrary
parts of that set, where the term “part” is understood in its everyday
sense, with which, for example, the leg of a table is a part of the table.
A pile of stones is in this sense a set of those stones. The elements
of that set are both individual stones along with the various parts of
those stones, and thus, for example, the molecules or atoms of which
those stones are composed. With this meaning, the set of given stones
is identical to, for example, the set of all the atoms from which they
are composed. Elements of a set so understood, such as the set of all
tables, would be not only the individual tables but, for example, the
legs of those tables or other of their parts. We shall say that we are
using here the term “set” in its collective sense, as we are using it with
that sense. A theory of sets and the relation is a part of understood in
line with the above has been constructed by S. Leśniewski, who called
it mereology.

We use the terms “set” and “element of a set”, with the second
meaning in the following example: when talking about the et of Euro-
pean countries, we consider as elements of that set particular European
countries, such as Poland, France and Italy, and we do not consider as
elements the parts of those countries. With this meaning, the Tatra
mountains or the Małopolska Upland are not elements of the set of
European countries even though they are parts of certain European
countries. We also use these terms with this meaning for example
when, talking about the set of Polish towns, we consider as elements
of that set towns such as Wrocław and Warsaw whilst not considering
as elements of that set particular streets or squares or other parts of
those cities. The terms “set” and “element of a set” have long been
used with this meaning in logic, when speaking of extensions of names

12 We will be drawing on some rather long excerpts from various sources in this
initial chapter both to introduce the reader to key concepts and to assure them that
we are not inventing new meanings for these concepts but employing established ones.
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or concepts as certain sets of objects. In contrast to the first meaning,
it is not possible to identify the concept of an element with the common
concept of a part. [Borkowski, 1977, p. 146]

The second meaning of the term “set” has come to be called the dis-
tributive or set-theoretic meaning.

Let us add further a section from the final paragraph of a book by
Słupecki and Borkowski [1984] that makes some philosophical on sets.

[. . . ] the word “set” has two clearly distinct meanings in everyday
speech, of which one is call the collective meaning and the second the
distributive. With the collective meaning  a set of a certain objects
is a whole composed of those objects in the same way that a chain
is composed of links and a pile of a sand of grains of sand. With
this meaning, a set of concrete, sensually perceptible objects is also a
concrete and perceptually-available object. Using the term “set” with
this meaning, we understand “x is an element of the set A” as having the
same sense as the expression “x is a part of the set A” (with the word
“part” having that meaning such that the leg of a table is a part of the
table). A set theory understood in this way was built by S. Leśniewski
under the name mereology. Using the term “set” with its distributive
meaning, we consider the sentence “Mars is an element of the set of
planets in our Solar System” as equivalent to the sentence “Mars is a
planet in our Solar System”. The difference in meaning is attested to by
the fact that certain true sentences where “set” is understood with its
first meaning are false when it is understood with its second meaning.
For example, where the meaning is collective, it is true that a tenth
part of Mars is an element of the set of planets in our Solar System,
because it is a part of the whole arrangement; whereas that sentence is
false if the meaning is distributive, because no tenth part of Mars is a
planet in our Solar system. [Słupecki and Borkowski, 1984, p. 279]

It is evident from the above texts that the terms “collective set” and
“distributive set” have different meanings. It would seem indeed that
the single common characteristic is that, in both cases, it is possible to
say that “a set of certain objects is a whole composed of those objects”
[Murawski, 1995, p. 164]. To put it another way, there may be a similar
“way of creating sets” for both concepts. As Hao Wang writes:

There are two familiar and natural ways of construing sets.13 On the
one: hand, given a multiplicity of objects, some or all of these objects

13 Both conceptions of the creation of sets described here obviously concern dis-
tributive sets.
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can be conceived together as forming a set; the process can be iterated
indefinitely. This way may be called “the extensional conception of set.”
On the other hand, a set may be seen as the extension of a concept or a
property in the sense that it consists of all and only the objects which
have the property. This way may be called “the intensional conception
of set.” We tend to use both conceptions and expect no conflict between
them. Yet in practice it makes a difference whether one takes the one
or the other conception as basic.

Roughly speaking, Frege begins with the intensional conception and
Cantor begins with the extensional conception. [Wang, 1994, p. 267]

Since collective sets and distributive sets (understood according to
the “extensional conception”) are created in a similar way, as ‘collections
into one whole’ of certain objects, the difference therefore consists in this:
the basis for how they are collected. Above all, it must be observed that
the word “collection” is understood differently in each case.

In the case of collective sets, the “collection” (“grouping”) of certain
objects may be compared to the ‘gluing together’ of those objects. As
Słupecki and Borkowski have written: if all ‘collections’ of elements are
concrete14, then the collective set thereby obtained is a concrete object.15

If, however, one or other of the ‘grouped’ objects is abstract, then that
same collective set must be recognised as an abstract object as well.16

In the passages above from [Borkowski, 1977] and [Słupecki and Bor-
kowski, 1984], it was said that, understood with its everyday sense, the
concept of being an element of a given collective set is supposed just to
amount to the concept of being a part of (it). In Leśniewski’s mereology
there is, however, a slightly different situation. Each part of a given
collective set is an (collective) element of it. The set itself is, however,
also collective element of itself. In mereology therefore the concept of
being an element of a given collective set overlaps with the concept of
being an ingrediens of that set (see below (5.7) on p. 51).

14 By concrete object we understand here that which exists in space-time. An
object which is not concrete we call abstract.

15 In practice, we talk as a rule of collective sets composed exclusively of concrete
objects.

16 Leśniewski himself illustrated his theory of collective sets composed of geomet-
rical segments [see Leśniewski, 1927, pp. 186–187 and hereafter p. 45]. It is, however,
hard to regard such geometrical segments as concrete objects. (Leśniewski might have
thought differently, though.)

For collective sets composed of abstract objects, see, e.g., [Pietruszczak, 1996,
1997] and hereafter Chapter VIII.
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Used with their distributive senses, the terms “set” and “class” are
often treated as synonyms. In certain versions of modern set theory a
distinction is made between them. In such theories, each set has to be
a class, but not conversely. Sets are a special kind of class: they are
those classes which are elements of other classes. Classes not belonging
to any class are called proper classes. Classes composed exclusively of
concrete objects are sets. In the passages below, therefore, if there is talk
of distributive classes composed of concrete objects, then such classes are
also sets.

In the case of distributive classes (sets), the collection  i.e., collect-
ing of objects, regardless of their type  must be understood always in
an abstract sense and not a spatio-temporal one. Quine writes:

The reassuring phrase ‘mere aggregates’ must be received warily as a
description of classes. Aggregates, perhaps; but not in the sense of
composite concrete objects or heaps. Continental United States is an
extensive physical body (of arbitrary depth) having the several states as
parts; at the same time it is a physical body having the several counties
as parts. It is the same concrete object, regardless of the conceptual
dissections imposed; the heap of states and the heap of counties are
identical. The class of states, however, cannot be identified with the
class of counties; for there is much that we want to affirm of the one
class and deny of the other. We want to say e.g. that the one class has
exactly 48 members, while the other has 3075. We want to say that
Delaware is a member of the first class and not of the second, and that
Nantucket is a member of the second class and not of the first. These
classes, unlike the single concrete heaps which their members compose,
must be accepted as two entities of a non-spatial and abstract kind.

[Quine, 1981, p. 120]

With their distributive meaning, the terms “class” (“set”) and “ele-
ment” satisfy the principle given below in the form of a schema:

∀x

(
x is an element of the class (set) of Ps ⇐⇒ x is a P

)
. (2.1)

Remark 2.1. In this schema, as in others, the letter “P” is not a variable
in the language of classical logic. It is just a so-called schematic letter .
It stands for (in the sense of ‘appearing instead of’) an arbitrary gen-
eral name (term). Crudely put, the letter “P” (as with the letter “S”)
indicates an empty space which we may fill by putting in an arbitrary
general name.
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Moreover, in (2.1) the letter “x” (as used hereinafter the letters “y”,
“z”, “u”, etc.) is an individual variable in the language of classical logic.
If it is not bound by a quantifier, one may replace it with an arbitrary
name having exactly one referent (for details see point 3 of Section 5).

Remark 2.2. In this work, the expressions “name” and “term” we will use
interchangeably. A referent (or designatum) of a name is an arbitrary
object which it signifies. Names that do not have any referents are called
empty.

We will use the traditional division: general names – singular names.
In short, general names are suitable for building one-place predicates of
the form “is a P”. Singular names include, for example: proper names,
singular definite descriptions (“the highest mountain of the world”, “the
youngest daughter of the author of this book”), and demonstratives
(“that dog”).17 A singular name is intended to refer to exactly one
object, but does not have to. There are empty names for both general
(“crocodile living on the moon”, “son of the author of this book”) and
singular names (e.g., “Princess Snow White”, “the youngest son of the
author of this book”).

Leśniewski employed only one syntactic category of names. He
thought that from a logical point of view, the only way basis for dividing
names was the number of their referents. He distinguished the following
three categories:

• empty names,
• names each of which has exactly one referent,
• names each of which has at least two referents.

In order to employ the above tripartite division, we shall introduce two
new terms for the latter two categories. A name which has exactly one
referent we will call monoreferential. A name which has at least two ref-
erents we will call polyreferential. It should be clear that in the category
of monoreferential names we find singular names and general names. Are
there polyreferential singular names? Do we only find general names in
the category of polyreferential names? This is not a question we will
look further into in the current work.

Leśniewski’s category of empty names is also our category. His cat-
egory of singular names (“kategoria nazw jednostkowych” in Polish) is
our category of monoreferential names and his category of general names
(“kategoria nazw ogólnych” in Polish) is our category of polyreferential

17 For singular names see, e.g., [Stirton, 2000].
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names. It is because “singular name” and “general name” have differ-
ent meanings in English that we have decided to introduce the terms
“monoreferential name” and “polyreferential name”. A singular name is
not what we understand by a monoreferential name both because there
can be monoreferential general names and empty singular names.

Delaware is a state of the USA but it is not a county whereas with
Nantucket it is the reverse. Therefore, by (2.1), the class of states of the
USA is different from the class of counties because “Delaware is a member
of the first class and not of the second, and that Nantucket is a member
of the second class and not of the first” [Quine, 1981, p. 120]. This non-
identity attests to the fact that the aforementioned distributive classes
may not be identified with any spatio-temporal object. Essentially, the
USA is the only spatio-temporal object with which those classes may be
identified. Under that identity we would have the equality rather than
the inequality of those classes (transitivity and the commutativity of
identity). In other words, what Quine is saying in the previous passage
is that if the class of the states of the USA occupied some ‘place’ in
space, then it would the very same place that is occupied by the USA.
The same would be true of the class of counties in the USA. We should
therefore identify these distributive classes, contrary to condition (2.1).

The analyses presented in both the passage by Quine and the para-
graph about still do not prove that they are distributive classes. The
analyses show only that if there are distributive classes, they are abstract
objects.18

18 In this paragraph the word “exists” has consciously not been used in place
of the two expressions “is” and “are”. We do not want to take any position on the
question of whether being is the same as existence. (Which is also why in footnote 5,
the existential quantifier is to be read as “some object . . . is such that”.)

Some philosophers do not regard the meanings of the terms “exist” and “be” as
identical. They believe that all that exists also is, but not conversely (which means
that there are objects which do not exist). For example, “Pegasus” signifies a (fic-
tional) object which does not exist. A number of these philosophers may identify
existence with being a concrete (physical) object.

Other philosophers identify the meanings of “exist” and “be”. For example, Quine
replies to the question “What is there?” with “Everything” [Quine, 1953, p. 1]. Pre-
serving the use the terminology of the preceeding paragraph for the purposes of com-
parison  all that is also exists and vice versa. Quine stresses that “However, this is
merely to say that there is what there is. There remains room for disagreement over
cases; and so the issue has stayed alive down the centuries” [Quine, 1953, p. 1].

Leśniewski would definitely have replied to the question “What is there?” in a
similar way (in his theory of what he calls ontology: something is an object iff it
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We may paraphrase the preceding considerations: it is possible ‘to
collect abstractly’ the states of the USA whilst not collecting their coun-
ties and vice versa. Quine provides us with another example in support
of the theory of the abstractness of distributive classes (sets):

The fact that classes are universals, or abstract entities, is sometimes
obscured by speaking of classes as mere aggregates or collections, thus
likening a class of stones, say, to a heap of stones. The heap is indeed a
concrete object, as concrete as the stones that make it up; but the class
of stones in the heap cannot properly be identified ,with the heap. For,
if it could, then by the same token another class could be identified with
the same heap, namely, the class of molecules of stones in the heap. But
actually these classes have to be kept distinct; for we want to say that
the one has just, say, a hundred members, while the other has trillions.
Classes, therefore, are abstract entities; we may call them aggregates
or collections if we like, but they are universals. That is, if there are
classes. [Quine, 1953, pp. 114–115]

As in the previous quoted passes, Quine is saying that if a class of stones
occupied some ‘place’ in space, then it would be a pile of stones. A similar
thing would be said of the molecules in the stones. It is possible to ‘ab-
stractly take’ the stones ‘without moving’ their molecules or vice versa.

Let us remind ourselves that in “the intensional conception of [dis-
tributive] set”, “a set may be seen as the extension of a concept or a
property in the sense that it consists of all and only the objects which
have the property” [Wang, 1994, p. 267]. Thus, not as a property, but
as its extension. A further excerpt from [Quine, 1981] will help clarify
what is meant:

exists). Leśniewski would consider himself differing from Quine in his views on ex-
istence (being) “in particular cases”. Taking into account Leśniewski’s oft-broadcast
nominalist views [cf. his works or e.g. Küng, 1977a,b, 1981] one may say that for him
only concrete (physical) objects exist (are). Leśniewski thus rejects the existence of
objects such as distributive classes. Ironically, he “senses” that they have “the scent
of mythical paradigms from a rich gallery of ‘invented’ objects” [Leśniewski, 1927,
p. 204]. Arguments given by Whitehead and Russell in [1919]  similar to Quine’s
arguments in the citation above from [Quine, 1981]  inclined Leśniewski to say that
since distributive classes do not exist “in the world”, there are therefore no such
things. [Leśniewski, 1927, pp. 204–205; an similar passage from [Leśniewski, 1927] is
to be found on p. 43]. To put it another way: for Leśniewski, the term “distributive
class”, as with the term “Pegasus”, signifies nothing.

Reading Quine, one is inclined to say that, for him, although Pegasus does not
exist, there do exist, however, mathematical beings such as distributive sets.
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Once classes are freed thus of any deceptive hint of tangibility, there
is little reason to distinguish them from properties. It matters little
whether we read ‘x ∈ y’ as ‘x is a member of the class y’ or ‘x has the
property y’. If there is any difference between classes and properties, it
is merely this: classes are the same when their members are the same,
whereas it is not universally conceded that properties are the same
when possessed by the same objects. The class of all marine mammals
living in 1940 is the same as the class of all whales and porpoises living
in 1940, whereas the property of being a marine mammal alive in 1940
might be regarded as differing from the property of being a whale or
porpoise alive in 1940. But classes may be thought of as properties if
the latter notion is so qualified that properties become identical when
their instances are identical. Classes may be thought of as properties in
abstraction from any differences which are not reflected in differences
of instances. For mathematics certainly, and perhaps for discourse gen-
erally, there is no need of countenancing properties in any other sense.

[Quine, 1981, pp. 120–121]

Quine later relaxed his views on the identification of properties possessed
by the same objects, i.e., coextensive properties (features):

If it makes clear sense to speak of properties, it should make clear sense
to speak of sameness and difference of properties; but it does not. If
a thing has this property and not that, then certainly this property
and that are different properties. But what if everything that has this
property has that one as well, and vice versa? Should we then say
that they are the same property? If so, well and good; no problem.
But people do not take that line. I am told that every creature with a
heart has kidneys, and vice versa; but who will say that the property
of having a heart is the same as that of having kidneys?

In short, coextensiveness of properties is not seen as sufficient for
their identity. What then is? If an answer is given, it is apt to be that
they are identical if they do not just happen to be coextensive, but are
necessarily coextensive. But necessity, q.v., is too hazy a notion to
rest with.

[. . . ] why not clean up our act by just declaring coextensive prop-
erties identical? Only because it would be a disturbing breach of usage,
as seen in the case of the heart and kidneys. To ease that shock, we
change the word: we speak no longer of properties, but of classes.

[Quine, 1987, pp. 22–23]

Properties do not therefore have to be identical when they are coexten-
sive. Such is the case with the following three pairs of properties: (i) the
property of having a heart and the property of having kidneys; (ii) the
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property of being the first even number and the property of being a posi-
tive even number less than 3 ; (iii) the property of being a crocodile living
on the moon and the property of being a house on Mars. Coextensive
properties correspond to one distributive class, which is their common
extension. The properties in (i) determine one distributive set which can
be signified by the two expressions “the set of creatures with a heart”
and “the set of creatures with kidneys”. The properties in (ii) hold of
one and the same object  the number 2. They therefore determine the
same one-element set, names for which might be “the set of first even
numbers”, “the set of positive even numbers less than 3”, and “{2}”. The
pair of properties in (iii) do not hold of any object. They determine a
set which one may refer to using the names “the set of crocodiles on the
moon”, “the set of houses on Mars”, “the empty set”, and “∅”.

Remark 2.3. It is clear that when synonymous terms appear in place
of the letters “S” and “P”, the property of being S is identical with the
property of being P [cf. Stanosz, 1971, p. 521]. The same may, however,
be true when terms S and P are not synonymous. As Barbara Stanosz
observes:

[. . . ] predicates expressing the same property [. . . ] may differ in respect
of meaning. This is the case, for example, with the predicates “has
the colour of a ripe lemon” and “has a bright yellow colour”, which,
although not synonymous, express the same feature; similarly-behaved
are the predicates “has the shape of the Egyptian pyramids” and “has
the shape of a square-based pyramid” and many others.

[Stanosz, 1971, p. 520]

Stanosz [1971] carefully investigated the identity-conditions of features.
More precisely, she gives two versions of a definition of how two predi-
cates determine the same feature.

Many interesting remarks on the matters sketched above may be
found the chapters of Quine’s [1987] entitled “Classes versus Properties”
and “Classes versus Sets”. Let us give one further fragment from [Słu-
pecki and Borkowski, 1984] to finish this section:

It can be said without difficulty that, in the set theory, the term “set”
is used in a distributive sense rather than a collective one; however,
the relation of element to set is not here understood as the relation of
part to whole. The latter relation has different basic properties; for
example, it is transitive, whereas the law of transitivity is not valid
for “∈”. The following fact attests to this: the formulae ∅ ∈ {∅},
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{∅} ∈ {{∅}} are true, but the formula ∅ ∈ {{∅}} (equivalent to ∅ =
{∅}) is false. As B. Russell observes, if we were to treat sets as heaps
or conglomerates (a therefore as sets in the collective sense), then “it
impossible to understand how there can be such a class as the null-class,
which has no members at all and cannot be regarded as an aggregate;
we should also find it very hard to understand how it comes about
that a class which has only one member is not identical with that one
member”[19] [Słupecki and Borkowski, 1984, pp. 279–280]

3. Distributive classes (sets)

In this section we shall understand the terms “class”, “set”, and “ele-
ment” (“member”) exclusively with their distributive sense.

It might seem that condition (2.1) defines the concepts of being a class
(resp. of being a set) and of being an element. This is not, however, the
case. In its first version, condition (2.1) allows us to eliminate the terms
“class” (resp. “set”) and “element” only when they occur in predicates
of the form “is an element of the class of Ps” (resp. “is an element of the
set of Ps”). More precisely, it allows us to eliminate that predicate in
favour of “is a P”. Condition (2.1) does not, in the general case, suffice
for the complete elimination of the term “class” (resp. “set”). There are
sentences of the form “the class of Ps is . . . ” from whose subject we
may not eliminate the term “the class of Ps”. We must therefore have it
guaranteed that this term has in general some referent.

A different situation is to be found in the theory which Quine calls
“the virtual theory of classes, or the theory of virtual classes” [cf. Quine,
1970, pp. 70–72 and Quine, 1969, p. 16]. In this theory, we are allowed
to use ‘non-decomposable’ predicates of the type “is an element of the
class of Ps”, which may be eliminated in favour of predicates of the type
“is a P”; i.e., that is, with the help of principle (2.1). We are further
allowed to use sentences of the form “the class of Ss is included in the
class of Ps” as a ‘conventional’ abbreviation for “∀x(x is an element of

19 The footnote gave the reference as Russell’s Introduction to Mathematical Phi-

losophy, p. 268. In [Słupecki and Borkowski, 1984], a passage from the Polish version
of the book [Russell, 2010] was used. Here is the passage from the English original
(pp. 146–147): “I do not mean to assert, or to deny, that there are such entities as
‘heaps.’ As a mathematical logician, I am not called upon to have an opinion on this
point. All that I am maintaining is that, if there are such things as heaps, we cannot
identify them with the classes composed of their constituents” [Russell, 2010, p. 147].
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the class of Ss ⇒ x is an element of the class of Ps)” and to reduce this 
using (2.1)  to “∀x(x is an S ⇒ x is a P)”.20 Similarly, in the virtual
theory of sets a sentence of the form “the class of Ss is identical with the
class of Ps” is only a ‘conventional’ abbreviation of “∀x(x is an element
of the class of Ss ⇔ x is an element of the class of Ps)”, which we may
in turn reduce to “∀x(x is an S ⇔ x is a P)”.21 This virtual theory is
for that reason a theory of virtual classes, because classes themselves do
not belong to the range of its variables.

If we go outside of the virtual theory of classes, it is easy to see
that condition (2.1) is a restricted principle. It works only in those
cases in which a term of the form “class of Ps” (resp. “set of Ps”) is
a monoreferential name. The assumption seems natural that, for an
arbitrary term standing in place of “P” at most one object is signified
by terms of the form “class of Ps” and “set of Ps”.22 The problem is

20 We are using a formal language, but not everyday speech, because the latter
can cause us interpretational difficulties in certain cases. For example, a sentence of
the form “∀x(x is an S ⇒ x is a P)” expresses the informal sentential schema “Every
S is a P”. If the term standing in place of “S” is empty, then we have a problem with
interpreting this informal sentence: is it true or false  or perhaps neither true nor
false? There is no such problem with the formal language, because if in place of “S”
stands an empty term, the schema “x is an S” is simply not satisfied by any object,
and thus the formal sentence is true. Hence, the empty class (that is, the class of S

when there are no S; otherwise ∅) is included in any arbitrary class.
21 In the virtual theory of classes we can also consider predicates of the form “is an

element of the class of Ss” in which in place of “S” can feature the expression “elements
of the class of Ps”, i.e., a predicate of the form “is an element of the class of elements
of the class of Ps”. Using principle (2.1), this second predicate may be reduced to a
predicate “is of the elements of the class of Ps” and in turn to the predicate “is a P”.

This thought suggests the possibility of allowing iterations of the expressions
“element”, “class” and other Boolean operations, permitting us to construct a Boolean
algebra of virtual classes. We must, however, first introduce an inductive definition of
the class terms. The details shall not be presented here: the reader is instead referred
to [Quine, 1969, 1970]. We will note only that for all such class expressions we must
generalise the ‘conventional’ abbreviations for the expressions of inclusiveness and
identity. In particular cases, predicates with the names of Boolean operations will
look as follows: “is an element of the complemented class of Ps” and “is an element of
the product (resp. sum) of the class of Ss with the class of Ps”. We can correspondingly
reduce these to the predicates “is not a P” and “is an S and (or) a P”.

22 We are clearly concerned with the context in which the terms “class of Ps”
and “set of Ps” are to mean the same as the terms “class of all Ps” and “set of all Ps”,
respectively. Sometimes these terms are used in the same way as “numerical set”,
with the sense “set composed of some numbers” (the expression “some” allows for
the possibility of all). In such a case a term of the form “class composed of some Ps”
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therefore whether terms of that form have in each case a referent. If in
a given case a term of the form “class of Ps” signifies nothing, then it is
hard to understand the term “element of the class of Ps”.

Let us stress that we are not concerned here with the possibility of a
term of the form “element of the class of Ps” being empty. That is the
case when and only when the term standing in place of ‘P” is empty. In
such a case, however, the term “class of Ps” has a referent (the empty
class) and hence there is no problem of interpretation.

To make formulation still further more convenient, we shall abbrevi-
ate the non-relational predicates (one-place predicates) “is a class”, “is a
set”, and “is a proper class” using in turn the symbols “Cl”, “Set”, and
“pCl”. The relational (a two-place) predicate “is an element of” we shall
abbreviate with “∈”, as is standard.23

In Zermelo’s system of set theory only the one term, “set”, appears
‘officially’.24 It follows from the axioms of that system that every set is
an element of some set.25

As we have already recalled above, in some versions of contemporary
set theory stemming from von Neumann and Bernays, a distinction is
introduced between the terms “class” and “set”. In these theories, sets

(resp. “set composed of some Ps” may be empty, or monoreferential, or polyreferential.
If  in a given context  the term “class of Ps” were to have two referents, then 
in accordance with (2.1)  these different classes would not be distinguished by their
elements. And this clashes with the idea of the concept of a class of Ps as ‘a collection
into a single whole’ of all Ps.

23 We are not assuming here any formal grammar for the language we are using.
We believe that, from the point of view of natural language, it would be an artificial
solution to regard the predicates given above as primitive expressions of the language,
with whose help atomic sentential formulae would be constructed (using additionally
variables and individual names). Such a solution is proper just when we design a
formal language (e.g., a first-order language). Speaking informally, we talk of an
“element of a set” or say “every set is a class but not every class is a set”. The
primitive terms here are the non-relative (in this context) terms “class” and “set” and
the relative term “element”.

24 There are ways of understanding Zermelo’s system in which one may speak of
proper classes, but as objects of a ‘different kind’ than sets. More precisely, proper
classes are not the values of variables in this system [see, e.g., Jech, 1971, § 1, and
Shoenfield, 1977, § 7]. Instead of objects of a ‘different kind’ one may construct a
Quinean “virtual theory of classes” on top of Zermelo’s system, as a theory in which
proper classes (and not sets) are ‘virtual objects’.

25 We also have a thesis saying that an arbitrary object is an element of some set,
whose single element is that object. Formally: ∀x∃y(Set y∧x ∈ y∧∀z(z ∈ y ⇔ z = x)).
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are classes which are the elements of other classes; and proper classes are
those classes which are not sets. We shall therefore accept the following
formal definitions:

Set x :⇐⇒ Cl x ∧ ∃y(Cl y ∧ x ∈ y), (df Set)

pCl x :⇐⇒ Cl x ∧ ¬ Set x . (df pCl)

We shall take it that only classes possess elements.26 Formally:

∀x,y(x ∈ y =⇒ Cl y). (3.1)

Thus, the formula “x ∈ y ∧ Cl y” is equivalent to the formula “x ∈ y”.
It is known that principle (2.1) leads to contradiction under the as-

sumption that in each case expressions of the form “class of Ps” (resp.
“set of Ps”) have referents. We can reconstruct Russell’s paradox (anti-
nomy) by putting in place of “P”, for example, the expression “object
which is not an element of itself”. In fact, assume that the object R is
the referent of the expression “class of objects which are not elements of
themselves”. Then R ∈ R iff (by (2.1)) R is an object which is not an
element of itself iff R is an object and R /∈ R. Therefore, since R is an
object, we obtain the contradiction: R ∈ R iff R /∈ R (or: R ∈ R and
R /∈ R). We may therefore draw the conclusion, that the expression“class
of objects that are not elements of themselves” has no referent. We get
an analogous paradox for the second use of principle (2.1) by using the
expression “set of objects which are elements of themselves”. Moreover,
we obtain similar paradoxes when we replace “P” in the first version of
principle (2.1) with the expression “class that is not an element of itself”
(i.e., for R := the class of classes that are not elements of themselves”)
and in the second version of that principle with “set that is not an el-
ement of itself” (i.e., for R := the set of sets that are not elements of
themselves”; details below p. 34).

From the perspective of the “extensional conception”, the assumption
that there might be classes (sets) which are their own elements appears
unnatural.27 Classes and sets which are not their own elements are

26 In theories of classes built for the needs of ‘pure’ mathematics, it is assumed
that there are only classes. They must therefore be ‘pure classes’, such as the empty
class and classes whose elements are exclusively classes. In these theories the state-
ment “∀x Cl x” would be a thesis, and so the predicate “Cl” and principle (3.1) would
be superfluous.

27 For example, taking (2.1) into consideration, a class (set) of Ps which is itself
an P. See: the class (set) of towns is not a town, the class (set) of nouns is not a
noun, etc.
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called normal. There is also not much support, from the perspective of
the “intensional conception” for non-normal classes (sets). We will later
show that the terms “class of objects”, “class of classes” and “set of sets”
are objectless and the expression “class of sets” signifies no set but at
most a class.28

We observe that the use of a ‘non-decomposable’ predicate of the
form “is a class of Ps” does not lead to contradiction. The case is similar
with the predicate “is a set of Ps”. We may therefore instead of (2.1)
accept the following two correct definitions in which (2.1) is ‘embedded’:

x is a class of Ps :⇐⇒ Cl x ∧ ∀y(y ∈ x ⇔ y is a P), (df cl of Ps)

x is a set of Ps :⇐⇒ Set x ∧ ∀y(y ∈ x ⇔ y is a a P). (df set of Ps)

Since every set is a class, we obtain from these definitions the following:

∀x(x is a set of Ps ⇐⇒ Set x ∧ x is a class of Ps). (3.2)

Directly from (df cl of Ps) and (df Set) (or (df set of Ps)) we obtain:

(a) There is no class of objects that are not their own elements.
(b) There is no class of normal classes.
(c) There is no set of objects that are not their own elements.
(d) There is no set of normal sets.

For (a) and (c) we repeat the reasoning used previously with the analysis
of Russell’s paradox (see pp. 33–33). For (b): Assume that x is the
referent of the term “class of normal classes”. Therefore, in the light of
(df cl of Ps), Cl x and: x ∈ x iff x is a class which is not its own element iff
Cl x and x /∈ x. It follows from this equivalence that ¬ Cl x. We therefore
have a contradiction: Clx and ¬ Cl x. For (d): We use (b) and (df Set).

It follows directly from (df cl of Ps) that if there is there is at least
one proper class, then there is no class of classes and so there is no class
of objects. Formally:

∃x pCl x =⇒ ¬∃x x is a class of classes. (3.3)

∃x pCl x =⇒ ¬∃x x is a class of objects. (3.4)

Assume x is a proper class and that y is a class of class (resp. objects).
In the light of (df cl of Ps), we have x ∈ y (in the second case, since x is

28 On condition that we distinguish in general the meaning of the terms “class”
and “set”.
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a class, it therefore an object), which contradicts the claim that x is a
proper class.

It also results directly from (df cl of Ps) that if something is a class of
normal sets, then it is not a set; i.e., that it is a proper class. Formally:

∀x(x is a class of normal sets =⇒ pCl x). (3.5)

Assume that x is a class of normal sets. In the light of (df cl of Ps) we
have Cl x and: x ∈ x iff x is a set that is not its own element iff Set x
and x /∈ x. It follows from the equivalence that ¬ Set x. Therefore Cl x
and ¬ Set x; that is pClx.

Obviously, we may not affirm without making additional assump-
tions, that the expression “class of normal sets” is non-empty.

A further direct consequence of (df cl of Ps) says that if two terms
(S and P) designate the same objects and one of them (e.g., S) determines
a class, then the second term (P) determines the same class:29

∀y(y is an S ⇔ y is a P) =⇒
∀x(x is a class of Ss ⇒ x is a class of Ps).

(3.6)

Also following directly from (df cl of Ps) is a result that is in a certain
sense the opposite of condition (3.6). It says that if two terms determine
the same class, then they refer to the same objects:

∃x(x is a class of Ss ∧ x is a class of Ps) =⇒
∀y(y is an S ⇔ y is a P).

(3.7)

Result (3.7) allows us to affirm that something which is a class deter-
mined by one term is not a class determined by a second term if those
terms differ by even one referent.30

Conditions (3.6) and (3.7) say that in the case where terms of the
form “class of Ss” and “class of Ps” are monoreferential names, we have
the following equivalence: the class of Ss = the class of Ps iff ∀y(y is an
S ⇔ y is a P). That that each of these terms has at most one referent
give us the so-called axiom of extensionality (3.8). That these terms are
not empty (in certain cases) gives us axiom (3.11).

29 A formalisation is given only for the term “class”. In the condition below and
further in condition (3.7), the term “class” may, however, be replaced with the term
“set”.

30 Observe that we still have not made use of axiom of extensionality (3.8).
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For all classes we assume the so-called axiom of extensionality which
states that there are no distinct classes possessing exactly the same ele-
ments:

∀x,y

(
Cl x ∧ Cl y ∧ ∀z(z ∈ x ⇔ z ∈ y) =⇒ x = y

)
. (3.8)

It follows from (df cl of Ps) and from the axiom of extensionality that
what we assumed on p. 31, namely that the term “class of Ps” (resp.
“set of Ps”) never has more than one referent:

∀x,y(x is a class of Ps ∧ y is a class of Ps =⇒ x = y). (3.9)

If x and y are classes of Ps then, on the light of (df cl of Ps), Cl x and
Cl y and ∀z(z ∈ x ⇔ z ∈ y). Hence x = y, by (df Set).

From (3.6) and (3.9) follows a generalisation of the latter: if two terms
signify the same objects, then they determine the exact same class:

∀z(z is an S ⇔ z is a P) =⇒
∀x,y

(
(x is a class of Ss ∧ y is a class of Ps

)
⇒ x = y).

(3.10)

If ∀z(z is an S ⇔ z is a P) and y is a class of Ps, then y is also a class
of Ss, by (3.6). So x = y, by (3.9).

It follows from the above that if the term “class” were to interest us
only the context of “class of Ps”, then (3.9) would suffice as the axiom
of extensionality. In fact, (3.10) follows from (3.9) and (df cl of Ps). We
thus obtain from (3.10) and (df cl of Ps): if x is a class of Ss, y is a class
of Ps, and x and y have the same elements, then x = y.

We should accept a principle which generates classes but protects
us against contradictions. Let us establish a terminological short-hand
before we proceed to its formulation, namely that instead of the predicate
“is an element of some class” we will just use “is an element”.31 In

31 One may accept this also as an abbreviation of the predicate “is an element of
something”. In the light of (3.1), only classes have elements.

This reflects our everyday way of talking. For example, the predicate “is a father”
may be used as an abbreviation of “is a father of someone” or “is a father of some
person”. Speaking thus not only makes our utterances shorter but frees us from an
interpretational problem with plurals. The problem is: what form is the predicate “is
an element of some class” to have in the plural? It seems that neither “are elements of
some class” nor “are elements of some classes” express what we are after. The former
may suggest that we are talking of objects belonging to one common class. The latter
may suggest that each object about which we are speaking is to belong to more than
one class. By using the abbreviation, we can simply have “are elements” as the plural.
This is to mean “they are objects of which each is an element” and only here shall we
use the long form of this abbreviation for “is an element”.
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the framework of Morse’s system of the theory of classes32, we accept
a principle of the following form (for the second formulation we use
(df cl of Ps)):33

∃x

(
Cl x ∧ ∀z(z ∈ x ⇐⇒ (z is a P ∧ ∃y z ∈ y))

)
, or

There is a class of Ps which are elements.
(3.11)

Using principles (3.8) and (3.11), we obtain that an arbitrary term
of the form “class of Ps being elements” is a monoreferential name. If
all Ps are elements then that class is also the unique designation of the
term “class of Ps”. In fact, in this case, the term in place of “P” and
the term obtained from “P which is an element” signify exactly the same
objects, so we use (3.6). Therefore we have:

∀z(z is a P ⇒ ∃y z ∈ y) =⇒ ∃x x is a class of Ps, or

Every P is an element =⇒ there is a class of Ps.
(3.12)

Note that from (3.12) we obtain:

∀x∃y

(
Cl y ∧ ∀z(z ∈ y ⇔ z is a P ∧ z ∈ x)

)
or

∀x there is a class of Ps belonging to x.
(3.13)

If x is not a class then we can put y = ∅ in the light of (3.1).34 If x is a
class then we substitute in (3.12) the schema “P belonging to x” in place
of “P”. Then the antecedent of (3.12) is true. So something is a class of
Ps belonging to x.

In virtue of (3.12), we have:

(e) There is a class of elements.
(f) There is a class of sets.
(g) There is a class of normal sets.

We are not going to assume that some objects are not classes nor that
if in general there are non-classes35, then every non-class is an element.

32 On the subject of Morse’s system, see, e.g., Chapter VII, where this system is
formulated in a first-order language.

33 In the system NBG (von Neumann-Bernays-Gödel), the situation is more com-
plicated. In brief, we assume in that system that all quantificational expressions
occurring in the expression in place of “P” must refer to elements.

34 Of course, this solution can also be adopted if either x = ∅ or there is no P.
35 Cf. footnote 26 and [Mendelson, 1964, p. 160].
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Non-classes which are elements we call individuals or urelements (from
the German prefix: ur-, ‘primordial’). As we are not assuming that
there are non-classes, we cannot therefore assume that there is some
individual.36 In virtue of (3.12), we have:

(h) There is a class of individuals.

Moreover, by (df cl of Ps), (3.9), and either (3.11) or (3.12), we have:

(i) there is a class of Ps which are not Ps,
(j) there is a empty set.
(k) there is a non-empty set.

For (i): We exploit the fact that the term “P which is not a P” is con-
tradictory, so also empty, and thus signifies exactly the same objects
as the term “P which is not a P but which is an element”. By (3.11),
the second term postulates some class. Via the axiom of extensionality,
there is only one such class. Moreover, by (3.10), both terms postulate
the same class. For (j): In the light of (df cl of Ps), this class has no
element. We call x the empty class and symbolise it as “∅”. One of the
postulates of Morse’s theory states that:

∅ is a set.

For (k): The term “the object identical with ∅” signifies only ∅. Thus,
(3.12) guarantees us that something is a class of objects identical with ∅.
In virtue of (df cl of Ps) the postulated class has exactly one member. It
is ∅. We represent this class by “{∅}”. We obtain in the light of a certain
axiom in Morse’s theory the result that {∅} is a set. We therefore have
our first non-empty set. By (3.11), for any sets x and y there is a class
consisting of x and y (so-called a pair). In fact, in place of “P” we put
the general term “object which is identical with x or y” (since x and y
are sets, so they are elements). We represent this class by “{x, y}”; if
x = y then we use “{x}”. In Morse’s theory we have that for any sets x
and y the pair {x, y} is a set.

We say that a class x is included in a class y (we write: x ⊆ y) iff
∀z(z ∈ x ⇒ z ∈ y).

The terms “class of elements”, “class of sets”, “class of normal sets”,
and “class of individuals” are monoreferential names. For theses term let
us establish, respectively, the following abbreviating symbols: “V”, “S”,

36 In [Nowaczyk, 1985, p. 53] all non-classes are individuals and there are at least
two of them.



3. Distributive classes (sets) 39

“NS”, and “I”. We see that ∅ ∈ NS, NS ⊆ S, and S ⊆ V. It is not possible
to state any other dependencies between NS, S, and V without further
assumptions. It is also not possible to claim that I is a set nor that I 6= ∅.

From (3.5) it follows that:

(l) NS is a proper class.

From this and, respectively (3.3) or (3.4), it follows that:

(m) There is no class of classes.
(n) There is no class of objects.

We observe that by using (3.13), (a) and (b) we obtain (m) and (n)
without using (3.3), (3.4), and (3.5). In fact, assume for a contradiction
that y is a class of objects (resp. classes). Then, via (3.13), something
would be a class of objects (resp. classes) which are not their own el-
ements, but elements of y. It follows from this that something would
be a class of objects (resp. classes) which are not their own elements
because being an element of y reduces to being an object (resp. class).
This contradicts statement (a) (resp. (b)).

We will show further that in the Morse’s system, the non-empty
terms “class of elements” and “class of sets” (compare (e) and (f)) also
do not signify sets. In order to prove them, however, we must accept a
further additional axiom.

A possibility would be the so-called “axiom of subsets”, which is often
formulated without appeal to principle (3.11), by accepting directly that
all common members of some set and some class create a set. Formally:

∀x,y

(
Set x ∧ Cl y =⇒ ∃z(Set z ∧ ∀u(u ∈ z ⇔ u ∈ x ∧ u ∈ y))

)
. (3.14)

Using the axiom of extensionality (3.8) and (3.14) we obtain:

∀x,y,z

(
Set x ∧ Cl y ∧ Cl z ∧ ∀u(u ∈ z ⇔ u ∈ x ∧ u ∈ y) =⇒ Set z

)

(3.15)
From (3.15) and (df cl of Ps) we have:

∀x,y,z

(
(Setx ∧ Cl y ∧

z is a class of common members of x and y) =⇒ Set z).

Hence, by (3.13) and the axiom of extensionality, we obtain:

∀x,y(Set x ∧ Cl y =⇒ the class of common elements x and y is a set).
(3.16)
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This formulation suggests that it suffices to accept for the theory of
classes the principle of “subsets” whose form is (3.16).

It follows from the axiom of subsets that any class which is included
in some set is also a set. In fact, this class is the class of its members
and members of this set. Formally we have:

∀x,y(Set x ∧ Cl y ∧ y ⊆ x =⇒ Set y). (3.17)

From this it follows that we can strengthen principle (3.13):

∀x

(
Set x =⇒ ∃y(Set y ∧ ∀z(z ∈ y ⇔ z is a P ∧ z ∈ x))

)
or

∀x(Setx =⇒ the class of Ps belonging to x is a set).
(3.18)

Let x be a set. Then the class of Ps belonging to x is included in x. We
can get this directly from (3.14). In fact, let y be the class of Ps which
are elements; i.e., for any z: z ∈ y iff z is a P and ∃u z ∈ u. Hence: z ∈ y
and z ∈ x iff z is a P and z ∈ x and ∃u z ∈ u iff z is a P and z ∈ x.

From (3.17) and (l) it follows that:

(o) V is a proper class.
(p) S is a proper class.

Since NS ⊆ V, NS ⊆ S NS is not a set, so also V and S are not sets.
Note that facts (o) and (p) are equivalent, respectively, to:

(q) There is no set of elements.
(r) There is no set of sets.

For any x we have: x is a set of elements iff Set x and ∀z(z ∈ x ⇔ z is an
element) iff Set x and ∀z(z ∈ x ⇔ z is an element) and Cl x iff x is a class
of elements. We can prove this this in a similar way for a set of sets.

Note that the principle (3.18) holds in Zermelo’s system as well.
Moreover, in this system statements (c) and (d) follow from (df set of Ps)
itself. From this and (3.18) we obtain in the system the corresponding
statements (q) and (r). That is, we do not have here a sets of set nor 
a fortiori  a set of elements. In fact, assume that x is a set of sets. We
put the term “normal set” in place of “P” in (3.18). It follows from the
accepted definitions that for any y: y ∈ x and y is a normal set iff y is a
normal set. From this and (3.18) it follows that there is a set of normal
sets. We have therefore obtained a contradiction with (d). We therefore
have (r). From this, reasoning in an analogous fashion as before, we
get (q).
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In Morse’s theory, we accept (amongst others) the axiom of founda-
tion from which it follows that each class is normal:

∀x(Cl x =⇒ x /∈ x). (3.19)

In the light of (3.1), only non-empty classes have elements. From this 
via (3.19)  it follows that no object is its own element:

∀x x 6∈ x. (3.20)

In Morse’s theory therefore, the terms “object which is not its own ele-
ment”, “normal class”, and “normal set” signify, respectively, exactly the
same objects as the terms “object”, “class”, and “set”. From this with
(a)–(d)37, (l), and (3.6) we obtain respectively (m)–(r) without making
use of the principle of subsets.

4. Leśniewski’s conception of classes (sets) and their elements

In this section we shall show that Leśniewski accepted a collective con-
ception of classes (sets) and their elements and that in general did not
allow the existence of distributive classes (sets).38 In other words, and
taking a neutral stance on the meaning of the word “exist”, he treated
the terms “distributive set” and “distributive class” as empty.

We will reproduce below some long passages from [Leśniewski, 1927]
in order to present Leśniewski’s views accurately. To this end, let us
say straightaway that, for Leśniewski, the non-relative terms “set” and
“class” would be equivalent in meaning (obviously, they would both be
understood in the collective sense). The same goes for the non-relational
predicates (one-argument predicates) “is a set” and “is a class”. In brief,
for Leśniewski  as we will show in Section 6  each set would be a class
and vice versa. We are speaking subjunctively, as it were, because such

37 It is easy to see that by having (3.20) one may obtain (a)–(d) without incurring
Russell’s paradox. And so for (a), using (3.20), we have: if x is a class of objects which
are not their own elements, then ∀y y ∈ x. Hence x ∈ x which contradicts (3.20). We
obtain contradictions for (b)–(d) in an analogous way.

38 Cf. footnote 18, in which Leśniewski’s philosophical views are sketched. Leśnie-
wski thus considered that collective classes (sets) exist and that nothing exists which
may be called a distributive set or distributive class [see the passage from Leśniewski,
1927 on p. 43].
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non-relative terms appear only in commentaries on Leśniewski and not
in theses of his theory.

With Leśniewski, we find only counterparts of “class of Ps” and “set
of Ps”. The term “class of Ps”  if we use the non-relative term “class”
(“set”) and the metaphor of footnote 22  means the same as “class (set)
of all Ps” [cf. Quine, 1953, p. 186], and the term “set of Ps” means the
same as the term “class (set) composed of some Ps” (the word “some”
allows for the possibility of all). The first of these names may be for
Leśniewski either empty or monoreferential, and the second one may be
either empty, or monoreferential, or polyreferential. It is not possible to
say in the theory that the class of Ps is the set of all Ps, because the
term “set of all Ps” cannot be formed in the language of the theory.

In accordance with Leśniewski’s theory: if x is a class of Ps, then x
is a set of Ps; moreover: if x is a set of Ps, then x is a class of Ps which
are elements of x or  simply  x is a class of elements of x. Every class
is therefore a set and every set a class, if we accept that a class (resp.
set) is a class (resp. set) of something.

Leśniewski stated that Cantor’s theory of sets relates to collective
sets  just as with his mereology. The follows passages show this:39

My conception is, in this respect, on the one hand (as far as I have
managed to observe) entirely consistent with the way the expressions
“class” and “set” are used in the common, everyday language of people
who have never held neither any “theory of classes” nor any “theory
of multitudes”. On the other hand, it is based on a strong academic
tradition, running more or less continuously through countless past and
present scholars, and in particular through George Cantor.

[Leśniewski, 1927, p. 190]

In Leśniewski’s opinion therefore, mereology deserves the title of “The
foundation of mathematics” in the same way as in Cantor’s theory, since
both theories are concerned with the same sets (classes). Leśniewski’s
main work, in which he presented his mereology, he thus called “On
the foundations of mathematics” [Leśniewski, 1927, 1928, 1929, 1930,
1931]. An earlier work pertaining to mereology carried the title “The
foundations of the general theory of multitudes” [Leśniewski, 1916].

39 The passages from Leśniewski’s papers have been translated from the original
and not taken from the English edition of this work [Leśniewski, 1991b].
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It is today beyond discussion that Cantor was analysing distributive
sets in his theory. Leśniewski might have been misled by the ‘definitions’
of set given by Cantor:

By a set is meant a gathering into one whole objects which are quite
distinct in our intuition or our thought.

[Cantor, 1932, p. 282]; see [Burbaki, 1994, p. 25]
By the concept of ‘set’ (Menge) we are to understand each collection
into one whole M of specified, clearly distinct objects m of our inspec-
tion or our thought (which are called elements of M).

[Murawski, 1995, p. 68]; cf. also [Murawski, 1984, p. 78]

The theory of types created by Russell and Whitehead and the theory
of classes as the extensions of concepts created by Frege were both for
Leśniewski objectless:

I don’t know what Russell and Whitehead understand in the com-
mentaries on their system by class. The fact that, on their position,
“class” is supposed to be the same as “extension” does not help me in the
slightest, as I don’t know what these authors mean by extension. I don’t
therefore know either, when they consider the matter of the existence
or non-existence of objects as such whether their thoughts on the puzzle
of existence and non-existence address those objects which are classes.
[. . . ] Not understanding the relevant terminology of Whitehead and
Russell, I am not in particular aware where and to what degree their
doubts as to the existence of objects, which are classes in their under-
standing of that term40, may bear on particular positions I take in the
theory of classes sketched earlier. In “Principia Mathematica”, I did
not find a single paragraph which I felt there was even the weakest
presumption of calling into question the existence of classes as I under-
stand them. Sensing in the “classes” of Whitehead and Russell, in a

40 The authors of the Principia Mathematica do in fact introduce as a problem the
question of the existence of distributive sets. This is why, as Quine [1953, p. 122–123]
writes: “Russell ([. . . ], Principia) had a no-class theory. Notations purporting to refer
to classes were so defined, in context, that all such references would disappear on ex-
pansion. This result was hailed by some, notably Hans Hahn, as freeing mathematics
from Platonism, as reconciling mathematics with an exclusively concrete ontology.
But this interpretation is wrong. Russell’s method eliminates classes, but only by
appeal to another realm of equally abstract or universal entities  so-called proposi-
tional functions. The phrase ‘propositional function’ is used ambiguously in Principia

Mathematica; sometimes it means an open sentence and sometimes it means an at-
tribute. Russell’s no-class theory uses propositional functions in this second sense as
values of bound variables; so nothing can be claimed for the theory beyond a reduction
of certain universals to others, classes to attributes.” See also [Quine, 1981, p. 121,
footnote 1] and [Quine, 1970, p. 68].
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similar fashion as with the “extensions of concepts” of Frege, the scent
of mythical paradigms from a rich gallery of “invented” objects, I cannot
for my part divest myself of the inclination to sympathise “on credit”
with the doubts of the authors on the matter of whether objects that
are such “classes” exist in the world.  On the matter of the relation of
my conception of class to the views represented in the commentaries of
Whitehead and Russell on their system, a certain light may be here
thrown by the views of Russell on “heaps”. Russell writes in one
of his works: “We cannot take classes in the pure extensional way as
simply heaps or conglomerations. If we were to attempt to do that, we
should find it impossible to understand how there can be such a class as
the null-class, which has no members at all and cannot be regarded as
a “heap”; we should also find it very hard to understand how it comes
about that a class which has only one member is not identical with that
one member. I do not mean to assert, or to deny, that there are such
entities as “heaps”. As a mathematical logician, I am not called upon
to have an opinion on this point. All that I am maintaining is that,
if there are such things as heaps, we cannot identity them with the
classes composed of their constituents” [The passage Leśniewski refers
to is to be found in Russell’s Introduction to Mathematical Philosophy,
p. 183]. If I understand the cited paragraph correctly, then the fact that
a certain object P is a “heap” of some as, composed of all as, would still
not be for Russell a sufficient basis on which to affirm that the object
P is a “class” of objects a. Russell’s terminology would remain most
clearly in complete discord with my terminology; in accordance with his
use of the expressions “class” and “set”, and the use of the expression
“heap” in our common, everyday language [. . . ], I could always say of
a “heap” of some as, that it is a set of objects a [of as], but of a “heap”
of objects a [of as] composed of all as, that it is the class of objects
a [of as]. [. . . ] The difficulty is in understanding in what consists the
difference a “heap” of objects a [of as] and “class” of objects a [of as]
from Russell’s point of view, if both such things existed and if each of
them were composed of all as and it is a difficulty which I do not know
how to overcome. [Leśniewski, 1927, pp. 204–205]

In the text above, one of the statements Leśniewski makes may be
paraphrased in the following way: I can always say of any ‘heap’ of some
Ps that it is a collective set of Ps, whereas of a ‘heap’ of Ps composed of
all Ps, that it is a collective class of Ps.41 Leśniewski is right about this
point. He could not, however, understand “on what rests the difference

41 Compare the comments on p. 41 on Leśniewski’s understanding of the coun-
terparts of the schema “class of Ps” and “set of Ps”.
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between” a ‘heap’ of Ps (that is, a collective class of Ps) and a distribu-
tive class of Ps, “if both such things existed and if each of them were
composed of all” Ps.

Leśniewski was ‘inspired’ to create his own conception of classes (sets)
and their elements by Russell’s antinomy.42 In order to solve the problem
of ‘the class of classes not being their own elements’, Leśniewski made
a certain assumption, which is introduced in the text below and from
which it follows that his conception distinguishes itself considerably from
Cantor’s.

Wishing “to conceive of something” and not knowing at the same
time how to find any reasonable fault in any of the aforementioned as-
sumptions on which the earlier “antinomy” rests, nor also in the reason-
ing leading to contradiction on the basis of those assumptions, I began
to muse on examples of situations in which in practice I consider or do
not consider such and such objects as classes or sets of such and such
objects [. . . ] and to submit for critical analysis my faith in the particu-
lar assumptions of the “antimony” in hand from that point of view (the
puzzle of “empty classes” was not the theme of my considerations on
that occasion because I treated the conception of “empty classes” from
my first moment of contact with it as a “mythical” conception, taking
without any hesitation the position that:

(1) if any object is a class of objects a, then some object is an a.)

I came via that to the conviction that:

(2) it still happens, that such and such an object is a class of such
and such objects and at the same time a class of completely different
objects (as, for example, the segment AB in Figure 1 is the class of

A
C D

B

Fig. 1

segments being the segment AC or the segment
CB, and at the same time the class of segments
being the segment AD or the segment DB) and
that

(3) if one and only one object is P , then P is a class of objects of P
(as, for example, the segment AB from Figure 1 is the class of segments
of AB from Figure 1).

Trying to grasp in what way I also really use expressions of the type
“P is subordinated to a class K”, which [. . . ] I used promiscue with
corresponding expressions of the form “P is an element of a class K’,
I established a definition according to which I stated that:

42 Various versions of Russell’s antimony (paradox) were presented on p. 33. We
will look at Leśniewski’s solution on pages 46 and 66.
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(4) P is subordinated to a class K if and only if for some meaning
of a expression “a” the following conditions are fulfilled: a) K is a class
of objects a [of as], b) P is an a. [Leśniewski, 1927, pp. 185–187]

Leśniewski’s solution to Russell’s antinomy under the assumptions
was already ‘straightforward’. From (2) and (4) it followed that every
class is its own element (more exactly: each object is a class and is its
own element), i.e., that there are no normal classes and all classes are
non-normal classes. Since the term “normal class” is empty, we obtain
from (1) that “class of normal classes” is also empty, because there are
no empty classes (cf. p. 66).

We can already see in this solution two fundamental differences be-
tween Leśniewski’s theory and Cantor’s theory. First, in the second of
these theories something is an empty class.43 Second, according to the
“extensional conception” accepted by Cantor, it is completely justified
to accept a principle that says that every class is normal.44 Thus one
may regard the term “non-normal class” as empty.

Leśniewski states in his commentary on definition (4) that “[it] har-
monises completely with the common way the expression ‘element” is
used in practice by ‘theoreticians of multitudes’ ” [Leśniewski, 1927,
p. 187]. It may be accepted in a certain sense that this is essentially
so  on condition that we successfully ‘deal with’ the matter of how to
understand the clause “for some meaning of ‘a’ ” occurring in (4). The
problem lies with the fact that that clause in condition (a) is not un-
derstood by Leśniewski in the same way as by those “theoreticians of
multitudes”, i.e., in the same way as it appears in (df cl of Ps). This
last is connected with principle (2.1), which Leśniewski simply did not
accept.45 Leśniewski would therefore consider that a given object is a

43 In the theory of distributive classes, the term “class of normal classes” is also
objectless (cf. (b) on p. 34), but this does not argue for the conclusion that there is
no empty class.

44 See [Wang, 1994, p. 267]. Cf. also the axiom of foundation (3.19).
45 Leśniewski’s definition (4) has nothing in common with principle (2.1). In

Leśniewski’s terminology principle (2.1) would have the form: an object P is an
element of a class of as iff P is an a. It follows from (2) that Leśniewski accepts just
the right-to-left part of (2.1). That is, he identifies: segment AB; the set of segments
AC and CB; the set of segments AD and DB. Therefore for him the segment AC is
an element of the class of segments AD and DB, because we may take it that “a” in
(4) means just the same as “segment which is one of the segments of AC and CB.”

Leśniewski [1927, p. 189] directly writes about the rejection of (2.1) on the basis
of his conception of classes and their elements.
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class of as “for some of a expression ‘a’ ”, however, for “theoreticians of
multitudes”, that object would not be a class of as.

Let us now turn our attention to one further disagreement between
Leśniewski’s theory and the theory deriving from Cantor. Ad 2: Under
Cantor’s conception of sets, the segment AB from Figure 1 is a (distribu-
tive) set of certain points and not a (distributive) set of segments. The
two-element set composed of the segments AC and CB is disjoint from
the two-element set composed of the segments AD and DB. In no case is
it possible to identify these distributive sets with the segment AB. That
segment is simply the set-theoretic sum of segments AC and CB and
the sum of segments AD and DB. These segments  as distributive sets
composed of certain points  are subsets of the segment AB. Ad 3: In
Cantor’s theory, the one-element set composed of the segment AB is not
the segment AB. Ad 4: It follows from definition (4) and the definition
of being a class of as, it follows that being a (collective) element reduces
to being an ingrediens.46

The primary concept in Leśniewski’s theory is that of being part. As
we have already noted in Section 1, Leśniewski assumed that the relation
is a part of is symmetric and transitive. Let us give his formulation of
these assumptions given in [Leśniewski, 1928], as we shall need them in
the next section for the analysis of Leśniewski’s logical system:

Axiom I. If P is a part of an object Q, then Q is not a part of the
object P .

Axiom II. If P is a part of an object Q and Q is a part of an object R,
then P is a part of the object R. [Leśniewski, 1928, pp. 263–264]

Leśniewski next establishes two definitions: is an ingrediens of and is a
class of :

Definition I. P is an ingrediens of an object Q if and only if P is
the same object as Q or is a part of the object Q.

Definition II , P is a class of objects a [of as] if and only if the
following conditions are met:a) P is an object;b) every a is an ingrediens of P ;g) for any Q , if Q is an ingrediens of the object P then some ingre-
diens of the object Q is an ingrediens of some a.

[Leśniewski, 1928, p. 264]

46 See thesis XVI and XVII in [Leśniewski, 1928, p. 272] and further (5.7). It is
not possible at this point to give a proof of this fact, because we still have not given
a definition of being a class of as.
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This raises the following question: What role does condition (a) play
in Definition II? We shall attempt to answer this in the following section.

Using these concepts, Leśniewski introduces two axioms:

Axiom III. If P is a class of objects a [of as] and Q is a class of
objects a [of as], then P is Q.

Axiom IV. If some object is an a, then some object is a class of
objects a [of as]. [Leśniewski, 1928, p. 266]

Leśniewski defines two further concepts we have been concerned with
in this section as follows:

Definition III. P is a set of objects a [of as] if and only if the fol-
lowing conditions are met:a) P is an object;b) for any Q , if Q is an ingrediens of an object P , then some ingre-
diens of the object Q is an ingrediens of some a being an ingrediens of
the object P .

Definition IV. P is an element of an object Q if and only if for
some a (Q is a class of objects a [of as] and P is an a).

[Leśniewski, 1928, pp. 270 and 272]

Definitions II and III have the same condition (a). Conditions (a)–(g)
in Definition II entail condition (b) in Definition III [Leśniewski, 1928,
Theorem VI]. The class of as is therefore one of the sets of as [Leśnie-
wski, 1928, Theorem XIII; cf. (6.3)]. Definition IV is a slightly different
formulation of definition (4) given on p. 46 in the quote from [Leśniewski,
1927]. We also have problems with the interpretation  in the context
in which it is used  of the quantified expression “for some a”.

5. Leśniewski’s logic

1. In order to reply to the question of why condition (a) appears in
definitions II and III, we must get to know more about the system of
logic used by Leśniewski. We must therefore learn about the way in
which variables, quantifiers and the connectives “is” and “is not” are
used by him.

Leśniewski’s mereology was formulated in a specific way, distancing
it from the standard formulations. The theory was ‘built on top of’
another system of Leśniewski’s which he called “ontology”.

Leśniewski considered that it was not the task of logic to look into
whether a given name is empty, or monoreferential, or polyreferential
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(see Remark 2.2). He believed that the laws of logic should be valid
for all names. This also explains why he wanted it to be possible for
his systems to be used (ontology and mereology) with arbitrary names
replacing free variables. He did not want the substitution of empty names
to lead to contradiction, as happens in the case of their use in classical
logic.47 To this end, Leśniewski fixed a specific interpretation of the
copula “is” and  this being connected with it  a specific interpretation
of the expression “is not”. He formulated these interpretations only in his
ontology  in the theory which appeared after his theory of mereology.
We need not give the formalisation of his ontology here. It suffices to
state only what Leśniewski assumed explicitly in [Leśniewski, 1927].

Let “n” be the index of the category of names and “s” be the index
of the category of sentences. For Leśniewski, the copula “is” and the
expression “is not” are sentence-forming functors taking two names as
arguments, i.e., they have the following index [see Ajdukiewicz, 1934] :

s

n n
.

If the letters “S” and “P” represent arbitrary names, then  for Leś-
niewski  expressions of schemas “S is a P” and “S is not a P” are sen-
tences in a logical sense and have true-values (i.e., they are true or false).
A sentence whose schema is “S is a P” (resp. “S is not a P”) is true iff
the name represented by “S” is monoreferential and its only referent is
(resp. is not) a referent of the name represented by “P”; otherwise, such
a statement is false.

Note that schemata “S is an object” and “S is an S” are equivalent
and not tautological. In fact, both sentences of such forms are true iff
the name represented by “S” is monoreferential.

Moreover, the schema “S is not a P” is equivalent to “S is an object
and ¬ S is a P”. Hence the schema “S is not an object” is contradictory
(it is equivalent to “S is not an object and ¬ S is an object’, which has
the form “p ∧ ¬p”’). So the schema “¬ S is not an object” is tautological
(it is equivalent to “S is an object or ¬ S is an object”, which has the
form “p ∨ ¬p”).

Although Leśniewski used only one syntactic category of names (see
Remark 2.2), we see in the axioms and definitions two types of name-

47 Let we stress straightaway that his system was not a system of free logic in
which empty names have replaced free variables. We will return to this matter in
points 3 and 4.
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variable: upper-case letters “P”, “Q”, “R”; and the lower-case letter “a”.
This has, however, does not  speaking formally  matter. It is a ‘purely
visual’ procedure. Upper-case letters  used as variables  are supposed
to ‘suggest’ that a given atomic formula changes into a true sentence
only with the substitution of monoreferential names for those variables.

We may write the fact, therefore, that is a part of is irreflexive and
is an ingrediens of is reflexive within Leśniewski’s system thus [cf., e.g.,
Leśniewski, 1928, theorems I and II]:

(5.1) If P is an object, the P is not a part of the object P .
(5.2) If P is an object, then P is an ingrediens of the object P .

We have used an upper-case letter as a variable, because the antecedent
turns into a true sentence only with the substitution of a monoreferential
name for it. On the other hand, if we substitute an arbitrary monorefer-
ential name for the variable, then the antecedents and the consequents
will be true. These the consequents expressing, respectively, the irreflex-
ivity of the concept of being a part of and the reflexivity of the concept
of being an ingrediens of. We further observe that, with the substitution
of an empty term or a polyreferential term for the variable, both pairs of
antecedents and consequences will be false (see the interpretation of the
expressions “is” and “is not”), and therefore that without the antecedent
the theorems (only the consequences) would not be tautological.

Analogous comments relate to the conclusion below which follows
from Definition II and (5) [cf. Leśniewski, 1928, Theorem VII]:

(5.3) If P is an object, then P is the class of ingrediens of the object P .

For Leśniewski, the expressions “part of”, “ingrediens of” , and “el-
ement of” were name-forming functors taking names as arguments and
therefore had the index:

n

n
.

The following ‘interpretational’ theorem holds for mereology (based
on ontology).

Theorem 5.1. (i) We obtain from the name-formula “part of Q” a
non-empty term only if we substitute a monoreferential name for the
variable “Q”.48

48 The theorem is not reversible because mereology does not rule out objects
without parts.
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(ii) We obtain from the name-formula “ingrediens of Q” (resp. “ele-
ment of Q”) a non-empty term if and only if we substitute a monorefer-
ential term for the variable “Q”.

Before giving a proof of these theorems, let us first note that they
do not appear in Leśniewski’s work. Point (i) and the left-to-right part
from (ii) written in the ‘intra-system’ notation would have the forms:

(5.4) If P is a part of Q, then P is an object and Q is an object.
(5.5) If P is an ingrediens of Q, then P is an object and Q is an object.
(5.6) If P is an element of Q, then P is an object and Q is an object.

These statements do not appear explicitly in Leśniewski’s work either.
It is possible to find traces of (5.4) and (5.5) in the proof of Theorem X
[Leśniewski, 1928, pp. 269–270], where the premise “P is an ingrediens
of Q” reduces (with the help of Definition I) to the form “P is the same
object as Q or P is a part of Q”, and from this the conclusion “Q is
an object” may be drawn  underlining that this results from Axiom I.
This justification clearly pertains to the conclusion drawn from the sec-
ond disjunct of the disjunction: if P is a part of Q, then  in virtue of
Axiom I  we have that Q is not a part of P , and hence that Q is an
object. Statement (5.6) follows from (5.5) and from the left-to-right part
in the statement below, which Leśniewski formulated in theorems XVI
and XVII in [Leśniewski, 1928, p. 272]:

(5.7) P is an element of Q iff P is an ingrediens of Q.

Assume that that P is an element of Q. Then  in virtue of (4) or
Definition IV  for some meaning of “a”, we have that Q is a class of as
and P is an a. It follows from Definition II that P is an ingrediens of
Q. Conversely, let P be an ingrediens of Q. Then P is an object and
Q is an object. (see (5.5)). Let us assume that “a” means the same
as “ingrediens of Q”. It follows from Definition II that Q is a class of
ingredienses of Q [cf. Leśniewski, 1928, theorems VII and X]. Hence, in
the light of the assumption and Definition IV, we obtain that P is an
element of Q.

Since the non-emptiness of the predicate “part of Q” is essential for
the truth of a sentence of the form “P is a part of Q”, in virtue of
Theorem 5.1, we use an upper-case letter as the variable. It is similarly
the case for the predicates “ingrediens of Q” and “element of Q”.

Proof of Theorem 5.1. (i) Suppose that we have obtained a non-
empty term for some substitution of the name-formula “part of Q”. In



52 Chapter I. An introduction to the problems of mereology

order to prove our statement, we will use its ‘intra-system’ version, i.e.,
(5.4) and certain theorems in Leśniewski’s ontology. Namely, from (5.4)
we obtain a different ‘intra-system’ theorem: “if there is an object P
such that P is a part of Q, then Q is an object”. Hence we have “if
some object is a part of Q, then Q is an object”. The antecedent of the
previous statement expresses exactly the assumption we had made (i.e.,
“part of Q” is a non-empty term). We therefore obtain a true antecedent
by carrying out the substitution. And this is so only when we substitute
a non-empty term for “Q”.

(ii) We prove the left-to-right part in the same way as (i), but using
(5.5) (resp. (5.6)). The right-to-left part results from (5.2) (resp. both
(5.2) and (5.7)).

To recapitulate: in Leśniewski’s theory, the name-formula “part of P”
gives us:

(i) an empty term iff for “P” we substitute either an empty name, or
polyreferential, or a monoreferential name whose sole referent has
no part.

(ii) a term having at last referents iff for “P” we substitute a monoref-
erential term whose sole referent has at last two parts.49

The expressions “ingrediens of P” and “element of P” give us:

(i) an empty term iff for “P” we substitute either an empty term or a
term having at last two referents.

(ii) a monoreferential term iff for “P” we substitute a monoreferential
term whose sole referent has no part50.

(iii) a polyreferential term iff for “P” we substitute a monoreferential
term whose sole referent has at lest two parts.

In Leśniewski’s theory, the expressions “is a part of” and “is not a
part of” are not in general functors. This is borne out by, for example,

49 In Leśniewski’s mereology no object has exactly one part. This is why the
name-formula “part of P” will not give us a monoreferential term. This is easy to
prove using definitions I and II and axioms I and III. It follows from these definitions
that if Q is an object, then Q is a class of Q [see Leśniewski, 1928, Theorem VIII].
Assume therefore that an object Q is the only part of an object P . It then follows
from definitions I and II, that P is a class of Q [cf. Leśniewski, 1928, Theorem IX].
Hence P is Q, by Axiom III. This contradicts the claim that Q is a part of P (cf. (5.3)
which results from Axioms I).

50 Then the only ingrediens of the object P is P itself.
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the category diagram below of the formula “P is a part of Q”, where the
syntactic categories are those employed by Leśniewski:51

P
︸︷︷︸

n

is
︸︷︷︸

s
n n

part of
︸ ︷︷ ︸

n
n

Q
︸︷︷︸

n

︸ ︷︷ ︸

n
︸ ︷︷ ︸

s

We can therefore write the formula “P is a part of Q” symbolically  us-
ing Leśniewski’s categories  as “P e prQ”. In this formula “e” symbol-
ises the copula “is” from Leśniewski’s ontology and “pr” symbolises the
name-forming functor “part of” interpreted in the way presented below.

2. We can now reply to the question: why does condition (a) appear
in definitions II and III? If we replace an arbitrary empty name for the
variable “P” in those definitions then  in line with the interpretation
of the copula “is”  their definienda and condition (a) are transformed
into false sentences. Thus, their definienses will also be false, i.e., from
the equivalence we obtain a true sentence.

We note, however, that for a substitution of an empty name for
“P”, conditions (g) in Definition II and (b) in Definition III are trans-
formed into true sentences (the implications in them have unsatisfied
antecedents). It is therefore not possible to eliminate condition (a) from
Definition III.

We observe in turn that, using the so-called weak understanding of
“Every . . . is . . . ”, condition (b) in Definition II is transformed into
a true sentence if we substitute an empty name for the variable “a”.
Under the weak interpretation of the expression “Every . . . is . . . ”52 it
is therefore not possible to eliminate condition (a) from Definition II,
because, for a substitution of empty names for the variables “P” and
“a”, its definiendum would be false and conditions (b) and (g) would be
true.

Leśniewski, however  as he himself stresses in footnote 2 on p. 264
in [Leśniewski, 1928]  used the expression “Every . . . is . . . ” in its

51 We obtain an analogous diagram if we replace “is” by “is not” and/or the
expression “part of Q” by the expressions “ingrediens of Q” and “element of Q”.

52 Under the weak interpretation of the expression “Every . . . is . . . ” a true
sentence will always be generated if an empty name appears in the subject.
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so-called strong sense.53 Then if (b) in Definition II is true, then the
name substituted for “a” is non-empty. Hence something there is an
ingrediens of P ; so  in virtue of (5.5)  P is an object. To recapitu-
late, under the strong interpretation of the expression “Every . . . is . . . ”
in Definition II, condition (a) follows from condition (b). In view of
this, Leśniewski replaced Definition II with the equivalent Definition F,
changing condition (b) for the following weaker condition, which was
a universally-quantified sentence “Every a is an ingrediens of P” in the
weaker interpretation: “for any X  if X is an a, then X is an ingrediens
of P”. “This condition in conjunction with condition (g) does not entail
condition (a)” [Leśniewski, 1930, p. 78, footnote 1].54

3. One can see from the conclusions of the examples cited above that
the formalised rules of proof Leśniewski’s logical calculus do not differ
from the rules of the classical predicate calculus (CPC). For example, as
one does also does in CPC, Leśniewski uses a rule of generalisation which
takes from an arbitrary formula ϕ(ζ) with a free variable ζ to yield the
formula ∀ζ ϕ(ζ). We may write this symbolically as follows:

ϕ(ζ)

∀ζ ϕ(ζ)

In both CPC and in Leśniewski’s calculus we have the following as ad-
missible rules of proof, which always take us from theses to theses:

∀ζ ϕ(ζ)

ϕ(ζ)

ϕ(ζ)

∃ζ ϕ(ζ)

∀ζ ϕ(ζ)

∃ζ ϕ(ζ)
(rd1)

53 Under the strong interpretation of the expression “Every . . . is . . . ” a false
sentence will always be generated if an empty name appears in the subject. We will
generate a true sentence only if a non-empty name appears in the subject. Leśniewski
writes: “I use and have used sentences of the type ‘Every a is b’ as equivalents of
appropriate sentences of the type ‘Some object is a and for any X  , if X is an a,
then X is a b’, but not as equivalents of sentences of the type ‘For any X  , if X is
an a, then X is a b’ ” [Leśniewski, 1928, p. 264, footnote 2].

54 A similar derivation of the above was presented by Leśniewski himself in the
proof of Theorem LX in [Leśniewski, 1929]. He made the following comment on
this: “From Theorem LX we can see that conditions (b) and (g) in Definition II
entail condition (a) on the basis of my “general theory of multitudes” [Leśniewski,
1929, p. 64, footnote 1] (he writes similarly in [Leśniewski, 1930, p. 78, footnote 1]).
Leśniewski evidently meant that in Definition II the same conditions (b) and (g)
suffice under the strong interpretation of universally-quantified sentences.
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If we were to use the term “object” in CPC  ‘embedded’ in CPC’s
quantifiers  in the form of a one-place predicate “is an object”, then
the following statement would be a thesis of CPC: “∀x x is an object”55

which  taking into consideration the reading of the universal quantifier
given in footnote 8  says the same as the following sentence of ordinary
English: “every object is an object”. In view of the third rule in (rd1),
we would obtain as a theorem in CPC: “∃x x is an object”, i.e., “some
object is an object”.56

In Leśniewski’s system, the term “object” is not ‘embedded’ in the
quantifiers. The sentence “∀P P is an object” is not a thesis of his
system. In fact, if it were, then  by the use of the first rule of (rd1) 
we would obtain as a thesis the formula “P is an object” which turns into
a false sentence with the substitution for “P” of an arbitrary term which
either is empty or polyreferential.57 In a similar way  by applying the
third rule of (rd1)  we would obtain the sentence “∃P P is an object”,
which is not a thesis of Leśniewski’s system.58

55 From this perspective, the predicate “is an object” is superfluous in CPC.
56 Shown here is the so-called “ontological assumption” of CPC of the

non-emptiness of the universe of objects. If someone chooses to understand “to exist”
as meaning the same as “is an object”, then this “ontological assumption” will be an
“existential assumption”.

57 Recall that in Leśniewski’s system we are allowed to substitute an arbitrary
name for the variable “P” and  in accordance with the interpretation of the copula
“is” in this system  the formula “P is an object” produces a true sentence iff for “P”
we substitute a monoreferential term.

58 Some scholars comment on this saying that Leśniewski never accepted an “on-
tological assumption” as part of his system which reduces to an “existential assump-
tion” in his ontology (cf. footnote 56). In fact, Leśniewski nowhere neither assumes
nor states that there are (exist) some objects. This does not, however, mean that
Leśniewski did not assume a non-empty universe for his analysis. For there are theses
in his system which begin with existential quantifiers, such as: “∃a∀P (if P is an a
then P is an a)” which we get from the thesis “∀a∀P (if P is an a then P is an a), by
applying the third rule of (rd1). It is, however, true that since the sentence “∃P P
is an object” in not a thesis in his system, there are therefore no theses of the form
“∃P (P is an object and ϕ(P ))”.

We therefore see that it is not possible to interpret Leśniewski’s quantifiers in
a way which would be conveyed by the use of the phrases “every object . . . is such
that . . . ” and “some object . . . is such that . . . ”, respectively. In view of this, some
scholars think that Leśniewski was using a substitutional interpretation of the quan-
tifiers [cf., e.g., Küng, 1970]. This view is not shared by Guido Küng [Küng, 1977a,b,
1981]. He believe that “Leśniewski’s quantifiers are neither referential (objectual) nor
substitutional” and that “in reality there is [. . . ] a third possible way of quantification.
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Let us add that the sentence “∃P P is an object” is equivalent in
Leśniewski’s system to the sentence “some object is an object”, i.e., that
the second is not a thesis of his system. Leśniewski writes:

The thesis stating that some object is an object is not obtainable on the
basis [. . . ] of the system of “ontology” ([. . . ] I use sentences of the type
“some a is a b” as equivalents of appropriate sentences of the form “for
some X  (X is an a and X is a b)” in which the expression “for some
X” plays the role of a “quantifier” “∃X”,  the sentence “some object
is an object” is for me equivalent to the sentence “for some X  (X is
an object and X is an object)” and thus to the sentence “for some X 
X is an object”). [Leśniewski, 1928, footnote 4, p. 265]

For Leśniewski, the sentence “∀P P is an object” does not corre-
spond to the sentence “every object is an object”. The second  under
the strong interpretation which Leśniewski uses  means the same as
the conjunction: “some object is an object and for any X  if X is an
object, then X is an object”.59 Since the first conjunct is not a thesis in
Leśniewski’s system, the whole conjunction is therefore not a thesis.60

The difference between CPC and Leśniewski’s logic can be expressed
only when we use in both systems admissible rules relating to the sub-

[. . . ] Since for Leśniewski general names not only signify objects but also possess ex-
tensions, the domain of quantification should be composed of these extensions [. . . ]. In
spite of quantification, extensions remain extensions which names possess, but will not
be named objects; the domain of objects does not become widened. In Leśniewski’s
logic, the domain of objects and the domain of values of variables are not identical 
just as in the particular case of Russell’s logic. [. . . ] If extensions remain just what
they are and do not become named objects (are not objectified) then Leśniewski’s logic
still remains nominalistic; but if extensions are quantified over, then it comes close
to platonism. It is something of a sui generis nominalism which in fact is equivalent
to a platonistic Russellian theory of types. [. . . ] via quantifiers [we appeal to] the
extensions of names [. . . ]” [Küng, 1977a, p. 96–97]. This approach might solve many
formal problems connected with the interpretation of the quantifiers (or: the domain
of the values of variables) we find with Leśniewski. Judging from the material cited in
Section 4, however, it would for him come too “close to platonism”. Besides this, what
should we do with a formula of the form “P is an object”? Are extensions supposed to
be values of the variable “P”, where these extensions “are not objectified”. We cannot
further touch on the question of the proper interpretation of Leśniewski’s quantifiers.

59 Compare the interpretation used by Leśniewski of sentences of the form “every
a is a b”, which we presented in footnote 53. We substituted the term “object” for
both variables “a” and “b”.

60 The second conjunct is clearly a thesis in Leśniewski’s system. This conjunct
would correspond, however, to the universally-quantified sentence under the weak
interpretation.
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stitution of name constants alongside the rules of (rd1). Let a formula
ϕ(ζ/τ) arise from a formula ϕ(ζ) by a substitution of a term τ for each
free occurrence of the variable ζ in ϕ(ζ). Both systems had admissible
rules of proof with the following identical forms:

∀ζ ϕ(ζ)

ϕ(ζ/τ)

ϕ(ζ)

ϕ(ζ/τ)

ϕ(ζ/τ)

∃ζ ϕ(ζ)
(rd2)

In both systems we accept, however, a different “range of applicability”
of these rules. In CPC we limit their application to monoreferential
terms, i.e., τ must be such a term. In Leśniewski’s logic we have no
fixed limit, i.e., τ can be an arbitrary term.61

4. Similarly in the case of Leśniewski’s logic, the admissible rules of
proof of free logic can be used with empty terms. This should not be
seen as saying, however, that his logic is a free logic. The rules of (rd2)
in Leśniewski’s logic are simply not admissible in a free logic  at least
in its standard version, which Lambert presents in his essay “The nature
of free logic” [Lambert, 1991]. For example, to obtain an admissible rule
in free logic, it is necessary to strengthen the first rule of (rd2) by the
addition of the premise p∃x x = τq to obtain:

∀ζ ϕ(ζ) ∃x x = τ

ϕ(ζ/τ)

Since the interpretation of the quantifiers in free logic is referential (ob-
jectual), this additional premise simply states that some object is the
referent of the term τ .62

6. Collective classes (sets)

In this section we will translate Leśniewski’s axioms I–IV and definitions
I–IV into the schematic language of classical logic. We will therefore be

61 Formally, this difference manifests itself in the conditions which the definitions
of the name-constants in theories based on CPC must fulfil. Before introducing a new
name-constant in such a theory, one must prove that it signifies exactly one object.
In Leśniewski’s system no limits on the definition of name-constants is made.

62 In both Leśniewski’s logic and in CPC this additional assumption is super-
fluous. In the former, the rule is just admissible without this assumption. In CPC
the assumption is tautological, because we have a restriction after all: τ must be a
monoreferential term.
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using the variables “x”, “y”, “z” etc. It is possible to substitute only
monoreferential terms  in accordance with the rules of (rd2).

Axioms I and II relate to the relation is a part of . The first states
that it is asymmetric. In classical logic we express it with the help of
the formula (asP) or  using the name “⊏” of the relation is a part of 
with the help of the formula (as⊏). The second axiom of Leśniewski’s
mereology states that the relation is a part of is transitive. We express it
with the help of the formula (t⊏). The formula (df-ingr), or symbolically:
(df ⊑), gives Definition I of the relation is an ingrediens of . Using only
this concept Leśniewski defined the concepts collective class of Ps and
collective set of Ps (see definitions II and III), where “P” is a schematic
letter representing arbitrary names.

We shall continue to use the nous “class” and “set” both in a collective
and in a distributive sense. In the first case we will use the expressions
“classc” and “setc”, respectively. In the second, “classd” and “setd”,
respectively. We shall then put Leśniewski’s definitions in the following
forms:

x is a classc of Ps iff every P is an ingrediens of x and
every ingrediens of x has a common
ingrediens with some P,

(6.1)

x is a setc of Ps iff every ingrediens of x has a common
ingrediens with some P which is an
ingrediens of x.

(6.2)

Recall that we are understanding sentences that are instances of the
schema “Every S is a P” with the following sense: ∀x(x is an S ⇒ x is
a P)”. We shall therefore give the definitions above the following symbolic
forms:

x is a classc of Ps :⇐⇒ ∀y

(
y is a P ⇒ y ⊑ x

)
∧ ∀z

(
z ⊑ x ⇒

∃y,u(y is a P ∧ u ⊑ y ∧ u ⊑ z)
)
,

(6.1′)

x is a setc of Ps :⇐⇒ ∀z

(
z ⊑ x ⇒ ∃y,u(y is a P ∧ y ⊑ x ∧

u ⊑ y ∧ u ⊑ z)
)
.

(6.2′)

It follows directly from the definitions above that each class is a set:

∀x(x is a classc of Ps =⇒ x is a setc of Ps). (6.3)

Let x be a classc of Ps. Then each P is an ingrediens of x and: if y ⊑ x
then y has a common ingrediens with some P which is an ingrediens of x.
Therefore x is a setc of Ps.



6. Collective classes (sets) 59

Conversely as well, each setc is a classc. By substituting in (6.1) for
“P” an expression of the form “P which is an ingrediens of x”, we obtain
the tautological first conjunct of definiens of (6.1). Thus:

∀x(x is a setc of Ps ⇐⇒ x is a classc of Ps being ingredienses of x).
(6.4)

It follows directly from (6.1) and (df ⊑) that each object is a classc of
something (and so, in the light of (6.3), it is also a setc of this something):

∀x x is a classc of ingredienses of x, (6.5)

∀x x is a classc of objects identical with x.63 (6.6)

For (6.5): we substitute for “P” in (6.1) the expression “ingrediens of x”.
Then the first conjunct in the definiens is tautological: each ingrediens
of x is an ingrediens of x. The second conjunct is also true: an arbitrary
ingrediens of x has a common ingrediens with some ingrediens of x, be-
cause it has a common ingrediens with itself. In virtue of (6.1) therefore,
x is a classc of ingredienses of x. For (6.6): substitute in (6.1) for “P”
a general term “object identical with x” which for any x denotes x and
only x. Then the first conjunct in the definiens is true, because x ⊑ x.
Moreover, if y ⊑ x then y has a common ingrediens with x, since y ⊑ y.

It follows from the above considerations that the non-relative pred-
icates “is a classc” and “is a setc” would be superfluous for mereology,
because each object turns out to be a classc and setc. In fact, these
non-relative predicates would have to fulfil the following principles:

∀x(x is a classc of Ps =⇒ x is a classc),

∀x(x is a setc of Ps =⇒ x is a setc).

Hence, using (6.5) (or (6.6)) and (6.3) we obtain:

∀x x is a classc,

∀x x is a setc.

We see therefore that the non-relative expressions “classc” and “setc” are
just as universal as the term “object” (everything is an object): every-
thing is a classc and everything is a setc. Thus, the only interesting roles
which these expressions can play are the roles of name-forming functors

63 Clearly, the object identical with x is x and only x. We have used this form
in view the non-natural plural form “xs”. (Leśniewski wrote “objects of P”; see point
(3) in the passage on p. 45 take from [Leśniewski, 1927].)
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taking names as argument, which serve to build general names whose
schemata are “classc of Ps” and “setc of Ps”.

We stress that up to this point we have been using only Definitions
I–III themselves. In addition, not making use of any specific axiom of
mereology, it follows from definitions (6.1), (6.2), and (df ⊑) that if the
letter “P” represents an empty name then the names represented by the
schemata “classc of Ss” and “setc of Ps” are also empty. This accords
with our informal understanding of the expression “aggregate”  ‘there
can be no assemblage of that of which there is none’, i.e., ‘there is no
aggregate of Ps if there are not any Ps’:

There is a setc of Ps =⇒ there is a P, or

There is no P =⇒ there is no setc of Ps.
(6.7)

Suppose that there is no P. Moreover, assume for a contradiction that
some x is a setc of Ps. Then, by (6.2), each ingrediens of x has some
common ingrediens with some P. Because, by (df ⊑), we have x ⊑ x, so
x has a common ingrediens with some P. But there are no P. So we have
obtained a contradiction.

Directly from (6.3) and (6.7) we obtain:64

There is a classc of Ps =⇒ there is a P, or

There is no P =⇒ tere is no classc of Ps.
(6.8)

Of course, this also can be obtained by applying (6.1) and (df ⊑).
It also follows from definitions (6.1) and (df ⊑) that

∀x(x has some part ⇐⇒ x is a classc of parts of x). (6.9)

Assume that x has some part. Substitute for the definition “P” in (6.1)
the expression “part of x”. Then, by (df ⊑), the first conjunct in the
definiens is true: each part of x is an ingrediens of x. The second conjunct
is also true. If y ⊑ x then either x = y or y ⊏ x. In the first case 
in the light of the assumption  for some z we have: z ⊏ x; so also
z ⊑ x. Since also z ⊑ z, so y has a common ingrediens with z. In the
second case y has a common ingrediens with y, because y ⊑ y. Hence
in both cases an arbitrary ingrediens of x has some common ingrediens
with some part of x. Therefore, via (6.1), x is a classc of parts of x. The
converse implication results from (6.8).

64 Compare point (1) in the passage from [Leśniewski, 1927] reprinted on p. 45.
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The final results drawn directly from (6.1) and (6.2), respectively,
will be the counterparts of condition (3.6) which we formulated for dis-
tributive classes and sets. They state that if two terms signify the same
objects and one of them determines some classc (resp. setc), then the
other of them determines the same classc (resp. setc):

∀y(y is an S ⇔ y is a P) =⇒
∀x(x is a classc of Ss ⇒ x is a classc of Ps).

(6.10)

∀y(y is an S ⇔ y is a P) =⇒
∀x(x is a setc of Ss ⇒ x is a setc of Ps).

(6.11)

Condition (3.7) was for distributive classes and sets. Its counterpart
for collective classes and sets is not in general true. Two terms can deter-
mine the same collective class in spite of the fact that they do not refer
to the same objects. What is more, it may be that something is a classc

of Ss and a classc of Ps (resp. a setc of Ss and a setc of Ps), even though
no S is a P. Leśniewski presents such a case in point (3) in the passage
take from [Leśniewski, 1927] given on p. 45. Similar cases are to be found
in the examples in the quoted texts from [Borkowski, 1977; Quine, 1981,
1953] on pages 21, 27, and 24, respectively. And so  in agreement with
[Borkowski, 1977; Quine, 1953]  a given pile of stones is a classc of stones
comprising that pile. It is also the classc of atoms of which the stones in
that pile are composed and it is also the classc of molecules of which the
stones in that pile are composed.65 Analogously, the USA is the classc

of states in the USA and the classc of counties in the USA.
Axiom III states that terms of the form “classc of Ps” never signify

more than one object. We may express this as the following formula:

∀x,y(x is a classc of Ps ∧ y is a classc of Ps =⇒ x = y). (6.12)

Hence if “classc of Ps” represents a non-empty term then it is also mono-
referential and so we may use the term “the classc of Ps”. Therefore, from
(6.5), (6.6), and (6.9) we get:

x = the classc of ingredienses of x, (6.13)

x = the classc of objects identical with x, (6.14)

x has some part =⇒ x = the classc of parts of x. (6.15)

65 Similarly, in accordance with (6.2): a given piles of stones is a setc of stones,
a setc of atoms, and also a setc of molecules.
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Moreover, it follows from (6.6) (or l(6.14)), (6.3), and (6.12), that if the
name represented by “P” signifies exactly one object, then this object
is also the unique referent of the names “classc of Ps” and “setc of Ps”.
In each case, we are not dealing with any ‘grouping’ of elements into a
‘whole’; the ‘whole’ is that unique P. Thus:

there is exactly one P =⇒ the classc of Ps = the P = the setc of Ps.
(6.16)

If x is the unique P, then x is a classc of Ps and is a setc of Ps. The rest
follows from (6.12).

Axiom IV is written as the converse implication of implication (6.8):

There is a P =⇒ there is a classc of Ps. (6.17)

With regard to (6.8), it is obviously the maximally strong assumption
one may make in mereology without falling into contradiction. We shall
show in Chapter II that this theory is in fact consistent. In Section 5 of
Chapter II we will discuss the doubts raised by Axiom (6.17).

Both assumptions (6.12) and (6.17) guarantee that:

There is a P =⇒ there is exactly one classc of Ps. (6.18)

Thus, if the letter “P” represents a non-empty term then the schema
“classc of Ps” represents a monoreferential term and so we may substitute
“the classc of Ps” for the free variables “x”, “y”, “z”, etc. One of the
consequences of (6.1) therefore is:

There is a P =⇒ each P is an ingrediens of the classc of Ps.66 (6.19)

It suffices to substitute “the classc of Ps” for “x” in (6.1) and, by (6.18),
detach the schema “the classc of Ps is a classc of Ps”.

We note finally that thanks to (6.18) we may write condition (6.10)
as follows:

∀y(y is an S ⇔ y is a P) ∧ there is an S =⇒
the classc of Ss = the classc of Ps.

(6.20)

We know that the above implication is not reversible.

66 Note that if we replace “ingrediens” by “part”, then we do not generally obtain
a true condition. Essentially, the same classc of Ps can be of one the Ps, but it is not
a part of it. Compare the example given on p. 66 and result (6.16).
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We have already mentioned tha ambiguity of the expression “element
of a class” (resp. “element of a set”). It might seem that this ambiguity
is entirely a matter of the connection this expression has with the equally
ambiguous the term “class” (resp. “set”) and that the expression “ele-
ment of a collective class” (resp. “element of a collective set”) has just
one meaning. We will show that this is not, however, the case and that
this is caused by the universality of the term “collective class” (resp. “col-
lective set”). Take two arbitrary objects x and y. In virtue of (6.13), the
sentence “y is an element of the classc of ingredienses of x” has the same
logical value as the sentence “y is an element of x”. The concept of an
object is, however, universal and also includes distributive classes (sets).
Therefore, it might turn out that an arbitrarily chosen object x is a dis-
tributive set. In this case, the sentence “y is an element of x” would not
be unambiguous. We do not know whether we are talking about being
an element in the distributive sense or being an element in the collective
sense. This second concept  as we have already mentioned and will later
show  boils down to the concept of being an ingrediens of . Since every
object is its own ingrediens, every object is therefore is own element in
the collective sense; so also all distributive classes are their own elements
in a collective sense. On the other hand, only distributive classes have
elements in the distributive sense and only non-normal distributive sets
are their own elements in a distributive sense. We shall therefore use the
term “element” with a subscripted “c” or “d”, depending on whether we
are using that term in a collective or distributive sense.

Let us turn to the analysis of the term “elementc”. In order to
formulate Leśniewski’s Definition IV given, it is not enough to use the
schemata of object-language expressions. We need to use a metalinguistic
formulation so as to preserve an appropriate level of precision. Let us
establish that the letter “n” is a metalinguistic variable (metavariable)
representing names.67 The general name of the classc of all designations
of a given name n will then be pthe classc of nsq.68 In its metalinguistic

67 We substitute the name of a given name (e.g., a quotational name of a given
name) in place of the metalinguistic variable “n”.

68 We have used ‘corner quotes’, Quine’s so-called quasi-quotation marks, and
have thus created quasi-quotational names. Such a name refers to the name (it is a
name of a name) which is a concatenation of the noun “class” (used in its collective
sense) with a suitably (grammatically) adjusted name n. If, for example n = “dog”,
then pthe classc of nsq = “the classc of dogs”. (In place of “n” we have inserted the
same expression, but not its quotational name. We have pnq = n, for any name n.)
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formulation, condition (6.18) states that for any name n we have:

n is non-empty =⇒ pclassc of nsq is a monoreferential term. (6.18′)

In its metalinguistic formulation, Definition IV appears thus for any
name n and all objects x and y:

x is an elementc of y :⇐⇒ ∃n(x is a referent of n ∧ y is the
referent of pthe classc of nsq ).

(6.21)

We shall provide below a logico-philosophical commentary on defini-
tion (6.21).

With regard to the left-to-right direction in (6.21): Assume that x is
an elementc of y. In keeping with our informal understanding of the term
“element”, y is a classc of some objects and x is one of those objects.69

Thus, for a certain name n we obtain that x is a referent of the name n

and the name pthe classc of nsq signifies y.70

The right-to-left direction of (6.21) has its source in the analytic
statement: every P is an elementc of the classc of Ps.71 Clearly, we are

On the subject of quasi-quotation, see, e.g., [Quine, 1981, pp. 39–42], [Quine, 1953,
pp. 151–154], [Mostowski, 1948, pp. 321–313].

If we were to use the usual quotational name “classc of ns”  instead of the
quasi-quotational name  then this would signify an expression which is the concate-
nation of “class of” with the letter “n” [cf., e.g. Tarski, 1933, pp. 8–10].

69 Speaking figuratively: y is a ‘gluing together’ of those objects to which x
belongs. Or: for the classc y we can carry out a sort of ‘conceptual dismemberment’
under which x falls.

70 To formulate this in a way that preserves precision, we have had to move to
the metalinguistic level. It is not possible to write this formulation precisely using a
sentential schema at the object-language level. The formulation would have to have
the following form: if x is an elementc of y, then the letter “P” may represent such
name, where x is a P and y = the classc of Ps. It is possible to express this using
second-order logic:

x is an elementc of y =⇒ ∃X(x is an X ∧ y = the classc of Xs),

but then problems arise with the interpretation of the quantifier binding the vari-
able “X”.

71 We observe that it is not possible to reverse this statement, i.e., it may be
that not every elementc of a classc of Ps will be P. This follows from the fact that
the ‘gluing together’ of other elementsc than Ps may yield that same ‘whole’, i.e.,
the classc of Ps. We have given an example on p. 61. Each state of the USA is an
elementc of the classc of states of the USA; each county in the USA is an elementc of
the classc of counties in the USA. But the classc of states in the USA = USA = the
classc of counties in the USA; and therefore some elementc of the classc of states in
the USA is not a state of the USA.
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‘quietly’ assuming here that in general there is a classc of Ps, that is that
there is at least one P. Under this assumption, using (6.18), the given
analytic sentence may be rendered as follows:

There is a P =⇒
∀x(x is a P ⇒ x is an elementc of the classc of Ps).

(6.22)

By moving to the metalinguistic level, we can dispense with the assump-
tion “there is a P”. The formulation will be correct for any name n:

∀x,y,n

(
(x is a referent of n ∧ y is the referent of pthe classc of nsq)

=⇒ x is an elementc of y
)
.

Using the rule regarding quantifiers, we get:

∀x,y

(
∃n(x is a referent of n ∧ y is the referent of pthe classc of nsq)

=⇒ x is an elementc of y
)
.72

These conditions suffice for us to show that in the case of collective
sets, being an elementc of a given set reduces to being its ingrediens. In
other words, the following biconditional holds:

∀x,y(x is an elementc of y ⇐⇒ x is an ingrediens of y). (6.23)

For the left-to-right direction: If x is an elementc of y, then  in virtue
of (6.21)  for a certain name n0, we have that x is an referent of n0

and that the name pthe classc of nsq signifies y. Substituting in (6.19)
the name n0 in place of the letter “P” we have that each referent of n0

is an ingrediens of the unique referent of the name pthe classc of nsq.
Therefore x ⊑ y. For the right-to-left direction: Assume that x ⊑ y.
Then x is an referent of “ingrediens of y”. By (6.13), we have: y = the
classc of ingredienses of y, i.e., y is the referent of the name “the classc

of ingredienses of y”. So the right-hand side of definition (6.21) is true,
i.e., x is an elementc of y.73

72 By applying analogous rules for the use of second-order quantifiers we obtain
from the consequence of (6.22) the converse implication to that in footnote 70. Thus,
we may formulate the definition of being an elementc of a classc in a second-order
language:

x is an elementc of y :⇐⇒ ∃X(x is an X ∧ y = the classc of Xs).

73 It is also possible to prove the right-to-left direction of (6.23) by substituting
the name “ingrediens of y” in place of the letter “P” in the schema (6.22).
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Figure 2.

Condition (6.23) shows that any classc (setsc) has some elementc.
Hence there is no empty collective class (set). It also follows from condi-
tion (6.23) that all classesc (resp. setsc) are non-normal, i.e., that they are
their own elementsc. Hence we obtain a solution to Russell’s antinomy
in the ‘field’ of mereology, the one which we have mentioned already
on p. 46: since the terms “normal classc” and “normal setc” are empty,
we get from (6.7) that the terms “setc of normal classesc” and “setc of
normal setsc” are empty. Moreover, by (6.8), the terms “classc of normal
classesc” and “classc of normal setsc” are also empty. There is therefore
‘nothing to say’  there is ‘no problem’.

Also by (6.23), we have the obvious statement:

∀x(x has exactly one elementc ⇐⇒ x has no parts). (6.24)

Thus, in the case where there exists exactly one P, it is not possible to
say in a general way of P that it is a one-element classc (setc) and this
one elements is the set itself.74 It is clearly true that an arbitrary classc

(setc) which has only one elementc is identical to this unique elementc.
We must not, however, confuse this statement with (6.16).

It may even happen that the classc of Ss = the classc of Ps when
there exists exactly one S and at least two Ps. Then the classc of Ss has
at least two elementsc (and if the unique S is not an P, then the classc of
Ss has at least three elementsc). For example, let the letter “S” represent
the name “square with a side of two centimetres in Figure 2” and the
letter “P” represent the name “square in Figure 2”. The first of these
names signifies exactly one object and the second has five referents.

We clearly have an identity: the classc of Ss = the classc of Ps. Thus,
the classc of Ss has at least five elementsc. These are not, however, its

74 Some do sometimes write in this way, though: see, e.g., the quote from Russell’s
book printed here on page 30. Recall that condition (6.16) just says: if there exists
exactly one P, then the P = the classc of Ps = the setc of Ps.
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only elementsc. In fact, in keeping with the conception of collective sets,
the following equality also holds: the classc of Ss = the classc of triangles
in Figure 2 = the classc of rectangles in Figure 2, etc.

7. Mereology with set theory

In the previous section, we were able to avoid both an analysis employing
object-language schemata and metalinguistic schemata. It sufficed to
use distributive sets to pursue our investigations into collective classes
(sets).75

Let S be an arbitrary setd. Substitute in definition (6.1) the ex-
pression “elementd of S” in place of the schematic letter “P”. Then the
schematic phrase “is a P” changes into the phrase “is an elementd of S”
and (6.1) takes the form:

x is a classc of elementsd of S iff every elementd of S is an ingrediens
of x and every ingrediens of x has
some common ingrediens with
some elementsd of S. (7.1)

By replacing the statement “y is an elementd of S” with “y ∈ S” we
obtain the following symbolic form corresponding to the schema (6.1′):

x is a classc of elementsd of S :⇐⇒ ∀z(z ∈ S ⇒ z ⊑ x) ∧
∀y

(
y ⊑ x ⇒ ∃z,u(z ∈ S ∧
u ⊑ z ∧ u ⊑ y)

)
. (7.1′)

It follows from this definition that if x is a classc of elementsd of S, then
S 6= ∅, i.e., S has in general some elementd.

In this convention results (6.13) and (6.14) have the following form:

x = the classc of elementsd of the setd {y : y ⊑ x}, (7.2)

x = the classc of elementsd of the setd {x}. (7.3)

We may similarly write down the other schematic formulae that appeared
in the previous section (including the counterparts of axioms III and IV
of the mereology).

75 This approach would have been ‘completely foreign’ to Leśniewski, who did
not recognise the existence of distributive classes (sets).
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Limiting the scope of our analysis to a non-empty setd M , if x ∈ M
and S ∈ P+(M), then the fact that x is a classc of elementsd of S can
be reduced to a certain relation holding between x and S. This relation
is the subset of the Cartesian product M × P+(M). It is precisely this
relation which we will be concerned with in the following chapters of this
book [see also, e.g., Gruszczyński and Pietruszczak, 2010].

By using the language of set theory, we may dispense with the meta-
linguistic formulations of definition (6.21). Instead of names we may talk
of setsd and instead of the statements “x is a referent of a name n” and
“y is a referent of “pthe classc of nsq” we can respectively use “x ∈ S”
and “y is the classc of elementsd of S”. Definition (6.21) therefore takes
on the form:

x is an elementc of y :⇐⇒ ∃S(x ∈ S ∧
y is the classc of elementsd of S).

(7.4)

From (7.4) we may derive all the results which we obtained in the previ-
ous section where we made use of (6.21). Since being an elementc comes
down in mereology to being an ingrediens, we shall therefore not be using
the former concept.



Part A

MEREOLOGICAL STRUCTURES



In this part of the book we shall be treating mereology as a theory of
certain relational structures called mereological structures.

Following Leśniewski [1928], mereology  pursued as a theory of cer-
tain relational structures  concerns ordered pairs of the form 〈M,⊏〉
in which ⊏ is the relation is a part of in a non-empty set M .a For,
as Alfred Tarski notes, “it should be emphasized that mereology, as
it was conceived by its author, is not to be regarded as a formal the-
ory where primitive notions may admit many different interpretations”
[Tarski, 1956c, p. 334, footnote 1 form p. 333]. Following Leśniewski
we accept that the set M is strictly partially ordered by the relation ⊏,
which meets further additional conditions.b The strict partial order will
be established by axioms (L1) and (L2), and these additional conditions
by axioms (L3) and (L4) (cf. pp. 82 and 87, respectively).

If we assume only conditions (L1)–(L4) regarding the relation is a
part of in a non-empty set M , then  using set-theoretic language  it
is not possible to state that a binary relation R in M which satisfies the
aforementioned conditions is ultimately the ‘true’ relation is a part of.c

We shall therefore call any relational structure 〈M,R〉 a mereological
structure if a binary relation R satisfies conditions (L1)–(L4). The rela-
tion R itself will be signified by the symbol “⊏” and called the relation
is a part of.

a Henceforth, the terms “set” and “class” will be used in a distributive sense,
unless otherwise stated. On the matter of terminology and notation, see Section I.1
and sections 2 and 3 of Appendix I.

Clearly, the set-theoretic approach to mereology is alien to Leśniewski’s philosoph-
ical views. We know that Leśniewski did not recognise the existence of distributive
sets. The structure 〈M,⊏〉 of set theory and both its constituents did not exist for
him. In his mereology, Leśniewski used the logical term “object” (universal name)
and the name-generating functor “part”. These terms did not have extensions for him
because he did not recognise their existence either.

b That is, the relation ⊏ is transitive and irreflexive, and so also asymmetric.
The set-theoretic predicate of set-membership will feature in the formulation of the
additional conditions for the relation ⊏ along with a variable ranging over the power
set of the universe of structures (cf. Section I.7). The mereological structures will not
be elementarily axiomatisable.

c Similarly, in Leśniewski’s logical language, his conditions do not determine a
unique meaning for the term “part”.



Chapter II

Classical mereology

1. First axioms

Let M be a non-empty set and ⊏ a binary relation in M . Later we
will assume that the relation ⊏ meets the condition which Leśniewski
imposed on the relation is a part of . The first axioms state that the
relation ⊏ is a strict partial order in the set M ; more exactly, that
the relation ⊏ is asymmetric, transitive, and irreflexive in M , i.e., the
relation ⊏ satisfies in M conditions (as⊏), (t⊏), and (irr⊏), respectively,
from pp. 19–20. As is well known, it is sufficient to assume that the
relation ⊏ is transitive and satisfies one of the remaining two conditions.1

Following Leśniewski, we choose conditions (as⊏) and (t⊏) as the first
two axioms. So we put:

∀x,y∈M (x ⊏ y =⇒ y 6⊏ x), (L1)

∀x,y,z∈M (x ⊏ y ∧ y ⊏ z =⇒ x ⊏ z). (L2)

Let L12 be the class of structures of the form 〈M,⊏〉 satisfying (L1)
and (L2). In other words, L12 is the class SPOS of all strictly partially
ordered sets. We shall further consider a certain class MS of mereological
structures which will be a proper subclass of L12. We will define the class
MS by introducing two further, non-elementary axioms (L3) and (L4)
for it (see pp. 82 and 87).2

We will be examining the ‘elementary aspects’ of the class MS with
the help of the elementary language L� with identity and one specific
constant which is the binary predicate “�”. This predicate we may read
as “is a part of”. The language L� is created by the rules given in Section 1
of Appendix II.

1 See, e.g., Lemma 2.2 from Section 2 of Appendix I and Section I.1.
2 Axiom (L3) may be replaced with another condition that will be elementary.
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In accordance with the convention adopted in Section 1 of Appendix
II, we accept that the predicate “�” is interpreted in M = 〈M,⊏〉 as
the relation ⊏. It is possible to treat the structure M as a set-theoretic
interpretation of the language L� and to call it an L�-structure. For an
arbitrary valuation of variables V : Var → M for atomic formulae we
have: M � pxi � xjq [V ] iff V (xi) ⊏ V (xj); and M � pxi = xjq [V ] iff
V (xi) = V (xj).

Remark 1.1. The introduction of the language L� allows us:
1) to observe that different parts of our analysis, which we are car-

rying out in the confines of set theory, can also be carried out in various
elementary theories built in the language L�, i.e., without using the con-
cepts of set and of relation;

2) to build in the language L� a certain first-order theory which may
be called elementary mereology and which elementarily axiomatises a
certain class of structures qMS closely connected with Leśniewski’s mere-
ology (see Chapter VI).

If a structure M = 〈M,⊏〉 satisfies conditions (L1) and (L2) then
the following two sentences from L� are true in M:

∀x∀y(x � y → ¬ y � x) (l1)

∀x∀y∀z(x � y ∧ y � z → x � z) (l2)

Of course, the class L12 is equal to the class of L�-structures composed
of all models of the set {(l1), (l2)}. Thus, the class L12 is finitely
elementarily axiomatisable.3

2. Auxiliary definitions

In this section we shall describe three binary relations and one set, which
will all be elementarily definable (or short: e-definable) in M = 〈M,⊏〉.4

We begin with the binary relation ⊑ which we shall describe with the
aid of the formula (df ⊑) given on p. 20.5 In this case, if ⊏ is the ‘true’

3 We shall later prove that the class MS, which we mentioned in the introduc-
tion to this part of the book and in one of previous paragraphs, is not elementarily
axiomatisable.

4 For elementary definability see, e.g., Section 2 in Appendix II.
5 The L�-formula used for e-definition of ⊑ in M is “x � y ∨ x = y”. Clearly, the

relation ⊏ itself is e-definable with the help of the formula “x � y”, and the sets ∅
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relation is a part of, then the relation ⊑ is the relation is an ingrediens
of , which we discussed on p. 19. We shall in future always call this the
relation ⊑.

The relation ⊑ partially orders the set M ; more exactly, the relation
⊏ is irreflexive, antisymmetric and transitive in M , i.e., the relation ⊑
satisfies in M conditions (r⊑), (antis⊑), and (t⊑), respectively, from p. 20.
Moreover, the relation ⊑ has other properties given in the formulae in
(⊏=⊑\id) and (⊏=⊑\⊒) from p. 20, and below for all x, y, z ∈ M :6

x ⊏ y ∧ y ⊑ z =⇒ x ⊏ z , (2.1)

x ⊑ y ∧ y ⊏ z =⇒ x ⊏ z . (2.2)

In order to abbreviate our formulations, let us introduce two auxiliary
functions P and I from M into P(M) which assign each x ∈ M the set
of parts of x and the set of ingredienses of x, respectively:

P(x) := {y ∈ M : y ⊏ x},

I(x) := {y ∈ M : y ⊑ x}.

For any x ∈ M the sets P(x) and I(x) are e-definable in M with the
parameter x.7 By the above definitions we obtain:

I(x) = P(x) ∪ {x}. (2.3)

Directly from (irr⊏) and (as⊏), for all x, y ∈ M we have, respectively:

x 6∈ P(x),

P(x) ( I(x),

x ∈ P(y) =⇒ y 6∈ P(x).

Moreover, from (irr⊏) and (t⊏), for all x, y ∈ M we obtain:

x ⊏ y =⇒ P(x) ( P(y), (monoP)

x ⊏ y =⇒ I(x) ( I(y). (monoI)

and M are e-definable in M with the help of “x ≠ x” and “x = x”, respectively. If
M ∈ L12 then these sets are also e-definable in M without identity, with the help of
“x � x” and “¬ x � x”, respectively.

6 See, e.g., the facts given in sections 2–4 of Appendix I.
7 For P(x) and I(x), the L� formulae used for e-definability with the parameter

x are, respectively, the same formulae which were used for the e-definability of the
relations ⊏ and ⊑.
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Let x ⊏ y. Then for (monoP), by (t⊏), we have P(x) ⊆ P(y). Moreover,
by (irr⊏), x /∈ P(x) and x ∈ P(y); so P(x) ( P(y). For (monoI): I(x) :=
P(x) ∪ {x} ⊆ P(y) ( I(y).

Note that the pair of conditions (r⊑) and (t⊑) is equivalent to the
following condition (see Lemma 2.1(ii) in Appendix I):

x ⊑ y ⇐⇒ ∀z∈M(z ⊑ x ⇒ z ⊑ y), or

x ⊑ y ⇐⇒ I(x) ⊆ I(y).
(r&t⊑)

Finally, by (r⊑) and (antis⊑), we get the “principle of extensionality”
with respect to I (or ⊑), i.e., for all x, y ∈ M we have:

∀z∈M (z ⊑ x ⇔ z ⊑ y) =⇒ x = y , or

I(x) = I(y) =⇒ x = y.
(ext⊑)

Remark 2.1. Of course, we can not get an analogous “principle of ex-
tensionality” with respect to P that would take the following form:
“P(x) = P(y) ⇒ x = y”. Classical mereology allows for the existence
objects without any part; so-called mereological atoms (see below). So
for two (different) atoms x and y we have P(x) = ∅ = P(y), but x 6= y.

Formally, we put the structure 〈{1, 2},⊏〉 with the empty relation ⊏.
It is easy to see that all axioms (L1)–(L4) are true in this structure. But
P(1) = ∅ = P(2) and 1 6= 2.

So an analogous “principle of extensionality” with respect to P should
have the following form: “P(x) = P(y) 6= ∅ ⇒ x = y”. But this will not
get in the class L12. In fact, we put the structure 〈{0, 1, 2},⊏〉, where
⊏ := {〈0, 1〉, 〈0, 2〉}. We can illustrate this by the graph below:

1 2

0

This structure belongs to L12, but P(1) = {0} = P(2) and 1 6= 2.
The “principle of extensionality” with respect to P will be obtained

after the addition of axiom (L3) (see (ext⊏) on p. 82).

Classical mereology allows for the existence of so-called mereological
atoms. We say that a given object is is a mereological atom iff it has no
part. Let at be the set of mereological atoms in the structure M,8 i.e.,

8 The L�-formula used for e-definability of the set at is “¬ ∃y y � x”. Atoms in
mereological structures will be discussed in detail in Section VI.6.
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for any x ∈ M we have:

x ∈ at :⇐⇒ ¬∃z∈M z ⊏ x ⇐⇒ P(x) = ∅ . (df at)

Applying definitions and (r⊑), for each x ∈ M we obtain:

x ∈ at ⇐⇒ I(x) = {x} ⇐⇒ ∀z∈M(z ⊑ x ⇔ z = x). (2.4)

Remark 2.2. Let us immediately highlight that each possible axioma-
tisation of mereological structures of the form 〈M,⊏〉, in which ⊏ is
supposed to be the relation is a part of, has to ensure that  apart from
the case in which M is a singleton  there will not be a least element
in M (‘zero’) with respect to ⊏. In other words, if the universe M
has at least two members then there is no its member which is an in-
grediens of all members of M , i.e., the following sentence will be true:
¬∃x∈M ∀y∈M x ⊑ y (see (∄0) on p. 85). This is supposed to rule out the
existence of so-called ‘empty objects’ or ‘zeros’. So if M is not a singleton
then also no mereological atoms will be zeros. The case in which the set
M is one-membered is of no interest on account of its triviality.

Note that for any x ∈ M we obtain:

x ∈ at ⇐⇒ ∀y∈M

(
∃z∈M(z ⊑ x ∧ z ⊑ y) ⇒ x ⊑ y

)
. (2.5)

If x ∈ at and for some z we have z ⊑ x and z ⊑ y. Hence, by (df at),
we have z = x and therefore x ⊑ y. Conversely, if x /∈ at then for some
y we have y ⊏ x. Hence, by (df ⊑) and (r⊑), we have y ⊑ x and y ⊑ y,
but by (as⊏) and (irr⊏), we obtain x 6⊑ y.

The second e-definable relation in M is the binary relation � over-
laps.9 Two objects overlap iff they have a common ingrediens; i.e., for
all x, y ∈ M we have:

x � y :⇐⇒ ∃z∈M(z ⊑ x ∧ z ⊑ y).10 (df �)

9 We take our intuitions about the meaning of this term from the case where ⊏

is the ‘true’ relation is a part of and ⊑ is the ‘true’ relation is an ingrediens of. The
term “overlapping” comes from Leonard and Goodman [1940, p. 47] and is also used
by Simons [1987], who also uses the same symbol as we do here. In [Leonard and
Goodman, 1940] this relation is signified by ‘o’.

10 Note that � := ⊒ ◦ ⊑, where ⊒ is the converse relation to the relation ⊑ and
◦ is the relative product of two binary relations (see Appendix I). The L�-formula
used for the e-definition is “∃z((z � x ∨ z = x) ∧ (z � y ∨ z = y))”.



76 Chapter II. Classical mereology

Remark 2.3. Let us immediately highlight that each possible axioma-
tisation of mereological structures of the form 〈M,⊏〉, in which ⊏ is
supposed to be the relation is a part of, has to ensure that  apart from
the case in which M is a singleton  there will exist in M elements which
do not overlap (see (∃ N) on p. 85).

It follows directly from the definition that the relation overlaps is
symmetric and from (r⊑) that it is reflexive and includes the relation is
an ingrediens of, i.e., for arbitrary x, y ∈ M we have:

x � y ⇐⇒ y � x , (s�)

x � x , (r�)

x ⊑ y =⇒ x � y . (⊑⊆�)

Moreover, by (t⊑), for arbitrary x, y, z ∈ M we obtain:

x ⊑ y ∧ z � x =⇒ z � y . (mono�)

Connected with the relation � is the mapping O : M → P+(M) which
assigns each x ∈ M the set O(x) of objects overlapping x.

O(x) := {y ∈ M : y � x}.

For any x ∈ M the set O(x) is e-definable in M with the parameter x.
For arbitrary x, y ∈ M we have:

y ∈ O(x) ⇐⇒ x ∈ O(y),

x ∈ O(x),

I(x) ⊆ O(x), (I ⊆ O)

x ⊑ y =⇒ O(x) ⊆ O(y), (monoO)

I(x) ⊆ O(y) ⇐⇒ O(x) ⊆ O(y). (2.6)

For (2.6): Assume that I(x) ⊆ O(y) and z ∈ O(x). Then for some u we
have u ⊑ z and u ⊑ x. Hence, in virtue of the assumption, u ∈ O(y).
Therefore for some v we have v ⊑ u and v ⊑ y. So, by (t⊑), we have v ⊑ z
and v ⊑ y, i.e., z ∈ O(y). The converse implication follows from (I ⊆ O).

The third e-definable relation is the binary relation N is exterior to.
One object is exterior to another iff they have no common ingrediens,11

11 We take our intuitions again about the meaning of this term from the case
where ⊏ is the ‘true’ relation is a part of of and ⊑ is the ‘true’ relation is an ingre-
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i.e., for arbitrary x, y ∈ M we have:

x N y :⇐⇒ ¬∃z∈M(z ⊑ x ∧ z ⊑ y).12 (df N)

It follows directly from the definitions that the relation N is exterior
to is the set-theoretical complement of the relation � overlaps and N is
symmetric. It follows from (r�) that N is irreflexive and from (mono�) we
obtain the analogous property for N. So for all x, y ∈ M we have:

x N y ⇐⇒ ¬x � y , (N=−�)

x N y ⇐⇒ y N x , (sN)

¬x N x , (irrN)

x ⊑ y ∧ z N y =⇒ z N x . (monoN)

3. The mereological sum of elements of a set

Let “P” be a schematic letter representing some general name of certain
members of the set M . The definition of the collective class of Ps given
by Leśniewski [1928] may be represented in the form of a sentential
schema (I.6.1). Leśniewski established that if a name represented by
“P” is non-empty, then exactly one object is a classc of Ps. (cf. (I.6.18)).

The range of the aforementioned general name is the distributive set
of Ps, i.e., the set {y ∈ M : y is a P}. Modelling ourselves on Tarski
[1956b], instead of saying that x is a classc of Ps we shall say that x is
a mereological sum of all elements of the set {y ∈ M : y is a P}, i.e.,
the mereological sum of all Ps. As we said in Section I.7, this way of
speaking allows us to dispense with schematic letters in our analysis.
Instead of speaking of the mereological sum of all Ps, we can speak of

diens of. The term comes from Leśniewski (in Polish, the term is “jest zewnętrzny
względem”). The relation N is understood identically in [Leonard and Goodman,
1940, p. 46] and [Simons, 1987, p. 28], where it is named “discreteness” and “dis-
jointness”, respectively. The symbol being used with here is modelled on the symbol
used in Simons [1987]. In Leonard and Goodman [1940] the symbol “qx” is used.
The term “separation” is perhaps inappropriate here, because it is possible to give
an interpretation of mereology in so-called “pointless (point-free) geometry” in which
two objects are exterior to one another but ‘touch each other’ [see, e.g., Gruszczyński
and Pietruszczak, 2009]. In Remark 2.3, it was already noted that  excepting the
case where M is a singleton  there will exist in M elements which are exterior to
themselves (see (∃ N))

12 The L�-formula used in the definition for N is the negation of the formula which
we used for �.
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the mereological sum of all elements of a given subset of the set M . For
arbitrary x ∈ M and S ∈ P(M), Leśniewski’s definitional schema (I.6.1)
is transformed into definition (I.7.1) which we may write using the term
“mereological sum” in the following way:

x is a mereological sum of all members of a set S iff
every members of S is an ingrediens of x
and every ingrediens of x has some common
ingrediens with some members of S.

As we have already mentioned in Section I.7, the fact that x is a
mereological sum of all elements of a set S will be expressed with the aid
of the relation Sum holding between x and the set S. It will be included
in the Cartesian product M × P(M). Having established this, we may
write the above definition of the relation Sum is a mereological sum of
all elements of a given set as (cf. (I.7.1′)):

x Sum S :⇐⇒ ∀z∈S z ⊑ x ∧
∀y∈M

(
y ⊑ x ⇒ ∃z∈S∃u∈M (u ⊑ y ∧ u ⊑ z)

)
.

(df Sum)

By making use of the relation �, which was defined by (df �), we can
write definition (df Sum) as:

x Sum S ⇐⇒ ∀z∈S z ⊑ x ∧ ∀y∈M (y ⊑ x ⇒ ∃z∈S y � z). (df ′ Sum)

Moreover, by making use of the functions I and O, we can write definition
(df Sum) as:

x Sum S ⇐⇒ S ⊆ I(x) ∧ ∀y∈I(x)∃z∈S I(y) ∩ I(z) 6= ∅ . (df ′′ Sum)

x Sum S ⇐⇒ S ⊆ I(x) ⊆
⋃

O[S] . (df ′′′ Sum)

Remark 3.1. O[S] is the family of sets which is the image of a set S
determined by the function O and

⋃
O[S] is the set-theoretical sum of

the family O[S], i.e.:

O[S] := {Y ∈ P+(M) : ∃z∈S Y = O(z)} = {O(z) : z ∈ S}.
⋃

O[S] := {y ∈ M : ∃Y ∈O[S] y ∈ Y }.

Thus, we have:

⋃
O[S] =

⋃
{O(z) : z ∈ S} = {y ∈ M : ∃z∈S y � z)}.



3. The mereological sum of elements of a set 79

Finally, by making use of the relation N, which was defined by (df N),
we can write (df Sum) in the form that Tarski [1956b] adopted:

x Sum S ⇐⇒ ∀z∈S z ⊑ x ∧ ¬∃y∈M (y ⊑ x ∧ ∀z∈S y N z). (df T Sum)

Before continuing our analysis of the relation Sum we shall prove the
following lemma.

Lemma 3.1. For arbitrary x ∈ M and S ∈ P(M) we have: x Sum S iff
the following three conditions hold:

(a) S 6= ∅,
(b) ∀z∈S z ⊑ x,
(c) ∀y∈M (y ⊏ x ⇒ ∃z∈S y � z).

Proof. ‘⇒’ Let x Sum S. Then ∀y∈M (y ⊑ x ⇒ ∃z∈S z � y). Hence
S 6= ∅, since x ⊑ x, by (r⊑). Moreover, we obtain (c), because y ⊏ x
implies y ⊑ x.

‘⇐’ Let y ⊑ x. If y ⊏ x then ∃z∈S z � y, by (c). Suppose therefore
that y = x. By (a), for some z0 we have z0 ∈ S. Moreover, by (b),
z0 ⊑ x. Hence, by (r⊑), we have z0 � x. So we obtain: ∃z∈S z � y.
Hence, by (ii), we obtain x Sum S, in the light of (df ′ Sum).

Making use of functions P, I, and O, we may write Lemma 3.1 as:

x Sum S ⇐⇒ ∅ 6= S ⊆ I(x) ∧ P(x) ⊆
⋃

O[S] . (3.1)

Hence no member of M is in the relation Sum with the set ∅:13

¬∃x∈M x Sum ∅ . (3.2)

For all x ∈ M and S ∈ P+(M), we say that x is the greatest element
of S in M iff x ∈ S and for each z ∈ S we have z ⊑ x. There can at
most be one greatest element of S in M. Briefly, if x and y are greatest
elements of S, then x ⊑ y and y ⊑ x. Therefore, x = y, by (antis⊑). If
S = X then we will shortly say that x is a greatest element of M.

Applying (⊑⊆�) we get:

Lemma 3.2. If x is the greatest element of S in M, then x Sum S.

13 There is no mereological sum of members of the empty set (as there are no
members of ∅). Cf. (I.6.8) and Section I.7.
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Since, in virtue of (r⊑), x is the greatest element in {x} and I(x), so
from (⊑⊆�) or directly from Lemma 3.2 we have:14

x Sum {x} , (3.3)

x Sum I(x) . (3.4)

Remark 3.2. With the identification of the relation Sum with the relation
is a collective set of certain objects, condition (3.2) says that there is no
collective empty set. Is this collective set really a ‘collection into one
whole’ of some objects given this identification, however? As can be seen
from (3.3) the definition does not keep the plural form “some” because
it allows the ‘summing’ of one object. Lemma 3.2 says that it allows
the ‘summing’ a group of objects in which these objects are ingredienses
of one of them. We will give an alternative proposal for the formal
definition of this collective set in sections 2 and 4 of Chapter IV.

From Lemma 3.1 and (r�) it follows that (cf. (I.6.9) and (I.6.15)):

∀x∈M (P(x) 6= ∅ ⇐⇒ x Sum P(x)). (3.5)

In the light of (2.3) and (3.1) for all S ∈ P(M) and x ∈ M we have:

x Sum S ∧ P(x) = ∅ =⇒ S = {x} . (3.6)

Moreover, the following holds for atoms:

x Sum S ∧ y ∈ at =⇒ (y ⊑ x ⇔ ∃z∈S y ⊑ z) . (3.7)

If x Sum S, y ∈ at, and y ⊑ x, then there is a z ∈ S such that y � z.
Hence, in the light of (2.5), we have y ⊑ z. Moreover, if x Sum S and
for some z ∈ S we have y ⊑ z, then y ⊑ x, because S ⊆ I(x) and the
relation ⊑ is transitive.

For finite sets the relation Sum has an interesting property, namely
that for arbitrary x, y1, . . . , yn ∈ M (n ­ 1) the following holds:

x Sum {y1, . . . , yn} ⇐⇒ x Sum {z ∈ M : ∃0¬i¬n z ⊑ yi}. (3.8)

Firstly, in the light of (monoI): ∀i¬nyi ⊑ x iff ∀i¬n∀z(z ⊑ yi ⇒ z ⊑ x) iff
∀z(∃i¬n z ⊑ yi ⇒ z ⊑ x). Secondly, if we have ∀z(z ⊑ x ⇒ ∃i¬n yi � z),
then also ∀z(z ⊑ x ⇒ ∃i¬n∃u(u ⊑ yi ∧ u ⊑ z)). Hence, by (⊑⊆�), we

14 Cf. (I.6.5), (I.6.6), (I.6.13), (I.6.16), (I.7.2) and (I.7.3).
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have ∀z(z ⊑ x ⇒ ∃u(∃i¬nu ⊑ yi ∧ u � z)). Conversely, if ∀z(z ⊑ x ⇒
∃u(∃i¬n u ⊑ yi ∧ u � z)) then ∀z(z ⊑ x ⇒ ∃i¬n yi � z), by (mono�).

From the transitivity of the relation ⊑ and our definitions, so only
by axiom (L2), we obtain:

x Sum S =⇒ ∀y(y � x ⇔ ∃z∈S y � z) , or

x Sum S =⇒ O(x) =
⋃

O[S] .15
(3.9)

Let x Sum S. For ‘⇒’: Suppose that y � x, i.e., for some u ∈ M we
have u ⊑ y and u ⊑ x. Then, by (df Sum), there are z ∈ S and v ∈ M
such that v ⊑ z and v ⊑ u. Hence, by (t⊑), also v ⊑ y. So y � z. For
‘⇐’: Suppose that for some z ∈ S we have z � y, i.e., there is u ∈ M
such that u ⊑ z and u ⊑ y. Then, by (df Sum), z ⊑ x. Hence, by (t⊑),
also u ⊑ x. So x � y.

Remark 3.3. Since the relation Sum is included in the Cartesian product
M × P+(M), it therefore has type (∗, (∗)) in the hierarchy of types over
the set M .16 If we assume that for each S ∈ P+(M) there exists exactly
one x ∈ M such that x Sum S (axioms (L3) and (L4) say just this, as we
shall see), then we can create from the relation Sum a certain operation
⊔

: P+(M) → M of mereological sum of members of a given set. This
operation assigns to the set S the sum

⊔
S of its members, which is a

member of the set M ;
⊔
S := (ix) x Sum S, i.e.,

⊔
S is the only x such

that x Sum S (see Remark 5.4 and Section 7).
In particular, for the set {y, z} ∈ P+(M) we have

⊔
{y, z} =: y ⊔ z,

and thus we get the operation of mereological sum of two elements from
M ×M into M .

Such a use of the term “sum” in mereology does not clash with the
use of that term in set theory, where it is used in the context “sum
of all elements of a given family of sets”. The relation is a sum of
(a family of sets) is included in the Cartesian product P(M)×P(P(M)),
i.e., it has the type ((∗), ((∗))) in the hierarchy of types over the set M .
Associated with that relation is the operation

⋃
: P(P(M)) → P(M) of

sum of members of a given family of sets. This operation converts an
arbitrary family of sets S from P(P(M)) in the set

⋃
S belonging to

P(M);
⋃

S := {x ∈ M : ∃S∈S x ∈ S}.

15 Theorem IV.3.1 will show that implication (3.9) may be reversed in mereolog-
ical structures.

16 On the hierarchy of types over a base set, see e.g. [Mostowski, 1948, p. 325].
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In particular, for the family {X, Y } ∈ P+(P(M)) we have
⋃

{X, Y } =
X ∪ Y , and therefore we have the operation of sum of two sets from
P(M) × P(M) into P(M). In this case therefore there is no clash with
the mereological use of the term “sum”.

We note finally in this section that thanks to (t⊑), the relation Sum

is also transitive, i.e., for arbitrary x ∈ M and S, Yz ∈ P+(M), for z ∈ S
we have:

x Sum S ∧ ∀z∈S z Sum Yz =⇒ x Sum
⋃

z∈S Yz .
17 (3.10)

Let x Sum S and ∀z∈S z Sum Yz. Suppose that y ∈
⋃

z∈S Yz, i.e., for
some z ∈ S we have y ∈ Yz. Then  in virtue of the assumptions made 
we have y ⊑ z and z ⊑ x. So also y ⊑ x, by (t⊑). Moreover, suppose
that y ⊑ x. Then, by (df Sum), there are z ∈ S and u ∈ M such that
u ⊑ z and u ⊑ y. Hence, in virtue of the second assumption, for some
v ∈ Yz and w ∈ M we have w ⊑ v and w ⊑ u. Hence, by (t⊑), we have
w ⊑ y. So v � y. Of course, v ∈

⋃

z∈S Yz. Thus, x Sum
⋃

z∈S Yz.

4. The uniqueness of Sum

The following axiom admitted by Leśniewski states that if a set has a
mereological sum then it is unique:

∀S∈P(M)∀x,y∈M (x Sum S ∧ y Sum S =⇒ x = y). (L3)

Remark 4.1. Axiom (L3) should not raise any interpretational worries.
Moreover  as has just been mentioned in footnote 2  Theorem 4.4 says
that this axiom may be replaced with another elementary. We will dis-
cuss the independence of axioms and the ‘strength’ of particular formulae
in Chapter V.

From (3.5) and (L3) we obtain the “principle of extensionality” with
respect to P (or ⊏), i.e.:

∀x,y∈M (∅ 6= P(x) = P(y) =⇒ x = y). (ext⊏)

If P(x) 6= ∅ 6= P(y), then x Sum P(x) and y Sum P(y), by (3.5). So if
also P(x) = P(y), then y Sum P(x). Therefore x = y, by (L3).18

17 Axioms (L1) and (L2) themselves and the conditions ∀z∈S z Sum Yz and
x Sum

⋃

z∈S
Yz do not entail that x Sum S (cf. (6.5)).

18 As we showed in Remark 2.1, the assumption “P(x) 6= ∅” is important.
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Axiom (L3) directly entails the condition which states that {x} is
the only singleton whose sum is x (cf. (3.3)), i.e.,

∀x,y∈M (x Sum {y} =⇒ x = y). (SSum)

Let x Sum {y}. In virtue of (3.3), we have y Sum {y}. Therefore x = y,
by (L3).19

Simons [1987] accepts in place of (L3) a condition which he calls the
Weak Supplementation Principle which follows from (L1) and (L3) (resp.
(irr⊏) and (L3); see Lemma 4.1(v) below) and which says that if x is a
part of y then y has another part which is exterior to x:20

∀x,y∈M

(
x ⊏ y =⇒ ∃z∈M(z ⊏ y ∧ z N x)

)
, or

∀x,y∈M (P(y) ⊆ O(x) =⇒ x 6⊏ y),
(WSP)

what it intuitively says is that if x is a part of y, then we can find some
z being a part of y and external to x. By contraposition, in the light of
(N=−�), both versions of (WSP) are equivalent.

Now we consider structures of the form 〈M,⊏〉 with a primitive re-
lation ⊏ included in M ×M , where relations ⊑, �, and Sum are defined
by (df ⊑), (df �), and (df Sum). The lemma below shows that (WSP)
results from (L1)–(L3) and, moreover, (WSP) and (L2) ental (L1).21

Lemma 4.1. (i) (irr⊏) follows from (WSP).
(ii) (L1) follows from (L2) and (WSP).

(iii) (WSP) is equivalent to the set {(irr⊏), (SSum)}.
(iv) Three sets {(L2), (WSP)}, {(L1), (L2), (SSum)} and {(irr⊏), (L2),

(SSum)} are equivalent.
(v) (irr⊏) and (L3) entail (WSP). So also (L1) and (L3) entail (WSP).

Proof. Ad (i): Directly from definitions we obtain (2.3) and (I ⊆ O),
i.e., P(x) ⊆ I(x) ⊆ O(x), for any x ∈ M . Hence x 6⊏ x, by (WSP).22

19 Tarski [1937] accepts condition (SSum) in place of (L3) (cf. theorems IV.1.2
and IV.5.10).

20 For this principle see also Lemma IV.1.1, Theorem IV.1.2 and Section IV.8.
21 We are discussing this because Simons [1987], and others following him, e.g.,

Chisholm [1993], Libardi [1990], Smith [1995], have amongst their axioms (L1), (L2),
(WSP).

22 The elementary proof: Assume for a contradiction that for some x ∈ M we
have x ⊏ x. Then, by virtue of (WSP), for some z we have: z ⊏ x and z N x. From
the first of these, in the light of (df ⊑) and (df �), we have z � x. Therefore, by virtue
of (N=−�), we have a contradiction.
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Ad (ii): By (i), (WSP) entails (irr⊏). But (L2) and (irr⊏) entail (L1).
Ad (iii): ‘⇒’ By (i), (WSP) entails (irr⊏). So let x Sum {y} and

assume for a contradiction that x 6= y. Then, by (df Sum) and (df ⊑),
we have y ⊏ x. Hence, in virtue of (WSP), for some z ∈ M we have
z ⊏ x and z N y. Therefore we get a contradiction, because z ⊏ x and
x Sum {y} entails z � y.

‘⇐’ Let x ⊏ y and assume for a contradiction that ¬∃z∈M (z ⊏ y ∧
z N x), i.e., P(y) ⊆ O(x). Then y Sum {x}. Hence, by (SSum), we have
x = y. But this contradicts our assumption in virtue of (irr⊏).

Ad (iv): ‘⇒’: By (ii) (or (i)) and the ‘⇒’-part of (iii). ‘⇐’: By the
‘⇐’-part of (iii). Moreover, (L1) and (L2) entail (irr⊏). So .

Ad (v): We prove that (L3) entails (SSum). So we use the ‘⇐’-part
of (iii).

Moreover, in transitive structures that meet (WSP), Lemma 3.2 can
be strengthened. The following lemma will be used in Section 4 of Chap-
ter IV:

Lemma 4.2. Let M = 〈M,⊏〉 be transitive structure satisfying (WSP).
If x is the greatest element of a set S in M, then x is the only mereological
sum of S.

Proof. Let x ∈ S be the greatest element in S. Then (a) ∀z∈S z ⊑ x.
Furthermore, by virtue of Lemma 3.2, we have x Sum S. Assume that
(b) y Sum S. Hence x ⊑ y. If x 6= y then x ⊏ y. Therefore, by virtue of
(WSP), for some u we have: (c) u ⊏ y and (d) u N x. From (a), (d) and
(t⊏) we obtain ∀z∈S z N u, which contradicts (b), (c), and (df T Sum).
Therefore x = y.

Conditions (WSP) and (irrN) entail the following:

∀x,y∈M

(
x ⊏ y =⇒ ∃z∈M (z ⊏ y ∧ z 6= x)

)
, (4.1)

which says that no element in M has exactly one part:

∀x∈M Card P(x) 6= 1 . (4.2)

The above fact is also easily obtained from (SSum) and (irr⊏). Assume
for a contradiction that P(x) = {y}, for some x, y ∈ M . Hence y ⊏ x.
Furthermore, x Sum {y}, because x Sum P(x), by (3.5). Hence, in virtue
of (SSum), we have x = y, which contradicts (irr⊏).
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It also follows from (WSP) that if M is not a singleton, then M has
two members exterior to one another. Moreover, thanks to (irrN), the
reverse implication holds. Thus:

CardM > 1 ⇐⇒ ∃x,y∈M x N y . (∃ N)

Let CardM > 1 and assume for a contradiction that all members of M
overlap one another. Then for some x1, x2 ∈ M we have x1 6= x2 and
for some y0 we have y0 ⊑ x1 and y0 ⊑ x2. Hence y0 ⊏ x1 or y0 ⊏ x2.
In both cases, in virtue of (WSP), there exists z ∈ M such that z N y0:
a contradiction.

It follows from (∃ N) that unless M is not a singleton, then there is
no member in it which is a part of all the remaining elements, i.e., in
M there is no object which is an ingrediens of all members of M . In
other words, if M has at least two elements, the in M there is no least
element. Thus:

∃x∈M ∀y∈M x ⊑ y ⇐⇒ CardM = 1 . (∄0)

For the simpler implication: if in M there exists a least element then
∀x,y x � y. Hence, in virtue of (∃ N), we have CardM = 1. For the
converse implication: if M is a singleton then  in virtue of (r⊑)  its
only element is clearly the least element.

We prove below that in strict partial orders axiom (L3) is equivalent
to the “principle of extensionality” with respect to the relation � (see
Theorem 4.4). To this end, the following lemma will be useful, where we
do not assume that the relation ⊑ is defined by (df ⊑). So we consider
structures of the form 〈M,⊑〉 with a primitive relation ⊑ included in
M ×M . We assume, however, that two relations � and Sum are defined
by (df �) and (df Sum) using ⊑. Similarly, we define the functions I and
O as on pages 73 and 76, using ⊑ and �, respectively.

Lemma 4.3. From (r⊑) and (t⊑) it follows that for arbitrary x, y ∈ M :

I(x) ⊆ O(y) =⇒ x Sum I(x) ∩ I(y).

Proof. Let I(x) ⊆ O(y). From this and (r⊑) it follows that x � y.
Hence ∅ 6= I(x) ∩ I(y) ⊆ I(x). Furthermore, take an arbitrary u ⊑ x. In
virtue of the assumption, we have u � y. Therefore, there is v such that
v ⊑ u and v ⊑ y. From this and (t⊑) it follows that v ∈ I(x) ∩ I(y). In
virtue of (⊑⊆�) we have v � u. Thus, x Sum I(x) ∩ I(y).
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Of course, Lemma 4.3 also holds when we consider structures of the
form 〈M,⊏〉 with a primitive relation ⊏ included in M × M , where
relations ⊑, �, and Sum are defined by (df ⊑), (df �), and (df Sum).

Theorem 4.4. Let M = 〈M,⊏〉 be a transitive structure. Then axiom
(L3) is equivalent to the “principle of extensionality” with respect to the
relation �, which has the following form:

∀x,y∈M

(
∀z∈M(z � x ⇔ z � y) =⇒ x = y

)
, or

∀x,y∈M

(
O(x) = O(y) =⇒ x = y

)
.

(ext�)

Proof. Let M = 〈M,⊏〉 satisfy axiom (L2).
Assume that (L3) holds and that O(x) = O(y). Then I(x) ⊆ O(y) and

I(y) ⊆ O(x), by (I ⊆ O). Hence x Sum I(x) ∩ I(y) and y Sum I(x) ∩ I(y),
by Lemma 4.3. Thus, applying (L3), we get x = y.

Now assume that (ext�) holds and that x Sum S and y Sum S. Then,
in virtue of (3.9), we have O(x) =

⋃
O[S] = O(y). Hence, applying

(ext�), we get x = y.

So condition (ext�) is a thesis of our theory. Hence, by (N=−�), we
obtain an analogous principle with respect to N:

∀x,y∈M

(
∀z∈M(z N x ⇔ z N y) =⇒ x = y

)
. (extN)

Let L123 be the class of structures of the form 〈M,⊏〉 satisfying con-
ditions (L1), (L2), and (L3). By Theorem 4.4 we obtain that the class
L123 is finitely elementarily axiomatisable. In order to more easily for-
mulate this fact let us broaden the language L� to include two-argument
predicates: “�”, “o”, and “℄”. The two predicates are supposed to
correspond to the relations ⊑, � and N, respectively; so in any structure
〈M,⊏〉 we will interpret them by the corresponding relations. Therefore,
“�”, “o” and “℄” we will read as “is an ingrediens”, “overlaps with” and
“is exterior to”, respectively.

Let us broaden the language L� to the elementary language L�o� , which
arises in the same way except for the use of the three predicates (and
“=”). In L�o� we define the predicates “�”, “o” “℄” with the help of the
elementary sentences below which correspond to conditions (df ⊑), (df �)
and (df N), respectively:

∀x∀y(x � y ≡ (x � y ∨ x = y)) (d �)

∀x∀y(x o y ≡ ∃z(z � x ∧ z � y)) (do)

∀x∀y(x ℄ y ≡ ¬ ∃z(z � x ∧ z � y)) (d ℄)
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In the light of Theorem 4.4 we see that the class 123 is equal to the class
of L�o� -structures composed of all models of the sentences (l1), (l2), (d �),
(do), (d ℄), and the following one corresponding to (ext�)

∀x∀y(∀z(z o x ≡ z o y) → x = y) (eo)
Thus, we have shown that the class L123 is finitely elementarily axioma-
tisable.

Of course, we can build a suitable elementary theory in the language
L� by eliminating definitions (d �), (do) and (d ℄), and by substituting,
e.g., p∃z((z � xi ∨ z = xi) ∧ (z � xj ∨ z = xj))q in place of pxi o xjq.

5. Mereological structures

We find ourselves with the following problem: for which subsets of the
universe M are mereological sums of their members supposed to exist?
A possible solution would be to accept the strongest axiom of existence
for mereological sums which definition (df Sum) itself allows. We know
from Lemma 3.1 that this is an axiom ensuring the existence of a sum
of all members of an arbitrary non-empty set included in M :

∀S∈P+(M)∃x∈M x Sum S . (L4)

A structure 〈M,⊏〉 in which axioms (L1)–(L4) are true will be called
a mereological structure. As we mentioned in Section 1, let MS be the
class of all mereological structures. The class MS is non-empty. For
example, for M := {a} with the empty relation ⊏ we obtain a trivial
mereological structure. Axioms (L1) and (L2) are satisfied in this struc-
ture. Furthermore, ⊑ = id{a} = �, i.e., a Sum {a} and therefore (L3)
and (L4) are satisfied.

Remark 5.1. For any set S, we used the binary relation idS := {〈x, y〉 :
x, y ∈ S ∧ x = y} = {〈x, x〉 : x ∈ S} of identity on S.

Remark 5.2. (i) The solution provided by axiom (L4) very often raises
doubts. We are not going to go through them here because in the ma-
jority of cases they boil down to a problem of the following sort: the
moon and the heart of the author of this book (“hab” for short) are
material objects. Therefore if something is the mereological sum of the
elements of this set {moon, hab}, it would also be a material entity23.

23 We do not need a further abstract object because we already have one  the
distributive set {moon,hab}.
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Is there, however, such a material entity? For some, the falsity of axiom
(L4) provides a negative answer to this question. In our opinion that
negative response says just that the set M , in which the moon and hab
would appear as members, cannot be the bearer of the mereological
structure. The ‘strength’ of axiom (L4) causes there to be a restriction
on the applications of the theory of mereological structures. Perhaps
these applications come down to certain varieties of geometry; e.g., for
so-called point-free geometry [see Gruszczyński and Pietruszczak, 2008,
2009].

(ii) A different and “extreme” solution to the problem would be to
dodge the question and not accept any sum existence axiom.24 We will
give a ‘tautological’ answer: apart from the cases resulting from (df Sum)
(cf. (3.3)–(3.5)) the existence of a mereological sum is dependent on the
existence of M itself (some of its subsets can have a sum of their members
and some can lack such a sum).

From (L3) and (L4) the following sentence clearly follows:

∀S∈P+(M)∃x∈M

(
x Sum S ∧ ∀y∈M (y Sum S ⇒ x = y)

)
. (L3 -L4)

Remark 5.3. Of course, (L4) follows from (L3 -L4). Moreover, since the
relation ⊑ is reflexive, then we may derive from (t⊑) and (df Sum) result
(3.1), which says that there is no mereological sum for ∅. From this
and (L3 -L4) follows (L3) as well. In fact, suppose that x Sum S and
y Sum S. Then S 6= ∅, by (3.1). Hence, in the light of (L3 -L4), for some
x0 we have x0 Sum S and x = x0 = y.

Thus, the conjunction of the sentences (L3) and (L4) in the theory
of class MS is therefore equivalent to the sentence (L3 -L4).

Remark 5.4. Throughout the book we use the description operator “i”
forming the expression “(ix) ϕ(x)” which is the individual constant pthe
only object x such that ϕ(x)q, where a formula ϕ(x) has “x” as a free
variable. To use it, first we have to prove that there exists exactly one
object x such that ϕ(x), i.e., the formula ϕ(x) must fulfill the following
two conditions:

∃x ϕ(x) ,

∀x,y

(
ϕ(x) ∧ ϕ(y) ⇒ x = y

)
.

24 We are accepting in its place stronger axioms for the relation ⊏, for example,
the “Strong Supplementation Principle” (SSP) given later. A wide-ranging list of
acceptable sum existence axioms is given in chapters II and III of the book [Pietru-
szczak, 2013].
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or, equivalently, the following one:

∃x

(
ϕ(x) ∧ ∀y(ϕ(y) ⇒ x = y)

)
.

We will express this formally thus: write: ∃!x ϕ(x),

By (L3) and (L4) (resp. (L3 -L4)), we obtain:

∃!x x Sum M ,

since M 6= ∅ (in the above remark we put ϕ(x) := “x Sum M”). Thus,
we can introduce the following individual constant:

1 := (ix) x Sum M, (df 1)

i.e., 1 is the only object x ∈ M such that x Sum M (see Remark 5.4).
That is, in a mereological structure M, the object 1 is the mereological
sum of all members of M . It follows from definition (df Sum) that:

1 is the greatest element in M, or

∀z∈M z ⊑ 1 .
(5.1)

Therefore, we will call 1 the unity in the structure M.

6. Some important properties of mereological structures

We will show that in mereological structures a condition of polarisation
holds, i.e., a condition of separation which Simons [1987, p. 29] calls the
Strong Supplementation Principle:

∀x,y∈M

(
x 6⊑ y =⇒ ∃z∈M (z ⊑ x ∧ z N y)

)
, or

∀x,y∈M (I(x) ⊆ O(y) =⇒ x ⊑ y).
(SSP)

What this intuitively says is that if x is not an ingrediens of y, then we
can find some z being an ingrediens of x and external to y. In the light
of (N=−�) both versions of (SSP) are equivalent.

Lemma IV.1.3 on p. 135 says that (SSP) does not follow from axioms
(L1)–(L3) themselves and in Lemma 6.4 it is stated that (L3) follows
from (L2) and (SSP). Now we prove:

Theorem 6.1. Condition (SSP) holds in all mereological structures.
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Proof. Let M ∈ MS and assume for a contradiction that (SSP) is
false in M, i.e., that for some x0, y0 ∈ M we have (a) x0 6⊑ y0 and
(b) I(x0) ⊆ O(y0).

Since I(y0) ∪ {x0} 6= ∅, therefore  in virtue of (L4)  for some z0 ∈
M we have z0 Sum (I(y0) ∪ {x0}). Thus, from(df ′ Sum) we have (c)
∀y∈I(y0)y ⊑ z0, (d) x0 ⊑ z0 and (e) ∀z(z ⊑ z0 ⇒ ∃u((u ⊑ y0 ∨ u = x0) ∧
u � z)), i.e., ∀z(z ⊑ z0 ⇒ (x0 � z ∨ ∃u∈I(y0)u � z)). We will show that
from (b) it follows that condition x0 � z entails ∃u∈I(y0) u � z.

Let x0 � z. Then, by (df �), for some x1 we have x1 ⊑ x0 and x1 ⊑ z.
In virtue of (b) we have x1 � y0. Hence, by (df �), for some x2 we have
x2 ⊑ x1 and x2 ⊑ y0. In the light of (t⊑) we have x2 ⊑ z. From this
and (⊑⊆�) we obtain x2 � z. Thus, x2 ⊑ y0 and x2 � z, i.e., we get (f):
∀z(z ⊑ z0 ⇒ ∃u∈I(y0) u � z).

It follows from (c) and (f) that z0 Sum I(y0). In virtue of (3.4), we
have y0 Sum I(y0). Thus, in virtue of (L3), we have y0 = z0. And this
contradicts (a) and (d) because from them it follows that y0 6= z0.

From (SSP), (r⊑), and (t⊑) we obtain that for arbitrary x, y ∈ M :

x ⊑ y ⇐⇒ ∀z∈M(z ⊑ x ⇒ z � y), or

x ⊑ y ⇐⇒ I(x) ⊆ O(y).
(6.1)

Hence, by (2.6), we can get the stronger condition from (mono�):

x ⊑ y ⇐⇒ ∀z∈M (z � x ⇒ z � y), or

x ⊑ y ⇐⇒ O(x) ⊆ O(y) .
(df� ⊑)

Hence, by (N=−�), we can get:

x ⊑ y ⇐⇒ ∀z∈M (z N y ⇒ z N x). (df N ⊑)

Before pursuing our analysis of the sentence (SSP), we shall prove a
lemma and a corollary with the same assumptions as used in the proof
of Lemma 4.3. Thus, we do not assume that the relation ⊑ is defined by
(df ⊑). So we consider structures of the form 〈M,⊑〉 with a primitive
relation ⊑ included in M ×M . We assume, however, that two relations
� and Sum are defined by (df �) and (df Sum) using ⊑.

Lemma 6.2. (i) From (t⊑) and (SSP) follows what we shall call the
first principle of monotonicity:

∀S∈P(M)∀x,y∈M (I(x) ⊆
⋃

O[S] ∧ S ⊆ I(y) =⇒ x ⊑ y). (M1)
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(ii) From (M1) it follows the sentence we shall call the second principle
of monotonicity:

∀S1,S2∈P(M)∀x,y∈M (x Sum S1 ∧ y Sum S2 ∧ S1 ⊆ S2 =⇒ x ⊑ y).
(M2)

(iii) [Gruszczyński and Pietruszczak, 2014, p. 129] (M2) entails (r⊑).
(iv) (M1) entails (r⊑).
(v) (t⊑) and (SSP) entail (r⊑).

(vi) (t⊑) and (M2) entail (M1).
(vii) (M1) entails (SSP).

(viii) (antis⊑) and (M2) entail (L3).
(ix) (t⊑), (antis⊑), and (SSP) entail (L3).

Proof. Ad (i): Let I(x) ⊆
⋃

O[S], i.e., I(x) ⊆
⋃

z∈S O(z), and S ⊆ I(y).
Then I(x) ⊆

⋃

z∈I(y) O(z). We have ∀z∈I(y)O(z) ⊆ O(y), in virtue of
condition (mono�) which follows from (t⊑). Thus, I(x) ⊆

⋃

z∈I(y) O(z) ⊆
O(y). Hence x ⊑ y, by (SSP).

Ad (ii): Assume that x Sum S1, y Sum S2, and S1 ⊆ S2. Then
I(x) ⊆

⋃
O[S1] ⊆

⋃
O[S2] and S2 ⊆ I(y). Hence x ⊑ y, in virtue of (M1).

Ad (iii): (M2) entails (a): ∀x∈M (x 6⊑ x ⇒ ¬∃S∈P(M) x Sum S).
Hence we obtain (b): ∀x∈M (x 6⊑ x ⇒ ∃y∈M (y ⊑ x ∧ y 6= x ∧ y 6⊑ y).
Assume for a contradiction that x 6⊑ x and for any y ∈ M such that y ⊑ x
and y 6= x we have y ⊑ y. We put P(x) := {z ∈ M : z ⊑ x ∧ z 6= x}.
Then (d): x Sum P(x). In fact, firstly ∀z∈P(x) z ⊑ x, by definition.
Secondly, suppose that y ⊑ x. Then y 6= x, since x 6⊑ x. So in (df Sum)
we can take z = y = u. But (d) contradicts (a).

Moreover, we obtain (c): ∀x∈M (x 6⊑ x ⇒ x Sum P(x)). Let x 6⊑ x.
Then ∀z∈P(x) z ⊑ x. Now suppose that y ⊑ x. Then y 6= x, since x 6⊑ x.
Moreover, if y ⊑ y, then in (df Sum) we can take z = y = u. If y 6⊑ y,
then by (b) there is u ∈ M such that u ⊑ y. So in (df Sum) we can take
z = y.

By (a) and (c) we have that (r⊑) holds.
Ad (iv): By (ii) and (iii).
Ad (v): By (i) and (iv).
Ad (vi): (M2) entails (r⊑), by (iii). Let I(x) ⊆ O[S] and S ⊆ I(y).

From this and (t⊑) we obtain I(x) ⊆ O(y), as we have shown in (i).
Hence  using (r⊑), (t⊑) and Lemma 4.3  we have x Sum I(x) ∩ I(y).
Furthermore, from (r⊑), we have y Sum I(y). Therefore, in virtue of
(M2), we get x ⊑ y.
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Ad (vii): (M1) entails (r⊑), by (iv). Let I(x) ⊆ O(y). Then I(x) ⊆
⋃

O[{y}] and {y} ⊆ I(y), by (r⊑). Thus, x ⊑ y, in virtue of (M1).
Ad (viii): Let x Sum S and y Sum S. Then, in virtue of (M2), we

get x ⊑ y and y ⊑ x. Thus, x = y, by (antis⊑).
Ad (ix): By (i) and (ii), from (t⊑) and (SSP) we have (M1) and (M2).

From this and (antis⊑) we obtain (L3), by (viii).

Corollary 6.3. It follows from (t⊑) that:

(i) Conditions (SSP), (M1), and (M2) are equivalent.
(ii) Condition (SSP) is equivalent to the conjunction of (r⊑) and the

sentence we shall call the third principle of monotonicity:

∀S∈P(M)∀x,y∈M

(
x Sum S ∧ S ⊆ I(y) =⇒ x ⊑ y)

)
. (M3)

Proof. Ad (i): By Lemma 6.2(i,ii,vi,vii).
Ad (ii): Suppose that (t⊑) holds. ‘⇒’ Assume that (SSP) holds.

Then also (r⊑) and (M1) hold, by Lemma 6.2(v) and (i), respectively.
Let x Sum S and S ⊆ I(y). Then I(x) ⊆

⋃
O[S]. Hence x ⊑ y, by (M1).

‘⇐’ Suppose that (r⊑) and (M3) hold. Then, by Lemma 4.3, if I(x) ⊆
O(y) then x Sum I(x) ∩ I(y). Since I(x) ∩ I(y) ⊆ I(y), so x ⊑ y, by (M3).
Therefore, (SSP) holds.

Of course, Lemma 6.2 and Corollary 6.3 also feature when we consider
structures of the form 〈M,⊏〉 with the primitive relation ⊏ included in
M × M , where relations ⊑, �, and Sum are defined by (df ⊑), (df �),
and (df Sum).25 Let us note that with such an assumption, (M1)–(M3)
follow from (L2) and (SSP), and, moreover, we obtain the following:

Lemma 6.4. (L2) and (SSP) entail (L3).

Proof. By Lemma 6.2(ix), since (t⊑) and (antis⊑) follow from (L2).

Now we obtain two results which  written in the language of Leś-
niewski’s original system  were first proved by Tarski [see Leśniewski,
1930, p. 87, theses (b) and (c)]. The first of Tarski’s results says that for
all S ∈ P(M) and x ∈ M :

x Sum S ⇐⇒ S 6= ∅ ∧ S ⊆ I(x) ∧ ∀y∈M (S ⊆ I(y) ⇒ x ⊑ y). (6.2)

25 Then, however, points (iii)–(v) of this lemma are devoid of purpose, because
condition (r⊑) it is obtained directly from (df ⊑).
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‘⇒’ Assume that x Sum S. First we use (3.2); so S 6= ∅. Second, by
(SSP) and Corollary 6.3(ii), we can use (M3). ‘⇐’ Suppose that (a):
S 6= ∅; and (b): S ⊆ I(x) and ∀y∈M (S ⊆ I(y) ⇒ x ⊑ y). From (a) and
(L4) we obtain that there is z ∈ M such that z Sum S. Hence S ⊆ I(z)
and ∀y∈M (S ⊆ I(y) ⇒ z ⊑ y), by (M3). From this and (b) we have
x ⊑ z and z ⊑ x. Therefore, by (antis⊑), x = z; so x Sum S.

The second of Tarski’s results says that for all S ∈ P(M) and x ∈ M :

x Sum S ⇐⇒ S 6= ∅ ∧ ∀y∈M (x ⊑ y ⇔ S ⊆ I(y)). (6.3)

‘⇒’ Assume that x Sum S. So also S ⊆ I(x). First we use (3.2); so S 6= ∅.
Second, if x ⊑ y then S ⊆ I(x) ⊆ I(y), by (t⊑). Conversely, if S ⊆ I(y)
then x ⊑ y, by (M3). ‘⇐’ Assume that (a): S 6= ∅; and (b): ∀y∈M (x ⊑ y
⇔ S ⊆ I(y)). From (a) and (L4) we obtain that there is a z ∈ M such
that z Sum S. Hence (c): S ⊆ I(z) and (d): ∀y∈M (S ⊆ I(y) ⇒ z ⊑ y),
by (M3). Now from (c) and (b) we obtain x ⊑ z. Moreover, since x ⊑ x,
so S ⊆ I(x), by (b). So z ⊑ x, by (d). Therefore, by (antis⊑), x = z; so
x Sum S.

Kuratowski was the first to prove the following equivalence for Leś-
niewski’s original system [see Leśniewski, 1930, p. 87, Thesis (a)]:

x Sum S ⇐⇒ S 6= ∅ ∧ S ⊆ I(x) ∧ ∀y∈M (S ⊆ I(y) ∧ y ⊑ x ⇒ y = x).
(6.4)

‘⇒’ Let x Sum S. Then, by (6.2), we have: (a) S 6= ∅; (b) S ⊆ I(x) and
(c) ∀y∈M (S ⊆ I(y) ⇒ x ⊑ y). Hence if S ⊆ I(y) and y ⊑ x, then x ⊑ y,
by (c), and so y = x, in virtue of (antis⊑). ‘⇐’ Assume that (a): S 6= ∅;
(b): S ⊆ I(x); and (c): ∀y∈M (S ⊆ I(y) ∧ y ⊑ x ⇒ y = x). From (a)
and (L4) we obtain that there is z ∈ M such that z Sum S, that is, (d):
S ⊆ I(z) ⊆

⋃
O[S]. From this, (b) and (M1) we have z ⊑ x. Hence, by

(c) and (d), we have z = x; so x Sum S.
We may use condition (M2) to strengthen condition (3.10), i.e., for

arbitrary x ∈ M and S, Yz ∈ P(M) we have:

∀z∈S z Sum Yz =⇒
(
x Sum S ⇔ x Sum

⋃

z∈S Yz

)
. (6.5)

Let ∀z∈S z Sum Yz. Then the implication follows from (3.10). Assume
therefore, that x Sum

⋃

z∈S Yz. First, we show that ∀z∈S z ⊑ x. Take
an arbitrary z ∈ S. Then Yz ⊆ I(x), in virtue of the second assumption.
Since x Sum I(x), so z ⊑ x, in virtue of (M2) and the first assumption.
Second, let y ⊑ x. Then, in virtue of the second assumption, for some
z ∈ S, v ∈ Yz, and u ∈ M we have: u ⊑ v and u ⊑ y. In virtue of the
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first assumption we have v ⊑ z. Hence  via (t⊑)  we have u ⊑ z. So
z � y. Thus, x Sum S.

It follows from (SSP) that if x has some part and every part of x is
a part of y, then x is an ingrediens of y (cf. (monoP)). This statement
Simons [1987] calls the Proper Parts Principle.26 We have therefore for
arbitrary x, y ∈ M :

∅ 6= P(x) ⊆ P(y) =⇒ x ⊑ y . (PPP)

Let z0 ⊏ x and P(x) ⊆ P(y). Thus, also z0 ⊏ y. So also x � y.
Furthermore, assume for a contradiction that x 6⊑ y. Then, by (SSP),
for some z1 we have: z1 ⊑ x and z1 N y. We have by this z1 6= x, because
z1 = x would entail that x N y. Therefore z1 ⊏ x. Hence, in virtue of
our assumption, we have z1 ⊏ y. Yet this contradicts z1 N y.27

It is obvious that from (PPP) it follows that for arbitrary x, y ∈ M :

∅ 6= P(x) ( P(y) =⇒ x ⊏ y . (PPP′)

Remark 6.1. From (PPP′) and (ext⊏) we obtain (PPP). In fact, if ∅ 6=
P(x) ( P(y) then x ⊏ y, by (PPP′). If ∅ 6= P(x) = P(y) then x = y, in
virtue of (ext⊏). In both cases therefore, we have x ⊑ y.

7. The operation of mereological sum

Thanks to axioms (L3) and (L4) (resp. (L3 -L4)) in any mereological
structure M = 〈M,⊏〉, for any non-empty subset S of M , there exists
exactly one object x ∈ M such that x Sum S (in Remark 5.4 we put
ϕ(x) := “x Sum S”). Thus, we can define on the family P+(M) the
following unary operation

⊔
: P+(M) → M of sum of all members of a

given non-empty set:
⊔
S := (ix) x Sum S , (df

⊔
)

i.e.,
⊔
S is the only object x ∈ M such that x Sum S (see Remark 5.4).

That is, in a mereological structure M, the object
⊔
S is the mereological

sum of all members of S.

26 Simons [1987] uses “proper part” with the meaning we are attaching in this
work to “part”.

27 We obtain another proof of the fact (PPP) from (M2) and (3.5). Yet another
proof is given by Simons [1987, p. 29]. One can see from the proof given above that
the assumption about the existence of some part of x was necessary for us to be able
to say that x � y. The assumption is clearly essential in (PPP).
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Thanks to (df 1), we obtain:

1 =
⊔
M . (df ′ 1)

For a given S ∈ P+(M) we have the following directly from (3.9):

O(
⊔
S) =

⋃
O[S] . (7.1)

From this it follows that for arbitrary x ∈ M and S ∈ P+(M): x is a part
of the mereological sum of all members of S iff each part of x overlaps
with some members of S.

x ⊑
⊔
S ⇐⇒ ∀y∈M (y ⊑ x ⇒ ∃z∈S y � z), or

x ⊑
⊔
S ⇐⇒ I(x) ⊆ O[

⊔
S] .

(7.2)

Let x ⊑
⊔
S. Then, by virtue of (t⊑), (df ′′′ Sum), and (7.1), we have

I(x) ⊆ I(
⊔
S) ⊆

⋃
O[S] = O(

⊔
S). Conversely, if I(x) ⊆

⋃
O[S] = O(

⊔
S)

then x ⊑
⊔
S, in virtue of (SSP).

Since we have {x, y} ∈ P+(M), for any x, y ∈ M , we can therefore
generate the binary operation ⊔ : M × M → M of mereological sum of
two elements:

x ⊔ y :=
⊔

{x, y}. (df ⊔)

Note that, in virtue of (3.8) and (df
⊔

), the operation ⊔ may also be
defined by the identity below:

x ⊔ y =
⊔

{z ∈ M : z ⊑ x ∨ z ⊑ y} . (7.3)

It follows from (3.3) that the operation ⊔ is idempotent and in the
light of the definition itself, it is also commutative, i.e., for arbitrary
x, y ∈ M we have:

x = x ⊔ x , (7.4)

x ⊔ y = y ⊔ x . (7.5)

It follows from definitions (df ⊔) and (df Sum) that for any x, y ∈ M :

x ⊑ x ⊔ y . (7.6)

Note that by putting S := {x, y} in (7.1), we get for any x, y, z ∈ M :

z � x ⊔ y ⇐⇒ z � x ∨ z � y , (7.7)

z N x ⊔ y ⇐⇒ z N x ∧ z N y . (7.8)

For (7.7): z � x ⊔ y iff z ∈ O[
⊔

{x, y}] iff z ∈
⋃

O[{x, y}] iff z � x or
z � y. For (7.8): We use (7.7) and (N=−�).
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By putting S := {x, y} in (7.2), by (7.7), we get for any x, y, z ∈ M :

z ⊑ x ⊔ y ⇐⇒ ∀u∈M(u ⊑ z ⇒ (u � x ∨ u � y)). (7.9)

Let us observe that for arbitrary x, y, z ∈ M we have:

x ⊔ y ⊑ z ⇐⇒ x ⊑ z ∧ y ⊑ z . (7.10)

The ‘⇒’-part we obtain by (7.6), (7.5), and (t⊑). For ‘⇐’: Let x ⊑ z
and y ⊑ z. Assume for a contradiction that x ⊔ y 6⊑ z. Then, by (SSP),
there is u ∈ M such that u ⊑ x ⊔ y and u N z. In the light of (r⊑) and
(7.9), we have: u � x or u � y. Hence, in virtue of our assumption and
(mono�), we obtain a contradiction in both cases, namely: u � z.

In the light of conditions (7.7), (7.10), and (df Sum), we obtain the
associativity of the operation ⊔, i.e., for any x, y, z ∈ M we have:

(x ⊔ y) ⊔ z = x ⊔ (y ⊔ z). (7.11)

We have: u = (x ⊔ y) ⊔ z iff u Sum {x ⊔ y, z} iff x ⊔ y ⊑ u, z ⊑ u
and ∀v(v ⊑ u ⇒ (x ⊔ y � v ∨ z � v)) iff x ⊑ u, y ⊑ u, z ⊑ u and
∀v(v ⊑ u ⇒ (x � v ∨ y � v ∨ z � v)) iff u = x ⊔ (y ⊔ z).

Now, by (7.9) and (SSP), we obtain

z ⊑ x ⊔ y ∧ z N x =⇒ z ⊑ y . (7.12)

Let z ⊑ x ⊔ y and z 6⊑ y. Then, by (SSP), for some u ∈ M we have
u ⊑ z and u N y. Hence, in virtue of (7.9), we have u � x. Hence z � x,
by (mono�) and (s�).

To finish this section, by making use of (7.12) and (SSP), for arbitrary
x, y, z, u ∈ M we have:

u ⊑ x ⊔ y ∧ u ⊑ x ⊔ z ∧ y N z =⇒ u ⊑ x. (7.13)

Let u ⊑ x ⊔ y, u ⊑ x ⊔ z, and u 6⊑ x. Then. by (SSP), there is w ∈ W
such that w ⊑ u and w N x. In virtue of (t⊑) we have w ⊑ x ⊔ y and
w ⊑ x ⊔ z. Hence, by (7.12), we have w ⊑ y and w ⊑ z; so y � z.

8. The relation Sum versus the relation of supremum

Let M = 〈M,⊏〉 be any mereological structure, x ∈ M , and S ∈ P(M).
We say that x is an upper bound of S in M iff all members of S are
ingredienses of x, i.e., S ⊆ I(x). Moreover, since the relation ⊑ partially
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orders the set M , we can therefore define in M × P(M) the relation is
a supremum of with respect to ⊑, in accordance with (df sup

≤
) from

Section 4 in Appendix I. Thus, we say that x is a supremum of S in M

(we write: x sup
⊑
S) iff x is the least upper bound of S in M. This may

be put symbolically as follows for all x ∈ X and S ∈ P(X):

x sup
⊑
S :⇐⇒ S ⊆ I(x) ∧ ∀y∈M (S ⊆ I(y) ⇒ x ⊑ y). (df sup

⊑
)

The immediate consequences of (df sup
⊑

) are stated in the following
lemma.

Lemma 8.1. (i) To show that sup
⊑

is monotonic, we need only defini-
tion (df sup

⊑
); so we obtain:

∀S1,S2∈P(M)∀x,y∈M (x sup
⊑
S1 ∧ y sup

⊑
S2 ∧ S1 ⊆ S2) =⇒ x ⊑ y.

(Msup)
(ii) From (r⊑) it follows that:

∀x∈M x sup
⊑

{x} , (8.1)

∀x∈M x sup
⊑

I(x) . (8.2)

(iii) From (antis⊑) it follows that if a set has a supremum then it is
unique, i.e.:

∀S∈P(M)∀x,y∈M

(
x sup

⊑
S ∧ y sup

⊑
S =⇒ x = y

)
. (Usup)

(iv) From (r⊑) and (antis⊑) it follows that:

∀x,y∈M (y sup
⊑

{x} =⇒ x = y). (Ssup)

To begin, we will examine the relationships that hold between the
relations Sum and sup when none of axioms (L1)–(L4) is assumed. In
other words, we will make the same assumption as with lemmas 4.3
and 6.2, and Corollary 6.3. That is, we consider structures of the form
〈M,⊑〉 with a primitive relation ⊑ included in M × M (so we do not
assume that ⊑ is defined by (df ⊑))). We assume, however, that � and
Sum are defined by (df �) and (df Sum) using ⊑.

Lemma 8.2. It follows from (r⊑) and (t⊑) that:

Sum ⊆ sup
⊑

iff (SSP) holds iff (M1) holds iff (M2) holds.

Proof. Suppose that (r⊑) and (t⊑) hold. First, by Corollary 6.3(i),
conditions (SSP), (M1), and (M2) are equivalent.
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Second, by Corollary 6.3(ii), we obtain that if (SSP) holds then also
(M3) holds. So if x Sum S, then S ⊆ I(x) and ∀y∈M (S ⊆ I(y) ⇒ x ⊑ y).
Hence x sup

⊑
S, by (df sup

⊑
). So we obtain that Sum ⊆ sup

⊑
.

Thirdly, suppose that Sum ⊆ sup
⊑

. By Lemma 4.3, if I(x) ⊆ O(y),
then x Sum I(x) ∩ I(y). Hence also x sup

⊑
I(x) ∩ I(y). By (8.2), we have

y sup
⊑

I(y). Therefore, x ⊑ y, by Lemma 8.1(i).

Let us note that directly by (6.2) and (df sup
⊑

), in all mereological
structures being a mereological sum of all members of a given non-empty
set coincides with being a supremum of all members of that set, i.e.:

∀S∈P(M)∀x∈M (x Sum S ⇐⇒ S 6= ∅ ∧ x sup
⊑
S). (Sum-sup

⊑
)

Hence we obtain:
∀S∈P+(M)

⊔
S = sup

⊑
S , (8.3)

where sup
⊑
S := (ix) x sup

⊑
S (for any S ∈ P+(M)). In fact, thanks to

(L3) and (L4), for any S ∈ P+(M) is defined
⊔
S. In virtue of (Sum-sup

⊑
)

and (Usup),
⊔
S is the only member of M such that

⊔
S sup

⊑
S.

Remark 8.1. Condition (6.2), from which we received (Sum-sup
⊑

), di-
rectly corresponds to (df sup

⊑
) (and to (df sup

≤
) from Appendix I). Sim-

ilarly, condition (6.3) corresponds to condition (4.5) from Appendix I.
Let us note, however, that the latter condition was only obtained from
the reflexivity and transitivity of the relation ≤, but for conditions (6.2)
and (6.2) we needed axiom (L4). This just shows what role this axiom
plays in obtaining (Sum-sup

⊑
).

We will show that the relations Sum and sup
⊑

are distinct iff the set
M is a singleton, i.e.:

Sum = sup
⊑

⇐⇒ CardM > 1 . (8.4)

‘⇒’ Let Sum = sup
⊑

. If x Sum S then x sup
⊑
S, in virtue of (df sup

⊑
)

and (6.2). If x Sum S then S 6= ∅, because  in virtue of (∄0)  there is
no least element (‘zero’) in M. Hence x Sum S, in virtue of (df sup

⊑
) and

(6.2). ‘⇐’ let CardM = 1 and suppose that M = {a}. Then a sup
⊑

∅
and ¬ a Sum ∅, since there is no mereological sum of ∅, in virtue of (3.2).
Therefore Sum 6= sup

⊑
.

Remark 8.2. Theses (Sum-sup
⊑

), (8.3), and (8.4) do not show that, in ax-
ioms (L3) and (L4), we may use the relation sup

⊑
instead of the relation

Sum. With this new form, (L3) (= (Usup)) would be dependent on (L1)
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and (L2), and instead of (L4) we would have (∗): ∀S∈P+(M)∃x∈Mx sup
⊑
S.

The collection of conditions (L1), (L2) and (∗) is essentially weaker
than the collection (L1)–(L4). In fact, this first collection would be an
axiomatisation of complete lattices with zero removed and the second
collection  as we will show in the next chapter  is an axiomatisation
of complete Boolean lattices with zero removed. Alongside (L1), (L2),
and (∗) one needs to assume (Sum-sup

⊑
) in order to obtain a collection

equivalent to the collection (L1)–(L4).

9. The operation of mereological product

Let M = 〈M,⊏〉 by any mereological structure. By virtue of (L4) and
(3.2), the equivalence below is satisfied for an arbitrary S ∈ P(M):

⋂

I[S] 6= ∅ ⇐⇒ ∃x∈M x Sum
⋂

I[S] . (9.1)

Remark 9.1. I[S] is the family of sets which is the image of a set S
determined by the function I and

⋂
I[S] is the set-theoretical product of

the family I[S], i.e.:

I[S] := {Y ∈ P+(M) : ∃z∈S Y = I(z)} = {I(z) : z ∈ S},
⋂

I[S] := {y ∈ M : ∀Y ∈I[S] y ∈ Y }.

Thus, we have:

⋂
I[S] =

⋂
{I(z) : z ∈ S} = {y ∈ M : ∀z∈S y ⊑ z}.

Note that, in the light of (r⊑), for any S ∈ P(M) we have: I(S) = ∅
iff S = ∅. Hence:

⋂
I[∅] = {y ∈ M : ∀Y ∈∅ y ∈ Y } =

⋂
∅ = {y ∈ M : ∀z∈∅ y ⊑ z)} = M.

By applying (L3) and (L4) therefore, we can define in the set P(M)
a partial unary operation ⊔: P(M) → M by the following condition:

⋂
I[S] 6= ∅ =⇒ ⊔S :=

⊔ ⋂
I[S]. (df ⊔)

It follows from condition (9.1) that the domain of the operation ⊔is the
family {S ∈ P(M) :

⋂
I[S] 6= ∅}. If ⊔S exists, then we will call it the

mereological product of all members of the set S. We know from (∄0)
that as long as the set M is not a singleton, then there is no element in
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M which is an ingrediens of all elements of M . Leaving aside the case
of a ‘trivial structure’, therefore, the product of all members of the set
M does not exist.

Furthermore, since
⋂

I[∅] = M 6= ∅, by (df ⊔) and (df ′ 1), we obtain:

⊔∅ =
⊔
M = 1 .

For all x ∈ M and S ∈ P(M), we say that x is an lower bound of S
in M iff x is an ingrediens of all members of S, i.e., ∀z∈S x ⊑ z. Moreover,
since the relation ⊑ partially orders the set M , we can therefore define in
M×P(M) the relation is an infimum of with respect to ⊑, in accordance
with (df inf≤) from Section 4 in Appendix I. Thus, we say that x is a
infimum of S in M (we writhe: x inf⊑ S) iff x is the greatest lower bound
This may be put symbolically as follows for all x ∈ X and S ∈ P(X):

x inf⊑ S :⇐⇒ ∀z∈S x ⊑ z ∧ ∀y∈M (∀z∈S y ⊑ z ⇒ y ⊑ x). (df inf⊑)

The immediate consequences of (df inf⊑) are stated in the following
lemma.

Lemma 9.1. (i) To show that inf⊑ is monotonic, we need only defini-
tion (df inf⊑); so we obtain:

∀S1,S2∈P(M)∀x,y∈M (x inf⊑ S1 ∧ y inf⊑ S2 ∧ S1 ⊆ S2) =⇒ y ⊑ x.
(Minf)

(ii) From (r⊑) it follows that:

∀x∈M x inf⊑ {x} . (9.2)

(iii) From (antis⊑) it follows that if a set has an infimum then it is
unique, i.e.:

∀S∈P(M)∀x,y∈M

(
x inf⊑ S ∧ y inf⊑ S =⇒ x = y

)
. (Uinf)

(iv) The relations inf⊑ and sup
⊑

are interdefinable, i.e., for arbitrary
S ∈ P(M) and x ∈ M the following conditions hold (cf. (4.10) and
(4.11) in Appendix I):

x inf⊑ S ⇐⇒ x sup
⊑

{y ∈ M : ∀z∈S y ⊑ z} ⇐⇒ x sup
⊑

⋂
I[S], (9.3)

x sup
⊑
S ⇐⇒ x inf⊑ {y ∈ M : S ⊆ I(y)}. (9.4)

So we have: x inf⊑ ∅ iff x sup
⊑
M iff x = 1.
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By (df ⊔), (8.3), and (9.3), for any S ∈ P(M) we have:

⋂
I[S] 6= ∅ =⇒ ⊔S = inf⊑ S , (9.5)

where inf⊑ S := (ix) x inf⊑ S. In fact, for an arbitrary S ∈ P(M) such
that

⋂
I[S] 6= ∅ we have ⊔S :=

⊔ ⋂
I[S] = sup

⊑

⋂
I[S] = inf⊑ S.

In an analogous way for the operation ⊔ we may generate a partial

binary operation ⊓ : M×M → M of mereological product of two elements
(cf. also (9.5)):

x � y =⇒ x ⊓ y := ⊔{x, y}

= inf⊑{x, y}.
(df ⊓)

It follows from (9.1) that the domain of the operation ⊓ is the set
{〈x, y〉 ∈ M × M : x � y}. Apart from the case in which M is a
singleton, the operation ⊓ is partial, because in virtue of condition (∃ N),
if CardM > 1 then there exist x, y ∈ M such that x N y which do not
belong to the domain of this operation.

It follows from the definition alone that the operation is ⊓ commuta-
tive and from (3.4) we obtain that ⊓ is idempotent, i.e., for all x, y ∈ M :

x � y =⇒ x ⊓ y = y ⊓ x , (9.6)

x = x ⊓ x . (9.7)

Moreover, by (df ⊓) and (df ⊔), for all x, y ∈ M such that x � y the
product x ⊓ y is an ingrediens both x and y, and it is the mereological
sum (supremum) of the common ingrediens of x and y, i.e.:

x � y =⇒ x ⊓ y ⊑ x ∧ x ⊓ y ⊑ y , (9.8)

x � y =⇒ x ⊓ y =
⊔

{z ∈ M : z ⊑ x ∧ z ⊑ y}. (9.9)

If x � y then the product x and y exists. So we use (df ⊓). Moreover,
x ⊓ y =

⊔ ⋂
I[{x, y}] =

⊔
{z ∈ M : z ⊑ x ∧ z ⊑ y}.28

Thus, for all x, y ∈ M we obtain:

x � y =⇒ ∀z∈M(z ⊑ x ⊓ y ⇔ z ⊑ x ∧ z ⊑ y). (9.10)

Let x � y. Then the implication follows from (9.8) and (t⊑). The
converse implication follows from (9.9).

28 Cf. also (df ⊓) and (4.6) from Appendix I.
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The associativity of the operation ⊓ follows from (df ⊓) and (9.10),
i.e., for all x, y, z ∈ M we obtain:29

∃u∈M (u ⊑ x ∧ u ⊑ y ∧ u ⊑ z) =⇒ (x ⊓ y) ⊓ z = x ⊓ (y ⊓ z). (9.11)

Suppose that ∃u∈M (u ⊑ x ∧ u ⊑ y ∧ u ⊑ z). Then exist both x ⊓ y,
x⊓z, and y⊓z. Moreover, u = (x⊓y)⊓z iff u inf⊑ {x⊓y, z} iff u ⊑ x⊓y
and u ⊑ z and ∀v∈M(v ⊑ x ⊓ y ∧ v ⊑ z ⇒ v ⊑ x) iff u ⊑ x and u ⊑ y
and u ⊑ z and ∀v∈M(v ⊑ x ∧ v ⊑ y ∧ v ⊑ z ⇒ v ⊑ x) iff u = x⊓ (y⊓ z).

Note that, by (t⊑), (antis⊑), (5.1), (9.6), (9.7), (9.8) and (9.10), for
arbitrary x, y ∈ M we have:

x � y =⇒ (x ⊓ y = 1 ⇔ x = 1 = y), (9.12)

x ⊓ 1 = 1 ⊓ x = x . (9.13)

From (9.10), (t⊑), and (r⊑), we have, for arbitrary x, y, u, v ∈ M :

x � y ∧ x ⊑ u ∧ y ⊑ v =⇒ u � v ∧ x ⊓ y ⊑ u ⊓ v . (9.14)

Suppose that x � y, x ⊑ u, and y ⊑ v. Then there is a z such that
z ⊑ x ⊑ u and z ⊑ y ⊑ v. Hence u � v, by (t⊑). Let us pick an
arbitrary w such that w ⊑ x⊓y. By virtue of (9.10), we have w ⊑ x and
w ⊑ y. Therefore, also w ⊑ u and w ⊑ v, by our assumption. Hence, by
similarly applying (9.10), we have w ⊑ u ⊓ v. From the arbitrariness of
the choice of w, we have I(x ⊓ y) ⊆ I(u ⊓ v). Thus, x ⊓ y ⊑ u ⊓ v., by
virtue of (monoI).

To close this section, let us note that, for all x, y, z ∈ M we have:

z ⊑ x ∧ z � y =⇒ x � y ∧ z � x ⊓ y . (9.15)

If z ⊑ x and z � y, then for some u we have: u ⊑ z ⊑ x and u ⊑ y.
Hence, from (t⊑) and (9.10), we have x � y and u ⊑ x⊓ y. So z � x⊓ y.

10. Distributivity

Let M = 〈M,⊏〉 be an arbitrary mereological structure. In view of this,
since  leaving aside the trivial case  M is not a lattice, the conditions of

29 Note that, with the exception of the cases of trivial structures, structures of
the form 〈M,⊓〉 are not lattices.
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distributivity are going to have a somewhat complicated form.30 Before
formulating the condition for the distributivity of the operation ⊔ with
respect to the operation ⊓, let us observe that since we have x ⊑ x ⊔ y
and x ⊑ x ⊔ z, for arbitrary x, y, z ∈ M , we therefore have:

(x ⊔ y) � (x ⊔ z).

Thus, we will now prove that for arbitrary x, y, z ∈ M we obtain:

(x ⊔ y) ⊓ (x ⊔ z) =

{

x ⊔ (y ⊓ z) if y � z,

x if y N z.
(∆1)

We need to consider two cases. (A) y N z: We have x ⊑ x ⊔ y and
x ⊑ x ⊔ z. Hence x ⊑ (x ⊔ y) ⊓ (x ⊔ z), by virtue of (9.10). Conversely,
pick an arbitrary u such that u ⊑ (x ⊔ y) ⊓ (x ⊔ z). Then u ⊑ x ⊔ y and
u ⊑ x ⊔ z, by virtue of (9.10). Hence u ⊑ x, by virtue of (7.13). From
the arbitrariness of u we have (x ⊔ y) ⊓ (x⊔ z) ⊑ x. (B) y � z: We have
y ⊑ x⊔ y and z ⊑ x⊔ z. Hence y⊓ z ⊑ (x⊔ y) ⊓ (x⊔ z), by (9.14). From
this and (A) we have x ⊔ (y ⊓ z) ⊑ (x ⊔ y) ⊓ (x ⊔ z), by (7.10). Assume
for a contradiction that (x ⊔ y) ⊓ (x⊔ z) 6⊑ x ⊔ (y ⊓ z). Hence, by virtue
of (SSP), there is a u such that u ⊑ (x⊔ y) ⊓ (x⊔ z) and u N x⊔ (y ⊓ z).
From the first of these facts we have u ⊑ x ⊔ y and u ⊑ x ⊔ z. From
the second, by virtue of (7.8), we get u N x and u N y ⊓ z. Therefore 
applying (7.12)  we have u ⊑ y and u ⊑ z. Hence we have u ⊑ y ⊓ z
which contradicts u N y ⊓ z.

In formulating the condition of distributivity of the operation ⊓ with
respect to the operation ⊔, we will use fact (7.7). We will prove that,
for arbitrary x, y, z ∈ M we obtain:

x � y ∨ x � z =⇒

x ⊓ (y ⊔ z) =







(x ⊓ y) ⊔ (x ⊓ z) if x � y and x � z,

x ⊓ y if x � y and x N z,

x ⊓ z if x N y and x � z.

(∆2)

We need to consider three cases. (A) x � y and x N z: we have x⊓ y ⊑ x
and x⊓ y ⊑ y ⊑ y ⊔ z. Hence x⊓ y ⊑ x⊓ (y ⊔ z). Conversely, assume for

30 One must not confuse these conditions with the conditions for the property of
so-called conditional distributivity in lattices with a unity. We have ‘full’ distributivity
in a ‘partial’ lattice.
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a contradiction that x⊓ (y ⊔ z) 6⊑ x⊓ y. Then, by virtue of (SSP), there
is a u such that u ⊑ x ⊓ (y ⊔ z) and u N x ⊓ y. Thus, u ⊑ x, u ⊑ y ⊔ z,
and we have u N y, by virtue of (9.15). Hence, by virtue of (7.12), we
get u ⊑ z. Therefore x � z, which contradicts x N z. (B) x N y and x � z:
We have x ⊓ z ⊑ x and x ⊓ z ⊑ z ⊑ y ⊔ z. Hence x ⊓ z ⊑ x ⊓ (y ⊔ z).
Conversely, as in (A). (C) x � y and x � z: From (A) and (B), by virtue
of (7.10), we have (x⊓ y) ⊔ (x⊓ z) ⊑ x⊓ (y ⊔ z). Conversely, assume for
a contradiction that x ⊓ (y ⊔ z) 6⊑ (x ⊓ y) ⊔ (x ⊓ z). Then, by virtue of
(SSP), there is a u such that u ⊑ x ⊓ (y ⊔ z) and u N (x ⊓ y) ⊔ (x ⊓ z).
Therefore u ⊑ x, u ⊑ y ⊔ z, u N x ⊓ y and u N x ⊓ z. By virtue of (9.15),
we have u N y and u N z. Hence, by virtue of (7.8), we get u N y⊔ z which
contradicts u ⊑ y ⊔ z.

11. The mereological complement operation

In any mereological structure M for each x ∈ M we have:

x 6= 1 ⇐⇒ ∃y∈M y N x . (11.1)

If x 6= 1 then x ⊏ 1, by (5.1). Hence, by virtue of (WSP), for some y
we have y N x. Conversely, for each y ∈ M we have y � 1, by virtue of
(5.1) and (⊑⊆�).

In the light of (11.1), if x 6= 1 then {y ∈ M : y N x} 6= ∅. Hence
⊔

{y ∈ M : y N x} is defined, by virtue of (L3) and (L4). Moreover:

x 6= 1 =⇒
⊔

{y ∈ M : y N x} 6= 1 . (11.2)

Assume for a contradiction that x 6= 1 and
⊔

{y ∈ M : y N x} = 1.
Then, in virtue of (5.1), (⊑⊆�), (7.1), we have x ∈ O(1) =

⋃
O[{y ∈ M :

y N x}] = {z ∈ M : ∃y∈M (y N x ∧ z � y)}. Hence for some y ∈ M , we
obtain the contradiction: x � y and y N x.

It follows from the above considerations that ifM 6= {1} then we may
define on the set M \ {1} the unary operation ∁ : M \ {1} → M \ {1}:

x∁ :=
⊔

{y ∈ M : y N x}

= sup
⊑

{y ∈ M : y N x} .
(df ∁)

The object x∁ will be called the mereological complement of x. This
object is not only the mereological sum (supremum) of the indicated set,
but also belongs to this set. Namely, for any x ∈ M we have:

x 6= 1 =⇒ x N x∁. (11.3)
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Assume for a contradiction that x 6= 1 and x � x∁. Then for some y ∈ M
we have (a) y ⊑ x and (b) y ⊑ x∁ :=

⊔
{z ∈ M : z N x}. By (b), (7.2)

and (r⊑), for some z ∈ M we obtain (c) z N x and (d) z � y. Thus, by
(a), (d) and (mono�), we have z � x, which contradicts (c).

Moreover, the operation of mereological complement has the follow-
ing properties for arbitrary x, y ∈ M :

x 6= 1 =⇒ y N x ⇔ y ⊑ x∁, (11.4)

x 6= 1 6= y =⇒ x ⊑ y ⇔ y∁ ⊑ x∁, (11.5)

x 6= 1 =⇒ x∁∁ = x , (11.6)

x 6= 1 6= y ∧ x∁ � y∁ =⇒ x ⊔ y 6= 1 6= x∁ ⊓ y∁. (11.7)

For (11.4): Let x 6= 1. If y N x, then y ⊑ x∁ :=
⊔

{z ∈ M : z N x}. Con-
versely, if y ⊑ x∁, then O(y) ⊆ O(x∁), by virtue of (mono�). Thus,
x 6∈ O(y), since x /∈ O(x∁), by (11.3). For (11.5): Assume that x 6= 1 6= y.
Then: x ⊑ y iff (by (df� ⊑)) O(x) ⊆ O(y) iff {z : z N y} ⊆ {z : z N x} iff
(by (11.4)) I(y∁) ⊆ I(x∁) iff (by (monoI)) y

∁ ⊑ x∁. For (11.6): By virtue
of (11.2)–(11.4), for any x 6= 1 we have x ⊑ x∁∁. Applying this to x∁ we
get x∁ ⊑ x∁∁∁. Hence x∁∁ ⊑ x, by virtue of (11.5). Therefore x = x∁∁, by
virtue of (antis⊑). For (11.7): Let x 6= 1 6= y and x∁ � y∁. Then there is a
z such that z ⊑ x∁ and z ⊑ y∁. By (11.4) we have z N x and z N y. Hence
¬ 1 Sum {x, y}, by (5.1). Moreover, assume for a contradiction that
x∁⊓y∁ = 1. Then, (9.12), we have x∁ = 1 = y∁, which contradicts (11.2).

Note that we have:

∀x∈M (x 6= 1 =⇒ x ⊔ x∁ = 1). (11.8)

Assume for a contradiction that x 6= 1 and for some y ∈ M we have:
y N x and y N x∁. Then y ⊑ x∁ and y ⊑ x, by (11.4) and (11.6). Hence, in
the light of (11.3), we get the contradiction: x � x∁. We therefore have
for each y ∈ M : y � x or y � x∁. Hence 1 Sum {x, x∁}.

Now we prove that:

∀x,y∈M

(
x ⊔ y = 1 ∧ x N y =⇒ x 6= 1 6= y ∧ y = x∁ ∧ x = y∁

)
. (11.9)

Let x ⊔ y = 1 and x N y. Then, by (11.1), we have x 6= 1 6= y. We
will show that y Sum {z ∈ M : z N x}, i.e., y = x∁. First, assume for a
contradiction that that for some z0 we have z0 N x and z0 6⊑ y. Then,
by (SSP), for some u0 we have u0 ⊑ z0 and u0 N y. Hence, by (monoN),
we have u0 N x. From this and (7.8) we obtain u0 N x ⊔ y = 1. But this
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contradicts (11.1). Second, assume for a contradiction that u ⊑ y but
for any z such that z N x we have z N u. Then, by (df N ⊑), we have u ⊑ x.
Yet this contradicts x N y. Thus, we obtain y = x∁. Hence also x = y∁,
by (11.6).

From (11.3), (11.8) and (11.9) we obtain:

∀x∈M\{1}∀y∈M

(
x ⊔ y = 1 ∧ x N y ⇐⇒ y = x∁

)
. (11.10)

We observe that, by (5.1), (11.4) and (11.6), for all x, y ∈ M we have:

x 6⊑ y ⇐⇒ y 6= 1 ∧ x � y∁.

So for any x, y ∈ M such that x 6⊑ y we can put:

xr y := x ⊓ y∁ .

The object xr y can be treated as the mereological difference of x and y,
or the relative mereological complement of y with respect to x.

Note that for arbitrary x, y ∈ M we have:

x 6⊑ y =⇒ xr y ⊑ x ∧ xr y ⊑ y∁, (11.11)

x 6⊑ y =⇒ xr y N y . (11.12)

If x 6⊑ y, then y 6= 1, so we use (9.8). Moreover, by (11.4): xr y ⊑ y∁ iff
xr y N y.

In the light of the above conditions we see the difference xr y belongs
to the set {z ∈ M : z ⊑ x ∧ z N y}, and moreover, in virtue of (9.9) and
(11.4), it is equal to the mereological sum (supremum) of this set, i.e.:

x 6⊑ y =⇒ xr y =
⊔

{z ∈ M : z ⊑ x ∧ z N y}

= sup
⊑

{z ∈ M : z ⊑ x ∧ z N y} .
(11.13)

By making use of the above result (11.11)–(11.13), we may strengthen
condition (SSP) to the following:

∀x,y∈M

(
x 6⊑ y =⇒ ∃z∈M(z ⊑ x ∧ z N y ∧

∀u∈M(u ⊑ x ∧ u N y ⇒ u ⊑ z))
)
,

(SSP+)

which we will call the Super Strong Supplementation Principle. What it
intuitively says is that if x is not an ingrediens of y, then we can not only
find some z being an ingrediens of x and external to y, but we can also
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find an element of the structure in question satisfying the aforementioned
property and being the greatest such object in the structure. In the light
of (11.4) and (11.11)–(11.13), we see that the postulated element z is
the difference xr y.

To finish this section, we shall prove the conditional De Morgan’s
laws. First, in virtue of (9.12) and (9.13), for all x, y ∈ M we can prove:

x � y ∧ x ⊓ y 6= 1 =⇒

(x ⊓ y)∁ =







x∁ if x 6= 1 and y = 1

y∁ if x = 1 and y 6= 1

x∁ ⊔ y∁ if x 6= 1 6= y

(DM1)

If x � y and x ⊓ y 6= 1, then x ⊓ y and (x ⊓ y)∁ are defined, and 
in virtue of (9.12)  one of the three cases given above holds. In the
first two cases, via (9.13), we have (x ⊓ 1)∁ = x∁ and (1 ⊓ y)∁ = y∁,
respectively. In the third case we will show that (x ⊓ y)∁ Sum {x∁, y∁}.
To this end, we note that x∁ ⊑ (x ⊓ y)∁ and y∁ ⊑ (x ⊓ y)∁, by (9.8) and
(11.5). Furthermore, for an arbitrary z, if z ⊑ (x ⊓ y)∁, then z � x∁ or
z � y∁. In essence, in the converse case z N x∁ and z N y∁, and thus  by
virtue of (11.4) and (11.6)  we would have z ⊑ x and z ⊑ y. And hence
we would obtain z ⊑ x ⊓ y. By virtue of (11.3), this would contradict
our assumption.

Second, in the light of (11.7), for all x, y ∈ M we can prove:

x 6= 1 6= y ∧ x∁ � y∁ =⇒ (x ⊔ y)∁ = x∁ ⊓ y∁. (DM1)

If x 6= 1 6= y and x∁ � y∁, then x∁ ⊓ y∁ is defined. Moreover, by virtue of
(11.7), we have x ⊔ y 6= 1 6= x∁ ⊓ y∁. Therefore, in the light of the third
case in (DM1) and (11.6), we have (x∁ ⊓ y∁)∁ = x∁∁ ⊔ y∁∁ = x⊔ y. Hence
(x ⊔ y)∁ = (x∁ ⊓ y∁)∁∁ = x∁ ⊓ y∁.

12. Filters in mereological structures

Let M = 〈M,⊏〉 be any mereological structure. We will call a non-empty
subset F of the set M a filter in M iff it satisfies the following two
conditions:

(f1) if x, y ∈ F , then x � y and x ⊓ y ∈ F ;
(f2) if x ∈ F and x ⊑ y, then y ∈ F .

Let FM be the family of all filters in M.
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Theorem 12.1. For each x ∈ M there is F ∈ FM such that x ∈ F .

Proof. We show that the set Fx := {y : x ⊑ y} is a filter such that
x ∈ Fx. First, by (r⊑), we have x ∈ Fx. Second, by (9.10), if y, z ∈ Fx,
then x ⊑ y and x ⊑ z, i.e., y � z and y ⊓ z ∈ Fx. Thirdly, by (t⊑), if
y ∈ Fx and y ⊑ z, then z ∈ Fx.

Thus, FM 6= ∅ and, via (f1) and (∃ N), we obtain:

M ∈ FM ⇐⇒ CardM = 1. (12.1)

We observe that by virtue of (5.1), (f1), (f2) and (11.3), we have for all
F ∈ FM and x ∈ M :

1 ∈ F , (12.2)

x 6= 1 =⇒ x /∈ F ∨ x∁ /∈ F . (12.3)

Lemma 12.2. If F ∈ FM, x 6= 1 and x∁ /∈ F , then F ⊆ O(x).

Proof. Suppose that F ∈ FM, x 6= 1, x∁ /∈ F , and y ∈ F . If y N x, then
y ⊑ x∁, by (11.4). Hence x∁ ∈ F , which contradicts our assumption.

We say that a family F ⊆ FM is a chain of filters in M iff F 6= ∅ and
for arbitrary F1, F2 ∈ F either F1 ⊆ F2 or F2 ⊆ F1.

Lemma 12.3. If F ⊆ FM is a chain of filters in M, then
⋃

F ∈ FM.

Proof. Since F 6= ∅, so
⋃

F 6= ∅. If x, y ∈
⋃

F , then there are F1, F2 ∈
F such that x ∈ F1 and y ∈ F2. Since F is a chain, then either x, y ∈ F1

or x, y ∈ F2. In both cases we have x � y and x ⊓ y ∈
⋃

F , by (f1) for
F1 or F2. Finally, if x ∈

⋃
F and x ⊑ y, then x ∈ F , for some F ∈ FM.

Hence y ∈
⋃

F , by (f2) for F .

We say that a filter F is an ultrafilter in M iff F is a maximal filter
in M with respect to set-theoretical inclusion, i.e., there does not exist
a G ∈ FM such that F ( G. Let UltM be the family of all ultrafilters of
M. In the standard way, by applying the Kuratowski-Zorn lemma and
Lemma 12.3, we can prove:

Lemma 12.4. Every filter in M is included in some ultrafilter in M.

Hence UltM 6= ∅, because FM 6= ∅. Moreover,

Theorem 12.5. For each x ∈ M there exists an F ∈ UltM such that
x ∈ F .
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Proof. For any x ∈ M , in the light of Theorem 12.1, for some Fx ∈ FM

we have x ∈ Fx. In the light of Lemma 12.4, there exists a maximal filter
F such that Fx ⊆ F .

We call the filter F ∈ FM primary iff it satisfies a third condition:

(f3) if x ⊔ y ∈ F , then either x ∈ F or y ∈ F .

Let PFM be the family of all primary filters in M.

Lemma 12.6. For any F ∈ FM: F ∈ PFM iff for each x ∈ M \{1} either
x ∈ F or x∁ ∈ F .

Proof. ‘⇒’ Let F ∈ PFM and x 6= 1. Then, by (11.8), we have x⊔x∁ =
1. Since 1 ∈ F , either x ∈ F or x∁ ∈ F , by (f3).

‘⇐’ Let F be a filter, which meets the given condition. Pick arbitrary
x, y ∈ M such that x⊔y ∈ F . If x = 1 or y = 1, then x ∈ F or y ∈ F , by
(12.2). Suppose therefore that x 6= 1 6= y. Assume for a contradiction
that x /∈ F and y /∈ F . Then, in the light of the assumed condition, we
have x∁ ∈ F and y∁ ∈ F . Therefore, by virtue of (f1), we have x∁ � y∁

and x∁ ⊓ y∁ ∈ F . Hence, by virtue of (11.7), we have (x ⊔ y)∁ 6= 1.
Moreover, by virtue of (DM1), we have (x ⊔ y)∁ ∈ F . And this gives us
a contradiction, via (12.3).

Theorem 12.7. UltM = PFM.

Proof. “⊆” Let F ∈ UltM. We will show that F satisfies the following
condition: for each x ∈ M \ {1} either x ∈ F or x∁ ∈ F . Hence, by
virtue of Lemma 12.6, we have: F ∈ PFM.

Suppose that x ∈ M \ {1} and x∁ /∈ F . We put G := {z ∈ M :
∃y∈F (y � x ∧ y ⊓ x ⊑ z)}. Firstly, let us note that x ∈ G, since 1 ∈ F
and 1⊓x = x. Secondly, let us note that F = F ∩O(x), by Lemma 12.2.
Thirdly, let us note that F = F ∩ O(x) ⊆ G. In fact, if y ∈ F ∩ O(x),
then y � x and y ⊓ x ⊑ y; so y ∈ G. Finally, we will show that G is
a filter. Condition (f2) we obtain by (t⊑). To prove (f1), assume that
z1, z2 ∈ G, i.e., for some y1, y2 ∈ F , we have y1 � x, y2 � x, y1 ⊓ x ⊑ z1,
and y2 ⊓ x ⊑ z2. Then y1 � y2 and y1 ⊓ y2 ∈ F , by virtue of (f1)
for F . Hence y1 ⊓ y2 ∈ O(x), via Lemma 12.2. So y1 ⊓ y2 ⊓ x is defined.
Furthermore, y1 ⊓ y2 ⊓x ⊑ y1 ⊓x and y1 ⊓ y2 ⊓x ⊑ y2 ⊓x, by (9.6), (9.8)
and (9.11). So y1 ⊓ y2 ⊓ x ⊑ z1 and y1 ⊓ y2 ⊓ x ⊑ z2, by (t⊑). Therefore
y1 ⊓ y2 ⊓ x ⊑ z1 ⊓ z2, in virtue of (9.10). Hence z1 ⊓ z2 ∈ G.

Since F is a maximal filter, then x ∈ F = G.
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“⊇” Assume for a contradiction that F ∈ PFM and F /∈ UltM. Then
there exists a G ∈ FM such that F ( G. Hence for some x ∈ M we have
x ∈ G and x /∈ F . Therefore x 6= 1 and x∁ ∈ F ( G, by Lemma 12.6.
We thus obtain a contradiction via (12.3).

13. A representation theorem for mereological structures

Let M = 〈M,⊏〉 be a mereological structure. The Stone map of M is
the function s : M → P+(UltM) defined by:

s(x) := {F ∈ UltM : x ∈ F}.

Clearly, s[M ] is the image of the set M determined by the function s, i.e.,
s[M ] := {s(x) : x ∈ M}. By virtue of Theorem 12.5 we have s(x) 6= ∅,
for each x ∈ M . Hence we obtain:

Lemma 13.1. ∅ /∈ s[M ].

Now we prove that the Stone map is a monomorphism from M into
〈P+(UltM),(〉.

Lemma 13.2. (i) The Stone map s is a monomorphism from 〈M,⊑〉
into 〈P+(UltM),⊆〉, i.e., for arbitrary x, y ∈ M :

x ⊑ y ⇐⇒ s(x) ⊆ s(y),

x = y ⇐⇒ s(x) = s(y).

(ii) The Stone map s is a monomorphism from 〈M,⊏〉 into
〈P+(UltM),(〉, i.e., for any x, y ∈ M :

x ⊏ y ⇐⇒ s(x) ( s(y).

Proof. Ad (i): Let x ⊑ y and F ∈ s(x). Then x ∈ F and so y ∈ F , by
(f2). Hence s(x) ⊆ s(y).

Conversely, let x 6⊑ y. Then, by virtue of (SSP), there exists a z ∈ M
such that z ⊑ x and z N y. In the light of Lemma 13.1 and the previously
proved implication, we have ∅ 6= s(z) ⊆ s(x). Therefore, there exists an
F0 ∈ UltM such that z, x ∈ F0. Since z N y, then y 6∈ F0, by virtue of
(f1). Therefore F0 ∈ s(x) and F0 6∈ s(y). Hence s(x) * s(y).

Moreover, let s(x) = s(y), i.e., s(x) ⊆ s(y) and s(y) ⊆ s(x). Then
x ⊑ y and y ⊑ x. Hence x = y, by (antis⊑).

Ad (ii): Direct conclusion from (i).
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We obtain directly from the above lemma the following representation
theorem for mereological structures:

Theorem 13.3. For any mereological structure M = 〈M,⊏〉:

(i) The Stone map s is an isomorphism of the structure 〈M,⊑〉 on the
structure 〈s[M ],⊆〉.

(ii) The Stone map s is an isomorphism of M on 〈s[M ],(〉.

Now note that the Stone map s for arbitrary x, y ∈ M has the fol-
lowing properties:

s(1) = UltM . (13.1)

s(x ⊔ y) = s(x) ∪ s(y) , (13.2)

x � y =⇒ s(x ⊓ y) = s(x) ∩ s(y) , (13.3)

x 6= 1 =⇒ s(x∁) = UltM \ s(x) . (13.4)

For (13.1): s(1) = UltM, by (12.2). For (13.2): If F ∈ s(x⊔y) then either
x ∈ F or y ∈ F , by (f3), since UltM = PFM. Conversely, if F ∈ s(x)
or F ∈ s(y), then x ⊔ y ∈ F , by (f2), since x ⊑ x ⊔ y, y ⊑ x ⊔ y, and
either x ∈ F or y ∈ F . For (13.3): Let x � y. If F ∈ s(x ⊓ y), then
x ∈ F and y ∈ F , by (f2), since x ⊓ y ⊑ x and x ⊓ y ⊑ y. Conversely, if
F ∈ s(x) and F ∈ s(y), then x⊓y ∈ F , by (f1). For (13.4): Let x 6= 1. If
F ∈ s(x∁), then x∁ ∈ F and so x /∈ F , by (12.3). Conversely, if F ∈ UltM
and F /∈ s(x), then x /∈ F . Hence x∁ ∈ F and F ∈ s(x∁), in the light of
Lemma 12.6 and Theorem 12.7.

Finally, note that:

Theorem 13.4. For any mereological structure M = 〈M,⊏〉:

(i) The family s[M ] ∪ {∅} is an algebra (a field) of sets over UltM.
(ii) 〈s[M ] ∪ {∅},⊆, ∅,UltM〉 is a complete Boolean lattice.31

Proof. Ad (i): Firstly, UltM ∈ s[M ], by (13.1). Secondly, let X ,Y ∈
s[M ] ∪ {∅}. If X = ∅ or Y = ∅, then X ∪ Y ∈ s[M ] ∪ {∅}. Assume
therefore that X ,Y ∈ s[M ]. Then for some x, y ∈ M we have X = s(x)
and Y = s(y). Hence X ∪ Y = s(x ⊔ y) ∈ s[M ], by (13.2). So X ∪ Y ∈
s[M ]∪{∅}. Thirdly, let X ∈ s[M ]∪{∅}. If X = ∅ then UltM\X = UltM.
If X = UltM then UltM \ X = ∅. In the remaining cases, for some x 6= 1

we have X = s(x). Hence UltM \ X = s(x∁) ∈ s[M ], by (13.4). So
UltM \ X ∈ s[M ] ∪ {∅}.

31 The field s[M ] ∪ {∅} is not necessarily complete, i.e., there may be a family F

such that F ⊆ s[M ] ∪ {∅} and
⋃

F /∈ s[M ].
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Ad (ii): Since the family s[M ] ∪ {∅} is a field, the structure 〈s[M ] ∪
{∅},⊆〉 is a Boolean lattice. It remains to be shown that for any family
F ∈ P(s[M ] ∪ {∅}) there exists an X ∈ s[M ] ∪ {∅} such that X sup

⊆
F.

If F = ∅ or F = {∅}, then ∅ sup⊆ F. Therefore let ∅ 6= F 6= {∅}. Let us
put S := {x ∈ M : s(x) ∈ F}. In the light of the assumption, we have
S 6= ∅. There exists therefore an x ∈ M such that x =

⊔
S = sup

⊑
S.

Hence, by virtue of Lemma 13.2(i), we have s(x) sup
⊆

s[S]. We observe
that if ∅ 6∈ F, then s[S] = F. Otherwise F = s[S] ∪ {∅}. Therefore
s(x) sup

⊆
F.

Theorems 13.3 and 13.4 signal the presence of a certain connection
between mereological structures and complete Boolean lattices. Let us
add to the universe of a mereological structure an element 0 less than all
others  the zero element. Then the Stone map expanded by the condi-
tion s(0) := ∅ is an isomorphism of this new structure on the structure
〈s[M ] ∪ {∅},(〉. The structure 〈M ∪ {0},⊑〉 with the expanded relation
⊑ satisfying the condition 0 ∈ I(M ∪ {0}) will therefore be a complete
Boolean lattice. This theme will be a particular concern of the next
chapter.



Chapter III

Mereology and complete Boolean lattices

1. Mereological structures and complete Boolean lattices

In this section we will prove two theorems which introduce a connection
between mereological structures and complete Boolean lattices1. Tarski
[1935] was the first to draw attention to this connection in a footnote
in an article on the subject of Boolean algebra. In the English version
of this paper [Tarski, 1956c], the footnote is to be found as footnote 1
on pp. 333–334. In the first paragraph of this footnote, Tarski asks
how one might axiomatise mereological structures other than in a way
equivalent to the way he does in his book. In the second paragraph, he
sketches proofs of certain theorems which we shall later reconstruct. As
the footnote gives the connection between mereological structures and
complete Boolean lattices in a synoptic way, we reprint it below:

The formulation of Posts. B4 and B∗
4 [2] as well as some fragments

of the proofs of Ths. 1 and 2 have been influenced by the researches
of S. Leśniewski. The extended system of Boolean algebra [3] is closely
related to the deductive theory developed by S. Leśniewski and called
by him mereology. The foundations of mereology have been briefly
discussed in article II [i.e., in Tarski, 1956b], where bibliographical ref-
erences to the relevant works of Leśniewski will also be found. The
relation of the part to the whole [4], which can be regarded as the only
primitive notion of mereology, is the correlate of Boolean-algebraic in-

1 Complete Boolean lattices are discussed in Section 11 of Appendix I.
2 Postulate B∗

4 is expressed in this book as condition (⋆) in Theorem 12.1 listed
in Appendix I. By changing the expression “exists exactly one x” in (⋆) for “exists
at least one x”, we obtain the formulation corresponding to postulate B4.

3 This is what Tarski calls a system axiomatising a class of complete Boolean
lattices. Theorems 1 and 2, which are given above, say the same thing as Theorem 12.1
in Appendix I.

4 Tarski used the term “part” with a wider meaning, that is, the same way that
Leśniewski uses the term “ingrediens”
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clusion. The postulate system [B2,B
∗
4] has been obtained by a slight

modification of the postulate system for mereology (Posts. I and II) sug-
gested in II; regarding the relation of the latter system to the original
postulate system of Leśniewski see II, p. 25, footnote 2. [5]

The formal difference between mereology and the extended system
of Boolean algebra reduces to one point: the axioms of mereology imply
(under the assumption of the existence of at least two different individ-
uals) that there is no individual corresponding to the Boolean-algebraic
zero, i.e. an individual which is a part of every other individual. If a
set B of elements (together with the relation of inclusion) constitutes a
model of the extended system of Boolean algebra, then, by removing the
zero element from B, we obtain a model for mereology; if, conversely, a
set C is a model for mereology, then, by adding a new element to C and
by postulating that this element is in the relation of inclusion to every
element of G, we obtain a model for the extended system of Boolean al-
gebra. Apart from these formal differences and similarities, it should be
emphasized that mereology, as it was conceived by its author, is not to
be regarded as a formal theory where primitive notions may admit many
different interpretations. Regarding Ths. 1 and 2 see Tarski, A. (78).

[Tarski, 1956c, pp. 333–334, footnote 1]

Theorem 1.1. Let B = 〈B,≤ 0, 1〉 be non-trivial complete Boolean
lattice. We put M := B \ {0} and ⊏ := ≤ |M \ idM . Then:

(i) M 6= ∅ and the relation ⊏ strictly partially orders the set M .
(ii) ⊑ = ≤ |M .

5 In speaking of “the original postulates of Leśniewski’s system”, Tarski does not
have in mind the system with the primitive relation ⊏ and axioms (L1)–(L4), but the
system with the primitive relation ⊑, which was studied by Leśniewski [1930].

In view of the fact that, in axioms (L3) and (L4), the non-primitive concept being

an ingrediens occurs, Leśniewski [1930] wanted to reconstruct his mereology such that
this concept would be a primitive concept. In Theorem m in [Leśniewski, 1930, p. 85]
he proved that the reflexivity of this concept (our (t⊑)) follows from its transitivity
and antisymmetry along with axioms III and IV (our(t⊑), (antis⊑), (L3), and (L4)).
Thus Leśniewski [1930, p. 82] accepted four corresponding axioms. Tarski noted that
the axiom expressing the antisymmetry of the relation is an ingrediens of follows from
the others. He writes about this in [Tarski, 1956b], p. 25 in the second footnote. Thus
only the axiom expressing the transitivity of the relation remains, along with axioms
(L3) and (L4), which Tarski joined together into one axiom. Postulates I and II are
introduced in [Tarski, 1956b, p. 25]. Postulate I = B2 and says that the relation is

an ingrediens of is transitive. Postulate II is logically equivalent to the conjunction
of axioms (L3) and (L4). This postulate corresponds to postulate B∗

4 (B4 would
correspond to postulate (L4)).

The relation of Postulates I and II to the system (L1)–(L4) will be discussed in
Section 4.
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(iii) For all x, y ∈ M we have: x � y iff x · y ∈ M .
(iv) For each S ∈ P+(M) we have sup

≤
S Sum S.

(v) 1 Sum M .
(vi) M := 〈M,⊏〉 is a mereological structure.
(vii) For each S ∈ P+(M) we have sup

⊑
S = sup

≤
S =

⊔
S.

(viii) Let +, ·, and − be the operations of B (i.e., 〈B,+, ·,−, 0, 1〉 is
the complete Boolean algebra obtained from B; see pp. 265–270
and Remark 9.1 from Appendix I). Then for all x, y ∈ M we have
x⊔y = x+y; for all x, y ∈ M such that x � y we have x⊓y = x ·y;
for any x ∈ M \ {1} we have x∁ = −x.

Proof. Ad (i): Since 0 6= 1, then 1 ∈ M . Because ≤ partially orders
the set B, then ≤ |M partially orders the set M . Hence, by virtue of
results Lemma 2.4(iv,v) from Appendix I, the relation ⊏ is asymmetric
and transitive.

Ad (ii): Since the relation ≤|M is reflexive, then  in the light of
Lemma 2.4(iii) from Appendix I  we have ⊑ := ⊏ ∪ idM := (≤ |M \
idM) ∪ idM = ≤ |M .

Ad (iii): By virtue of (ii) and conditions (df �) and (6.14) from Ap-
pendix I, for all x, y ∈ M : x · y 6= 0 iff ∃u∈B\{0}(u ≤ x ∧ u ≤ y) iff
∃u∈M (u ⊑ x ∧ u ⊑ y) iff x � y.

Ad (iv): Let S ∈ P+(M). Then sup
≤
S 6= 0, i.e., sup

≤
S ∈ M .

By virtue of (ii) and from the definition of a supremum, we have (a):
∀z∈S z ⊑ sup

≤
S. We show that the object sup

≤
S also meets for S the

second condition of (df Sum). We take an arbitrary y ∈ M such that
y ⊑ sup

≤
S. So, by (ii), also y ≤ sup

≤
S. Assume for a contradiction

that ∀z∈S y N z. Then, by (iii), we have: ∀z∈S y · z = 0. Hence, by (7.5)
from Appendix I, we have a contradiction: y = 0. Therefore ∃z∈S y � z.

Ad (v): 1 := sup
≤
B = sup

≤
(B \ {0}) = sup

≤
M . By virtue of (iv),

therefore, we have 1 Sum M .
Ad (vi): By virtue of (i) and (iv), in M axioms (L1), (L2), and (L4)

hold. Since B is a Boolean lattice, then condition (6.17) from Appendix I
holds for it, which we may write as follows:

∀x,y∈M

(
x 6⊑ y ⇐⇒ ∃z∈M(z ⊑ x ∧ z N y)

)
.

Thus in the structure 〈M,⊏〉 condition (SSP) holds. Hence, in the light
of Lemma II.6.2, we get (L3).

Ad (vii): Let S ∈ P+(M). Then sup
≤
S ∈ M . Furthermore, by virtue

of (ii), ⊑ = ≤ |M . Therefore sup
⊑
S = sup

≤
S. The rest follows from

(iv) and (v).
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Ad (viii): By virtue of (iii), (vii), (df ⊔), (df +), (df ⊓), (df ·), (df ∁),
and Lemma 8.2 from Appendix I.

Remark 1.1. We also have another proof of Theorem 1.1(vi) which is
based on some of Tarski’s results. Pick an arbitrary S ∈ P+(M) and an
x ∈ M such that x Sum S. Then (A) ∀z∈S z ⊑ x and (B) ∀y∈M (y ⊑
x ⇒ ∃z∈S y � z). From (A), by virtue of (ii), we have ∀z∈S z ≤ x.
From (B), (ii) and (iii) we get: ∀y∈B(y ≤ x ∧ y 6= 0 ⇒ ∃z∈S y · z 6= 0).
Hence ∀y∈B(y ≤ x ∧ ∀z∈S y · z = 0 ⇒ y = 0). We see therefore that, for
the set S, x satisfies conditions (a) and (b) in (⋆) in Theorem 11.2 from
Appendix I. By virtue of (7.5) from Appendix I, sup

≤
S also has this

property. By virtue of Theorem 11.2 from Appendix I, only one member
of B has this property. Therefore x = sup

≤
S. Analogously, y Sum S

entails y = sup
≤
S, i.e., x = y. Thus (L3) is true in M.

Theorem 1.1 may therefore be expressed in the following way6: We
obtain a mereological structure from an arbitrary non-trivial complete
Boolean lattice which has had its zero removed and which includes a
strict inclusion. We will prove below a theorem from which it follows that
we obtain a non-trivial complete Boolean lattice from every mereological
structure to which a ‘zero’ has been added.

Theorem 1.2. Let M = 〈M,⊏〉 be a mereological structure and let 0 be
an arbitrary object which does not belong to M . We put M0 := M∪{0 }
and let us define in the set M0 a binary relation ⊑o := ⊑ ∪ ({0 } ×M0 ),
i.e., for all x, y ∈ M0 we put: x ⊑o y :⇐⇒ x ⊑ y ∨ x = 0 . Then:

(i) ⊑ = ⊑o |M and ∀x∈M0 0 ⊑o x.
(ii) Mo := 〈M0 ,⊑o, 0 , 1〉 is a non-trivial complete Boolean lattice in

which 0 is the zero and 1 is the unity.
(iii) For each S ∈ P(M0 ): 0 = sup

⊑o S iff either S = ∅ or S = {0 }.
(iv) For each S ∈ P+(M) we have:

⊔
S = sup

⊑
S = sup

⊑o S = sup
⊑o(S ∪ {0 }) ∈ M .

(v) Let +, ·, and − be the operations of the Boolean lattice Mo (i.e.,
〈M0 ,+, ·,−, 0 , 1〉 is the complete Boolean algebra obtained from
Mo; see pp. 265–270 and Remark 9.1 from Appendix I). Then for

6 In the passage reprinted earlier, Tarski was writing about mereological struc-
tures with the primitive relation ing and hence left out a reflexive Boolean inclusion.
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all x, y ∈ M0 we have:

x+ y =







x ⊔ y if x, y ∈ M

x if y = 0

y if x = 0

− x =







x∁ if x ∈ M \ {1}

0 if x = 1

1 if x = 0

x · y =

{

x ⊓ y if x, y ∈ M and x � y

0 otherwise.

Moreover, for all x, y ∈ M0 : x ⊑0 y iff x+ y = y iff x · y = x.
(vi) In the set M0 we define three operations ⊔o, ⊓o, and ∁o

by

x ⊔o y :=







x ⊔ y if x, y ∈ M

x if y = 0

y if x = 0

x∁o
:=







x∁ if x ∈ M \ {1}

0 if x = 1

1 if x = 0

x ⊓o y :=

{

x ⊓ y if x, y ∈ M and x � y

0 otherwise.

then 〈M0 ,⊔o,⊓o, ∁
o
, 0, 1〉 is a non-trivial complete Boolean algebra,

the same that we obtain from the Boolean lattice Mo. Moreover,
for all x, y ∈ M0 we have: x ⊑0 y iff x ⊔o y = y iff x ⊓o y = x.

Proof. Ad (i): We have ⊑ ⊆ ⊑o ∩ (M × M), by the assumption and
by virtue of the definition of the relation ⊑o. Conversely, if x, y ∈ M
and x ⊑o y, then x ⊑ y, since x 6= 0 . We also have directly from the
definition of the relation ⊑o: if x = 0 then x ⊑o y, for each y ∈ M0 .

Ad (ii): We have directly from the definition of ⊑o that:

∀x,y∈M0 (x ⊑ y ⇐⇒ 0 6= x ⊑o y), (A)

∀x∈M0 (x = 0 ⇐⇒ ∀y∈M0x ⊑o y). (B)

As we know, the relation ⊑ := ⊏ ∪ idM is reflexive, transitive and
antisymmetric. We will now prove that the relation ⊑o also has these
properties.

Since ⊑ is reflexive, it therefore includes the relation idM . So idM0 =
idM ∪ id{0} ⊆ ⊑ ∪ ({0} ×M0 ) =: ⊑o. Hence ⊑o is reflexive.

Assume that x ⊑o y and y ⊑o x. Then, by simple transformations,
we have either x ⊑ y ⊑ x or x ⊑ y = 0 or y ⊑ x = 0 or x = 0 = y. The
second and third cases are false and x = y follows from the first, since the
relation ⊑ is antisymmetric. Thus the relation ⊑o is also antisymmetric.
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Assume that x ⊑o y and y ⊑o z. Then, by simple transformations, we
have either x ⊑ y ⊑ z or x ⊑ y = 0 or x = 0 ∧ y ⊑ z or x = 0 = y. The
second case is false and x ⊑ z follows from the first, since the relation ⊑
is transitive. Therefore in this case also x ⊑o z. In the third and fourth
cases we have x ⊑o z, by (B). Thus the relation ⊑o is transitive.

We will now prove that the pair 〈M0 ,⊑o〉 is a lattice, i.e., that for
arbitrary x, y ∈ M0 there are both an infimum and an supremum for
the set {x, y} with respect to the relation ⊑o. In order to do this, we
will make use of an the existence of the operations ⊔,⊓ : M ×M → M ,
which, on the basis of the results given in sections II.7 and II.9 (cf.
(II.8.3) and (II.9.5)) for all x, y ∈ M satisfy the following conditions:
x ⊔ y = sup

⊑
{x, y}; if x � y then x ⊓ y = inf⊑{x, y}. It thereby follows

that for arbitrary x, y ∈ M0 we have:

sup
⊑o{x, y} =







x if y = 0

y if x = 0

x ⊔ y if x, y ∈ M

inf⊑o{x, y} =







0 if x = 0 or y = 0

0 if x N y

x ⊓ y if x � y

It follows from (B) that 0 is the zero in the lattice 〈M0 ⊑o〉.
Since ∀x∈Mx ⊑ 1 and 0 ⊑o 1, then ∀x∈M0 x ⊑o 1. From this and

the antisymmetry of the relation ⊑o it follows that 1 is the unity in
〈M0 ,⊑o〉.

As with every lattice, let introduce the operations +, · : M × M →
M by the conditions: x + y := sup

⊑o{x, y} and x · y := inf⊑o{x, y}.
Obviously, these operations are commutative.

Now, by (II.11.3) and (II.11.8), for any x ∈ M \ {1} we have:

x ⊔ x∁ = 1 ∧ x N x∁.

We have 1 + 0 := sup
⊑o{1, 0 } = 1 and 1 · 0 := inf⊑o{1, 0} = 0 .

Moreover, for any x ∈ M \ {1} there is y ∈ M such that 1 = x ⊔ y =
sup

⊑o{x, y} =: x + y and x N y, i.e., x · y := inf⊑o{x, y} = 0 . Therefore
Mo satisfies the condition (cf. p. 270), since this lattice is distributive:

∀x∈M0 ∃!y∈M0 (x+ y = 1 ∧ x · y = 0 ). (c!)

Thus Mo is a complemented lattice and for the operation − : M0 → M0

we have: −0 = 1, −1 = 0 , and x∁ = −x, for any x ∈ M \ {1}.
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We will now show that the lattice Mo is distributive. Pick arbitrary x,
y, z ∈ M0 . If x = 0 then (x+y) · (x+z) = y ·z = 0 +(y ·z) = x+(y ·z).
Assume therefore, that x ∈ M . If y = 0 6= z then y · z = 0 and
(x + y) · (x + z) = x ⊓ (x ⊔ z) = x = x + 0 = x + (y · z). Similarly,
when z = 0 6= y. Finally, let x, y, z ∈ M . Then, in the light of (∆1),
we have: (x + y) · (x + z) = (x ⊔ y) · (x ⊔ z) = (x ⊔ y) ⊓ (x ⊔ z) =
{

x ⊔ (y ⊓ z) if y � z

x = x+ 0 if y N z
= x+ (y · z), because if y N z then y · z = 0 . For

lattices, it suffices to check just one condition of distributivity.
Thus Mo is a Boolean lattice, as a complemented distributive lattice.

It remains only to be shown that it is a complete lattice.
Let S ∈ P(M0 ). From the definitions of the relations ⊑o and sup

⊑o

themselves, it follows that 0 = sup
⊑o ∅ = sup

⊑o{0 }. We may therefore
assume that ∅ 6= S 6= {0 }, i.e., S = S+ ∪ {0 }, where S+ := S \ {0 }
and S+ 6= ∅. For S+ there exists an x ∈ M such that x =

⊔
S+ =

sup
⊑
S+, by virtue of (II.8.3). From the equality ⊑ = ≤|M we get

sup
⊑
S+ = sup

⊑o S+. By virtue of the definitions of the relations ⊑o

and sup
⊑o themselves we get: x sup

⊑o S+ iff x sup
⊑o S. Therefore

sup
⊑o S = sup

⊑
S+.

Ad (iii): If 0 = sup
⊑o S then ∀x∈S x ⊑o 0 . Hence either S = ∅ either

S = {0}. From the definition of the relations ⊑o and sup
⊑o itself, it

follows that 0 = sup
⊑o ∅ = sup

⊑o{0 }.
Ad (iv): For S ∈ P+(M) there exists x ∈ M such that x =

⊔
S =

sup
⊑
S, by virtue of (II.8.3). The next equality holds in virtue of ⊑ =

⊑o|M . The final equality holds by virtue of the definition of sup
⊑o .

Ad (v) and (v): This is proven in point (ii).

A certain fragment of the above proof can be based on some of
Tarski’s results (Theorem 11.2 from Appendix I).

Proof of Theorem 1.2(ii) using Tarski’s theorem. This second ver-
sion begins at the point where we showed that the triple 〈M0 ,⊑o, 0 〉 is
a lattice with zero. We will prove that the relation ⊑o satisfies condition
(⋆) from Theorem 11.2 in Appendix I, i.e., that for any S ∈ P(M0 )
we have exactly one x ∈ M0 such that: (a) ∀z∈S z ⊑o x and (b)
∀y∈M0 (y ⊑o x ∧ ∀z∈S y · z = 0 ⇒ y = 0 ). To begin with, for arbitrary
x ∈ M0 and S ∈ P(M0 ) we shall transform condition (b): ∀y∈M0 (y ⊑o

x ∧ y 6= 0 ⇒ ∃z∈S y · z 6= 0 ) iff (b′) ∀y∈M (y ⊑ x ⇒ ∃z∈S\{0} y � z).
We now consider two cases of the set S.
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1. Either S = ∅ or S = {0 }: Clearly 0 satisfies conditions (a) and
(b′). If, however, x 6= 0 , then x ∈ M and x ⊑ x, and hence from (b′) we
get a contradiction. Thus x does not therefore satisfy condition (b′).

2. S ∩ M 6= ∅: Clearly, S \ {0 } ∈ P+(M). By virtue of conditions
(A) and (B), for an arbitrary x ∈ M0 we have: ∀z∈S z ⊑o x iff x ∈ M
and ∀z∈S\{0} z ⊑ x. From this and the equivalence of conditions (b) and
(b′), it follows that x and S satisfy conditions (a) and (b) from (⋆) iff
x Sum (S \ {0 }). By virtue of (L3) and (L4), there exists exactly one
x ∈ M such that x Sum (S \ {0 }).

We have therefore shown that for an arbitrary S ∈ P(M0 ) there
exists exactly one x ∈ M0 which meets conditions (a) and (b). Hence,
by virtue of Theorem 11.2 from Appendix I, the structure 〈M0 ,⊑o〉 is a
complete Boolean lattice in which 0 is the zero.

Note that using Theorem II.13.3 we can simplify the proof of point (ii)
of Theorem 1.2. However, in the proof of Theorem II.13.3 we used
Lemma II.12.4, which follows from the Kuratowski-Zorn lemma (equiv-
alent to the the axiom of choice). We will prove Theorem 1.2(ii) below
with using the axiom of choice.

Proof of Theorem 1.2(ii) with the axiom of choice. Let us expand
the Stone map s: M → P+(UltM) of M defined in Section II.13 to the
mapping so : M0 → P+(UltM)

so(x) :=

{

∅ if x = 0 ,

s(x) if x ∈ M .

Clearly, so[M0 ] = s[M ] ∪ {∅}. In the light of Theorem II.13.3, the
mapping so is an isomorphism of the structure Mo on the complete
Boolean lattice 〈so[M0 ],⊆, ∅,UltM〉. Therefore Mo is also a complete
Boolean lattice. Since ∅ and UltM are respectively the zero and the
unity in 〈so(M0 ),⊆〉, and furthermore so(0 ) = ∅ and so(1) = UltM,
then 0 and 1 are respectively the zero and the unity in Mo (the former
also follows from point (i)).

It will be useful to have some knowledge of the construction of finite
mereological structures for the analyses to be carried out in chapters IV
and V of this work. To this end, we shall make use of theorems 1.1
and 1.2, from which follows a pair of statements which state, speaking
loosely, that every mereological structure arises from some non-trivial
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complete Boolean lattice whose zero has been removed and, conversely,
every non-trivial complete Boolean lattice arises from some mereological
structure to which a zero has been added. In light of theorems 1.1 and 1.2
we obtain the following theorem.

Theorem 1.3 (Pietruszczak, 2013). For any non-empty set M and for
any binary relation ⊑ in R the following conditions are equivalent:

(a) 〈M,⊑〉 is a mereological structure, were 1 is the unity.
(b) For some (equivalently: any) 0 /∈ M , for M0 := M ∪ {0 } and for

⊑o := ⊑ ∪ ({0} × M0 ) the structure 〈M0 ,⊑o, 0 , 1〉 is a non-trivial
complete Boolean lattice.

(c) For some non-trivial complete Boolean lattice 〈B,≤, 0, 1〉 we have
M = B \ {0}, ⊑ = ≤|M , and 1 = 1.

(d) For some non-trivial complete Boolean algebra 〈A,+,∗, –, 0, 1〉 we
have M = A \ {0}, 1 = 1, and ⊑ = ≤|M , where ≤ is defined by:
x ≤ y :⇐⇒ x+ y = y.

Proof. ‘(a)⇒(b)’ By Theorem 1.2.
‘(b)⇒(c)’ We put B := M0 , ≤ := ⊑o, 0 := 0 , and 1 := 1. Then

M = B \ {0} and ⊑ = ≤|M .
‘(b)⇒(d)’ In a non-trivial complete Boolean lattice 〈M0 ,⊑o, 0 , 1〉 by

means of (df +), (df ·) and (df −) we define three operations +, · and −,
respectively. So 〈M0 ,+, ·,−, 0 , 1〉 is a complete Boolean algebra and,
by Theorem 1.2, the relation ≤ is equal to ⊑o. So ⊑ = ≤|M .

‘(c)⇒(a)’ By Theorem 1.1.
‘(iv)⇒(i)’ By the relationship between Boolean lattices and Boolean

algebras (cf. Remark 9.1 from Appendix I) and Theorem 1.1.

Every finite boolean lattice is full and its universe has 2n members
for some natural number n ∈ IN (see p. 274). The number of elements of
a finite mereological structure amounts to 2n − 1, for a natural number
n > 0. Graphs are given on p. 273 of Boolean lattices for n = 0, 1, 2, 3.
To these non-trivial lattices in the graphs correspond the mereological
structures given by the graphs in Model 1 (and conversely).7

7 In these graphs “◦” means that a given element is not in the relation ⊏ with
itself (the relation ⊏ is irreflexive). The possibility of moving upwards along lines
leading from x to y signifies that x ⊏ y (the relation ⊏ is transitive and asymmetric).
In the opposite case x 6⊏ y.

Graphs with the relation ⊑ differ from those graphs with the relation ⊏ only in
that in place of each“◦” is “•” which means that a given element is in the relation ⊑
with itself (⊑ is reflexive).
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1

1

1

Model 1. Examples of finite mereological structures

2. The class MS is not elementarily axiomatisable

The title of this section is the content of Theorem 2.4 which we will
prove below. This result is connected with the result that the class
CBL of complete Boolean lattices is not elementarily axiomatisable (see
Section 5 in Appendix II). The proof of Theorem 2.4 will rest on theorems
1.1 and 1.2 and those results given in Appendix II. Moreover, we shall
also be making use of Lemma 2.1, which is easy to prove.

For mereological structures we use the elementary language L� with
the identity predicate “=” and only one binary predicate “�” (see p. 71).
Of course, all mereological structures are L�-structures (see p. 72 and
Remark 1.1). We assign to an arbitrary L�-structure A = 〈A,⊏〉 an
arbitrarily established 0 /∈ A along with the structure Ao = 〈M0 ,⊑o〉
defined in Theorem 1.2. We connect the structure Ao with an elementary
language L0

≤
with the identity “=” and two specific constants: the binary

predicate “≤” and the individual constant “0”.8 These constants are
interpreted in Ao with the help of the relation ⊑o and the element 0 ,
respectively.

Lemma 2.1. Let σ be an arbitrary L�-sentence. We transform it into a
L0

≤
-sentence σo with the help of the following transformation: in place of

the subformula pxi � xjq we substitute the L≤-formula pxi ≤ xj ∧ xi ≠

xjq; and we exchange an arbitrary quantifier binding xi for a quantifier
limited by condition pxi ≠ 0q.9 Then: A � σ iff Ao � σo.

Let IN be the set of all natural numbers, P(IN) be the family of all
subsets of IN, and FC(IN) be the family of all finite and all co-finite
subsets of IN, i.e., those subsets of IN whose complements are finite (see

8 L0

≤
is created according to the rules given in Section 1 in Appendix II

9 Formally: after exchanging the predicate “�”, instead of ∀xi
ψ and ∃xj

χ we take
p∀xi

(xi ≠ 0 → ψ)q and p∃xj
(xi ≠ 0 ∧ χ)q, respectively.
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Example 1.2 in Appendix I). In Appendix I we analysed the Boolean
lattices PIN := 〈P(IN),⊆, ∅, IN〉 and FCIN := 〈FC(IN),⊆, ∅, IN〉. The first
one is complete and the second one is not complete (cf. examples 11.1
and 11.4 in Appendix I, respectively).

Now we introduce the following two L�-structures:

P+
IN := 〈P+(IN),(〉,

FC+
IN := 〈FC+(IN),(〉,

where P+(IN) := P(IN) \ {∅} and FC+(IN) := FC(IN) \ {∅}. We notice
that:
• P+

IN and FC+
IN are obtained from the Boolean lattices PIN and FCIN,

respectively, as a result of the operation described in Theorem 1.1.
• PIN and FCIN are obtained from P+

IN and FC+
IN, respectively, as a result

of the operation described in Theorem 1.2, i.e., we have (P+
IN)o = PIN

and (FC+
IN)o = FCIN.

Thus, by theorems 1.1 and 1.2, since the Boolean lattice PIN is complete
and the Boolean lattice FCIN is not complete, so we obtain:

Lemma 2.2. P+
IN is a mereological structure, but FC+

IN is not a mereo-
logical structure.

Moreover, we can also show that:

Lemma 2.3. L�-structures P+
IN and FC+

IN are elementarily equivalent, i.e.,
we have Th(P+

IN) = Th(FC+
IN).

Proof. Since we have (P+
IN)o = PIN and (FC+

IN)o = FCIN, then we can
use Lemma 2.1. Moreover, PIN and FCIN are elementarily equivalent (see
Lemma 5.1 in Appendix II). Therefore, for any L�-sentence σ we have:

σ ∈ Th(P+
IN) iff σo ∈ Th(PIN) (by Lemma 2.1)

iff σo ∈ Th(FCIN) (since Th(PIN) = Th(FCIN))

iff σ ∈ Th(FC+
IN) (by Lemma 2.1).

Remark 2.1. The proof of Lemma 2.3 can be obtained in a different way.
Namely, Tsai [2013] proved that the structures P+

IN and FC+
IN are models

of some complete elementary theory. So they are elementarily equivalent
(see Proposition 1.3 in Appendix II).

By Proposition 1.1 from Appendix II, every elementarily axiomatis-
able class is closed under elementary equivalence. Thus, by Lemma 2.3,
we obtain:
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Theorem 2.4. The class MS is not elementarily axiomatisable.

Proof. By Lemma 2.3, P+
IN and FC+

IN are elementarily equivalent, but
the former is a mereological structure whereas the latter is not. Hence
the class MS is not closed under elementary equivalence. Thus, this class
is not elementarily axiomatisable, by Proposition 1.1 in Appendix II.

3. Tarski’s system

In this section we shall introduce the system of axioms for classical mere-
ology established by Tarski [1929, 1956b]. We have already mentioned
this system in Section 1.10 In the next section we shall compare this
system with the system of axioms (L1)–(L4).

The primitive notion in Tarski’s system is the relation ⊑ is an ingre-
diens of. With the help of the relation ⊑ Tarski defines three auxiliary
relations. The first is the relation ⊏  is a (proper) part of  which he
defines by using the formula (⊏=⊑\id). The second is the relation N
is exterior to  which Tarski defines by using the formula (df N).11 By
employing the relations ⊑ and N Tarski defines with the help of formula
(df T Sum) a third relation Sum  is a mereological sum of  i.e., he has
it that x is a sum of all members of a set S iff each member of S is an
ingrediens of x and no ingrediens of x is exterior to all members of S [cf.
Tarski, 1956b, Definition III]. By adding (df �) we obtain (N=−�) and
from this it follows that the definition of the relation Sum used by Tarski
is equivalent to (df Sum).

The mereological structures used in [Tarski, 1956b] are therefore of
the form 〈M,⊑〉, where the relation ⊑ satisfies two postulates. The first
(Postulate I) says that the relation ⊑ is transitive, i.e., that condition
(t⊑) holds. The second (Postulate II) states that in the structure 〈M,⊑〉
condition (L3 -L4) holds.

Remark 3.1. Compare the passage from [Tarski, 1956c] and footnote 5.
As Theorem 3.2 (proven below) shows  this being what Tarski was talk-
ing about in that passage  it follows from (t⊑) and (L3 -L4) that the
relation ⊑ is also reflexive and antisymmetric.

10 Cf. the passage from [Tarski, 1956c] on p. 113 and footnote 5.
11 That is, x is a (proper) part of y iff x ⊑ y and x 6= y; and x is exterior to y iff

x and y do not have a common ingrediens [cf. Tarski, 1956b, definitions I and II].
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Lemma 3.1. Let R be any reflexive relation in R. By putting in place
of the symbol “⊑” the letter “R” from definition (df Sum) we generate
the following definition of the relation is the sum with respect to R of
members of a given subset of M . For all x ∈ M and S ∈ P(M) we put:

x sumR S :⇐⇒ ∀z∈S z R x ∧
∀y∈M

(
y R x ⇒ ∃z∈S∃u∈M(u R y ∧ u R z)

)
.

(df sumR)

In the same way, from conditions (L3), (L4), and (L3 -L4) we obtain the
following conditions:

∀S∈P(M)∀x,y∈M (x sumR S ∧ y sumR S =⇒ x = y), (L3R)

∀S∈P+(M)∃x∈M x sumR S , (L4R)

∀S∈P+(M)∃x∈M

(
x sumR S ∧ ∀y∈M (y sumR S ⇒ x = y)

)
. (L3 -L4R)

In the class of all reflexive relational structures of the form 〈M,R〉,
the conjunction of (L3R) and (L4R) is equivalent to (L3 -L4R).

Proof. Condition (L3 -L4R) logically follows from sentences (L3R) and
(L4R). Condition (L4R) logically follows from (L3 -L4R), too. Moreover,
from (rR) and (df sumR) we obtain that there is no x ∈ M such that
x sumR ∅ (cf. the proof of (II.3.1)). From this and from (L3 -L4R) follows
(L3R) as well. Indeed, suppose that x sumR S and y sumR S. Then
S 6= ∅. Therefore, in the light of (L3 -L4R), for some x0 ∈ M we have:
x0 sumR S and x = x0 = y.

Remark 3.2. (i) Since the reflexivity of ⊑ is a consequence of definition
(df ⊑), so  by virtue of Lemma 3.1  the conjunction of (L3) and (L4)
is equivalent to (L3 -L4).

(ii) As mentioned in Remark 3.1, condition (r⊑) is also a consequence
of the pair conditions (t⊑) and (L3 -L4). Thus, by virtue of Lemma 3.1,
also in Tarski’s theory the conjunction of (L3) and (L4) is equivalent to
(L3 -L4).

We will connect Tarski’s system with a certain class of structures
TS with one binary relation. We will introduce a different meaning for
that relation than “⊑”, in order not to prove the various established
facts about the relation ⊑, e.g., that it is reflexive and antisymmetric.
We will therefore replace the symbol “⊑” with the symbol “◭”, as in
Lemma 3.1 we replaced “⊑” with the letter “R”. Thus, if we put R := ◭

then from (df sumR), (L3R), (L4R) and (L3 -L4R) we obtain (df sum◭),
(L3◭), (L4◭) and (L3 -L4◭), respectively.
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The class TS is composed of those and only those structures of the
form 〈M,◭〉 in which the relation ◭ is transitive and (L3 -L4◭) holds.

Remark 3.3. (i) If ◭ = ⊑, then sum⊑ = Sum, and (df sum◭) and
(L3 -L4◭) reduce to (df Sum) and (L3 -L4), respectively.

(ii) From (i) and from Remark II.5.3 it follows that, if 〈M,⊏〉 ∈ MS

and the relation ⊑ is defined by (df ⊑), then 〈M,⊑〉 ∈ TS.

Applying Theorem 12.1 from Appendix I for the class TS, we may
prove the theorem which Tarski was talking about in the passage earlier
on pp. 113–114.

Theorem 3.2. Let T = 〈M,◭〉 be structure of the class TS and 0 6∈ M .
We put M0 := M∪{0 } and we define in M0 a binary relation ◭o := ◭∪
({0} ×M0 ), i.e., for arbitrary x, y ∈ M0 : x ◭o y :⇐⇒ x ◭ y ∨ x = 0 .
Then:

(i) ◭ = ◭o|M and ∀x∈M0 0 ◭o x.
(ii) To := 〈M0 ,◭o〉 is a non-trivial complete Boolean lattice in which

0 is its zero and the object (ix) x sum◭ M is its unity.
(iii) The relation ◭ is reflexive and antisymmetric.
(iv) For any S ∈ P(M0 ): 0 = sup◭o S iff either S = ∅ or S = {0 }.
(v) For any S ∈ P+(M)

(ix)x sum◭ S = sup◭ S = sup◭o S = sup◭o(S ∪ {0 }) ∈ M .

Proof. Directly from the definition of the relation ◭o we have:

∀x,y∈M0 (x ◭ y ⇐⇒ 0 6= x ◭o y), (A)

∀x∈M0 (x = 0 ⇐⇒ ∀y∈M0x ◭o y). (B)

It follows from (B) that 0 is the zero in To.
In a manner analogous to that by which we demonstrated of the

transitivity of the relation ⊑o in the proof of Theorem 1.2, we show:

◭o is transitive in M0 . (C)

We will show below that:

∀x∈M ∃y∈M y ◭ x . (D)

Indeed, it follows from (L3 -L4◭) that for any x ∈ M there is a z ∈ M
such that z sum◭ {x}. Therefore, by virtue of (df sum◭), we have x ◭ z.
Hence for some y ∈ M we have y ◭ x, also by virtue of (df sum◭).
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Ad (i): By (A) and (B).
Ad (ii): We will show that the transitive relation ◭o satisfies condi-

tion (⋆) from Theorem 12.1 in Appendix I, i.e., that for an arbitrary
S ∈ P(M0 ) in M0 we have exactly one x such that:

(a) ∀z∈S z ◭o x and
(b) ∀y∈M0

(
y ◭o x ∧ ∀z∈S ∀u∈M0 (u ◭o y ∧ u ◭o z ⇒ ∀v∈M0u ◭o v) =⇒

∀v∈M0 y ◭o v
)
.

To begin with, for arbitrary x ∈ M0 and S ∈ P(M0 ) we shall transform
condition (b) in an equivalent way:

x and S satisfy (b) from (⋆)
iff

∀y∈M0 (y ◭o x ∧ ¬∀v∈M0 y ◭o v =⇒
∃z∈S∃u∈M0 (u ◭o y ∧ u ◭o z ∧ ¬∀v∈M0u ◭o v))

iff
∀y∈M0 (y ◭o x ∧ y 6= 0 =⇒ ∃z∈S∃u∈M0 (u ◭o y ∧ u ◭o z ∧ u 6= 0 ))

iff
∀y∈M (y ◭ x =⇒ ∃z∈S∃u∈M(u ◭o y ∧ u ◭o z))

iff
(b′) ∀y∈M (y ◭ x =⇒ ∃z∈S\{0}∃u∈M (u ◭o y ∧ u ◭o z))

Let us consider two cases for the set S.
Either S = ∅ or S = {0}: Clearly, 0 satisfies conditions (a) and (b′)

(in an empty way). If x 6= 0 then x ∈ M , and so  by virtue of (D)  for
some y ∈ M we have y ◭ x. From this and (b′) we get a contradiction.
Therefore x 6= 0 does not satisfy condition (b′).

S ∩M 6= ∅: Clearly, S \ {0 } ∈ P+(M). By virtue of (A) and (B) for
any x ∈ M0 we have: ∀z∈S z ◭o x iff x ∈ M and ∀z∈S\{0} z ◭ x. From
this and and the equivalence of conditions (b) and (b′) it follows that x
and S satisfy conditions (a) and (b) iff x Sum (S \ {0 }). By virtue of
(L3 -L4◭), there exists exactly one x ∈ M such that x Sum (S \ {0 }).

We have therefore shown that for an arbitrary S ∈ P(M0 ) there
exists exactly one x ∈ M0 which meets conditions (a) and (b). Hence,
in the light of Theorem 12.1 from Appendix I:

• the relation ◭o is reflexive and antisymmetric;
• the structure To := 〈M0 ,◭o〉 is a complete Boolean lattice.

Thus, 0 is the zero in To. Moreover, since ∀x∈M x ◭ (i y) y sum◭ M
and 0 ◭o (i y) y sum◭ M , so ∀x∈M0 x ◭o (i y) y sum◭ M . It thereby
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follows from the antisymmetry of the relation ◭o that (i y) y sum◭ M is
the unity of To.

Ad (iii): Since ◭ = ◭o|M , then the relation ◭ is reflexive and anti-
symmetric.

Ad (iv): If 0 = sup◭o S then ∀x∈S x ◭o 0 . Hence either S = ∅
or S = {0 }. Conversely, if S = ∅, then  by virtue of (ii) — we have:
0 = sup◭o ∅. In the second case, this follows from the definition of the
function sup◭o .

Ad (v): The third equality is true for an arbitrary subset of the set
M0 , by virtue of the definition of the function sup◭o . Let S ∈ P+(M).
Then the second equality holds, since ◭ = ◭o|M . Clearly, sup◭ S ∈ M .

We will now prove the equality sup◭ S = (i) x) x sum◭ S. From the
definition of a supremum, the first condition in (df sum◭) holds: ∀z∈Sz ◭

sup
⊑
S. We now verify the second condition. Since we have shown

already that 〈M0 ,◭o〉 is a complete Boolean lattice and ◭ = ◭o|M ,
then we may employ the condition analogous to (iii) from Theorem 1.1.
We therefore pick an arbitrary y ∈ M such that y ◭ sup◭ S. Assume for
a contradiction that ∀z∈S∃u∈M (u ◭ y ∧ u ◭ z). Then, by virtue of (iii)
from Theorem 1.1, we have y ◭o sup◭o S and ∀z∈S y ·z = 0 . By virtue of
condition (7.5) from Appendix I, our assumption yields a contradiction:
y = 0 .

Since any structure from MS has an irreflexive relation and any struc-
ture from TS has a reflexive relation, then we obtain:

Corollary 3.3. MS ∩ TS = ∅.

For structures from the class TS a variant of Theorem 1.1 also holds,
which Tarski writes about in the passage on p. 113. The following the-
orem has similar to the proof of Theorem 1.1.

Theorem 3.4. Let B = 〈B,≤, 0, 1〉 a non-trivial complete Boolean lat-
tice. We put M := B \ {0} and ◭ := ≤ |M . Then:

(i) M 6= ∅ and the relation ◭ partially orders the set M .
(ii) For all x, y ∈ M we have: x N y iff x · y = 0.

(iii) For any S ∈ P+(M) we have sup
≤
S sum◭ S.

(iv) 1 sum◭ M .
(v) 〈M,◭〉 belongs to TS;

(vi) For any S ∈ P+(M) we have sup◭ S = sup
≤
S = (ix) x sum◭ S.
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We can prove that the class TS is not elementarily axiomatisable.
We need only establish that all structures from TS are L�-structures, i.e.,
that the predicate “�” in them is interpreted with the help of the rela-
tion ◭. We use counterparts of lemmas 2.1, 2.2 and 2.3 for L�-structures
(we analyse suitable versions of structures P+

IN and then prove the result
in a manner analogous to that used for Theorem 2.4, using theorems 3.4
and 3.2 respectively in place of theorems 1.1 and 1.2.

4. A comparison of the classes MS and TS

We recall that we connected the class MS with an elementary language
L� with identity described in Section 1 of Chapter II. We will connect the
class TS with an elementary language L� with the identity “=” and one
specific constant, which is the binary predicate “�”. This predicate may
be read as “is an ingrediens of”. The language L� is generated according
to the rules given in Section 1 of Appendix II.

Let T = 〈N,◭〉 belongs to TS. The predicate “�” is interpreted in T

as the relation ◭. It is possible to treat the structure T as a set-theoretic
interpretation of the language L� and call it an L�-structure.

We will prove that the classes MS and TS are elementarily defini-
tionally equivalent in the sense of Szmielew [1983]:

Theorem 4.1. The function ∆: MS → TS is defined for an arbitrary
M = 〈M,⊏〉 by condition ∆(M) := 〈M,⊏ ∪ idM〉 is a bijection and the
relation ⊏∪ idM is is e-definable in M, and the relation ⊏ is e-definable
in ∆(M) (see p. 292).

Furthermore, the converse bijection ∆−1 : TS → MS is defined for
an arbitrary T = 〈N,◭〉 by condition ∆−1(T) := 〈N,◭ \ idN 〉, and the
relation ◭ \ idN is e-definable in N and the relation ◭ is is e-definable
in ∆−1(T).

These properties of the function ∆ follow from the lemmas below:

Lemma 4.2. Let M ∈ MS. Then the relation ⊑ defined by condition
(df ⊑) is e-definable in M and the structure 〈M,⊑〉 belongs to TS.

Proof. Firstly, ⊑ = {〈x, y〉 ∈ M ×M : M � (x � y ∨ x = y)[x/x , y/y ].
The rest follows from conditions (t⊑), (L3), and (L4).
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Lemma 4.3. Let T = 〈N,◭〉 belong to TS. Then the relation ◭ \ idN

is e-definable in T, (◭ \ idN ) ∪ idN = ◭, and the structure 〈N,◭ \ idM〉
belongs to MS.

Proof. Firstly, ◭ \ idN = {〈x, y〉 ∈ N ×N : T � (x � y ∧ x ≠ y)[x/x ,
y/y ]. Furthermore, since ◭ partially orders the set N , then the relation
◭ \idN strictly partially orders the set N , i.e., in the structure 〈N,
◭ \idN 〉 condition (L1) and (L2) hold. We now observe that (◭ \idN ) ∪
idN = ◭, since the relation ◭ is reflexive. Hence conditions (L3) and
(L4) hold in 〈N,◭ \idN 〉, because in T condition (L3 -L4◭) holds (cf.
Remark 3.2). Thus, 〈N,◭ \idN 〉 belongs to MS.

Proof of Theorem 4.1. In the light of Lemma 4.2, for an arbitrary
structure M = 〈M,⊏〉 from MS we have ∆(M) ∈ TS.

We will show that the function ∆ is a bijection, i.e., it is an one-to-one
function from the class MS onto the class TS.

Let ∆(M1) = ∆(M2) holds for M1 = 〈M1,⊏1〉 and M2 = 〈M2,⊏2〉
from MS. Then, by virtue of the definition of the function ∆, we have
M1 = M2 and ⊏1 ∪ idM1

= ⊏2 ∪ idM2
. Hence ⊏1 = ⊏2, since  by (L1) 

we have ⊏1 ∩ idM1
= ∅ = ⊏2 ∩ idM2

. Thus, M1 = M2, i.e., ∆ is injective.
We pick an arbitrary T = 〈N,◭〉 from TS. In the light of Lemma 4.3,

the structure 〈N,⊏〉, in which ⊏ := ◭ \ idN , belongs to MS and T =
∆(〈N,⊏〉). The function ∆ is therefore surjective.

By virtue of Lemma 4.2, the relation ⊏∪ idM is e-definable in M. By
virtue of (⊏=⊑\id), we have ⊏ = ⊑ \ idM . Therefore ⊏ is e-definable in
∆(M), as in the proof of Lemma 4.3.

From Theorem 4.1 follows the conclusion below:

Corollary 4.4. Let M = 〈M,⊏〉 belong to MS, T = 〈M,◭〉 belong to
TS, and T = ∆(M), i.e., ◭ = ⊑. Then ⊏ = ◭ \ idM and the structures
M and T are elementarily definitionally equivalent, i.e., the relation ⊏

is e-definable in T, and the relation ◭ is e-definable in M.

Also from theorems 4.1 and 2.4 it follows that the class TS  as the
class MS  is not elementarily axiomatisable.

As we have already said on p. 124, the primitive notion in Tarski’s
system is the relation is an ingrediens of. The following conclusion shows
that by considering mereology in the style of Tarski, we may come back
from the ‘old’ meaning of “⊑” and with it to axioms (t⊑) and (L3 -L4).
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Corollary 4.5. Let M be non-empty set and ⊏ and ⊑ be binary rela-
tions in M . Then the following two conditions are equivalent:

• The structure 〈M,⊏〉 belongs to MS and the relation ⊑ satisfies con-
dition (df ⊑).

• The structure 〈M,⊑〉 belongs to TS and the relation ⊏ satisfies con-
dition (⊏=⊑\id).

5. The class MS∗

Theorems 1.2 and 3.2 may be generalised to a wider class of relational
structures than the sum of the classes MS and TS.

Let M be a non-empty set and ⊳ be a transitive binary relation in
M . Moreover, we put E := ⊳ ∪ idM . So the relation E is reflexive and
transitive.

We put R := E in conditions (df sumR), (L3R), (L4R), and (L3 -L4R).
Then we obtain (df sumE), (L3E), (L4E) and (L3-L4E), respectively.

Let MS∗ be the class of relational structures of the form 〈M,⊳〉 in
which ⊳ is transitive and for which (L3-L4E) holds.12

We have the following result:

Proposition 5.1. Let M = 〈M,⊳〉 ∈ MS∗. Then:

(i) M ∈ MS iff the relation ⊳ is irreflexive.
(ii) M ∈ TS iff the relation ⊳ is reflexive iff ⊳ = E.

Proof. Ad (i): By Lemma 3.1, since the relation E is reflexive.
Ad (ii): Firstly, the relation ⊳ is reflexive iff ⊳ = ⊳∪ idM =: E. Sec-

ondly, if M ∈ TS then the relation ⊳ is obviously reflexive. Conversely,
if the relation ⊳ is reflexive, then ⊳ = E and therefore we have written
the relation sumE and the condition (L3-L4E) in terms of relation ⊳, i.e.,
M ∈ TS.

Proposition 5.2. (i) For all 〈M,⊏〉 ∈ MS, 〈M,⊳〉 ∈ MS∗, if ⊏ ⊆
⊳ ⊆ ⊑, then ⊑ = E, so also Sum = sumE.

(ii) For all 〈M,◭〉 ∈ TS, 〈M,⊳〉 ∈ MS∗, if ◭ \ idM ⊆ ⊳ ⊆ ◭, then
E = ◭, so also sumE = sum◭.

(iii) MS ∪ TS ( MS∗.

12 To put it crudely: we take Tarski’s Postulate I for the relation is a part of (⊳)
and Postulate II for the relation is an ingrediens of (E).
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Proof. Ad (i): If ⊏ ⊆ ⊳ ⊆ ⊑, then ⊑ = ⊏ ∪ idM ⊆ ⊳ ∪ idM = E ⊆
⊑ ∪ idM = ⊑.

Ad (ii): If ◭ \ idM ⊆ ⊳ ⊆ ◭, then ◭ = (◭ \ idM ) ∪ idM ⊆ ⊳∪ idM =
E ⊆ ◭ ∪ idM = ◭.

Ad (iii): By Lemma 3.1, we have MS ∪ TS ⊆ MS∗. Now for any
non-trivial structure 〈M,⊏〉 from MS and x ∈ M we put ⊳ := ⊏ ∪
{〈x, x〉}. Then ⊏ ( ⊳ ( ⊑, and moreover ⊳ is transitive and neither
reflexive nor irreflexive. By (i), we have E = ⊑, so also sumE = Sum.
Thus, 〈M,⊳〉 ∈ MS∗, but 〈M,⊳〉 belongs neither MS nor TS.

Remark 5.1. Take any structure 〈M,⊏〉 from MS and ‘make reflexive’
only some of members of the universe. In this way, create a relation ⊳.
Then ⊏ ⊆ ⊳ ⊆ ⊑. So ⊑ = E and Sum = sumE. Thus, 〈M,⊳〉 belongs
to MS∗, but does not belong to MS ∪ TS.

Theorem 5.3. Let 〈M,⊳〉 be a structure from MS∗ and let 0 /∈ M .
We put M0 := M ∪ {0 } and define in M0 a binary relation Eo :=
E ∪ ({0 } × M0 ), i.e., for all x, y ∈ M0 : x Eo y :⇐⇒ x E y ∨ x =
0 . Then conditions (i)–(v) from Theorem 3.2 hold for the structure
Mo = 〈M0 ,Eo〉, if we replace “◭” and “◭o” in it with “E” and “Eo”,
respectively.

Proof. Under the assumptions made, conditions (A)–(D) hold from
the proof of Theorem 3.2 formulated for the relation E, in which (D) is
obvious, because the relation E is reflexive by definition. We therefore
have (i) and (ii).

Ad (iii): We show the antisymmetry of the relation E just as we did
in (iii) in the proof of Theorem 3.2. Hence, since ⊳ ⊆ E, then ⊳ is also
antisymmetric.

Ad (iv) and (v): We prove these in the same way as we did in the
proof of Theorem 3.2.

By using Theorem 5.3, one may prove that the class MS∗ is not
elementarily axiomatisable. One needs only to establish, that all struc-
tures from MS∗ are L�-structures, i.e., that the predicate “�” in them is
interpreted with the help of the relation ⊳. We continue the proof in the
same way as we did for Theorem 2.4, using counterparts of lemmas 2.1,
2.2 and 2.3, and Theorem 1.1 and Theorem 5.3 (in place of Theorem 1.2).
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6. A formal comparison of the classes MS, TS, and MS∗ with
the class of complete Boolean lattices

We assign to an arbitrary lattice B belonging to the class CBL of com-
plete Boolean lattices a structure B+

⊏ ∈ MS which arises from B as
a result of the operation carried out in Theorem 1.1. Analogously, we
assign to an arbitrary lattice B ∈ CBL a structure B+

◭ ∈ TS which arises
from B as a result of the operation carried out in Theorem 3.4. Finally,
we assign to an arbitrary structure M ∈ MS∗ an arbitrarily chosen
0 6∈ M and the complete Boolean lattice Mo = 〈M0 ,Eo〉 described in
Theorem 5.3. Under these assignments, for each M ∈ MS∗ we have:

M ∈ MS ⇐⇒ M = (Mo)+

⊏
, (6.1)

M ∈ TS ⇐⇒ M = (Mo)
+

◭
. (6.2)

Note that if M = 〈M,⊳〉 belongs to MS∗, then  by virtue of Theo-
rem 5.3  the zero in M0 is 0 . Hence the set M is the universe of the
structures (Mo)

+

⊏
and (Mo)

+

◭
. Further for (6.1): If M ∈ MS (⊳ = ⊏),

then Eo = ⊑ ∪ ({0} × M0 ). Therefore Eo|M = ⊑ = ⊏ ∪ idM , i.e.,
⊏ = Eo|M \ idM , by virtue of (⊏=⊑\id). Hence M = (Mo)+

⊏
. Con-

versely, let M = (Mo)
+

⊏
, i.e., ⊳ = Eo|M \ idM = (⊳∪ idM) \ idM . Hence,

by virtue of lemmas 2.2 and 2.3 from Appendix I, the relation ⊳ is ir-
reflexive and antisymmetric. Since M ∈ MS∗, then M ∈ MS. For (6.2):
if M ∈ TS (⊳ = ◭), then Eo := ◭∪ ({0} ×M0 ), i.e., ◭ = Eo|M . Hence
M = (Mo)+

◭
. Conversely, if M = (Mo)+

◭
, then ⊳ = Eo|M = ⊳∪idM = E,

that is, the relation ⊳ is reflexive. Since M ∈ MS∗, then M ∈ TS.
By applying (6.1) and (6.2) we get the equalities:

MS = {B+

⊏ : B ∈ CBL},

TS = {B+

◭ : B ∈ CBL}.

Suppose that M ∈ MS. Then, in the light of Theorem 1.2, we have
Mo ∈ CBL. Moreover, by virtue of (6.1), we have M = (Mo)

+

⊏
. Hence

for some B ∈ CBL we have M = B+

⊏. Conversely, if B ∈ CBL, then 
by virtue of Theorem 1.1  we have B+

⊏ ∈ MS. Analogously for TS.
The following equalities clearly hold:

CBL = {Mo : M ∈ MS} = {Mo : M ∈ MS∗} = {Mo : M ∈ TS}.

If B ∈ CBL, then B+

⊏ ∈ MS (resp. B+

◭ ∈ TS). By carrying out the
operation (B+

⊏)
o

(resp. (B+

◭)
o
), using the zero of the lattice B, we get

back the lattice B. Conversely, if M ∈ MS∗, then Mo ∈ CBL.
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Equivalent axiomatisations of mereological structures

In the next five sections we shall be examining structures of the form
M = 〈M,⊏〉 with the primitive relation ⊏. By saying that the structure
M satisfies given conditions, the thought is that those conditions are
satisfied by the relation ⊏ and potentially the relations ⊑, �, N and Sum,
which are defined with the help of the definitions (df ⊑), (df �), (df N)
and (df Sum), respectively.

1. Other axiomatisations with the primitive relation ⊏

As we know from Lemma II.6.4, condition (L3) follows from conditions
(L2) and (SSP). Proposition 1.3, to be given in this chapter, shows that
condition (SSP) does not follow from conditions (L1)–(L3). Further-
more, as we have shown in Section II.4, condition (SSum) follows from
(L3) and by adding the irreflexivity of the relation ⊏ we get (WSP).

In Chapter V we shall show that (L3) does not follow from (L1),
(L2) and (WSP) (resp. (SSum)). The situation is different if we add
condition (L4).

Lemma 1.1. Condition (L3) follows from (L2), (WSP) and (L4).

Proof. The transitivity of the relation ⊑ follows from (L2). Assume
that (A) x Sum S and (B) y Sum S. From this and (WSP) it follows
that (C) x � y and (D) y 6⊏ x.

For (C): We have ∅ 6= S ⊆ I(x) ∩ I(y). Therefore for some z ∈ S we
have z ⊑ x and z ⊑ y. So x � y.

For (D): Assume for a contradiction that y ⊏ x. Then, by (WSP),
for some u we have (a) u ⊏ x and (b) u N y. By virtue of (a) and (A)
there is a z such that z � u. Therefore for some w we have (c) w ⊑ z and
(d) w ⊑ u. On the other hand, (B) entails (e) z ⊑ y. From (C) and (e) we
have (f) w ⊑ y. Therefore (d) and (f) yield u � y, which contradicts (b).
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Now assume for a contradiction that y ⊏ x. Then, by (D), we obtain
(D′) y 6⊑ x. Therefore, by virtue of (L4), for some s, we have (α)
s Sum {x, y}. Hence y ⊑ s and x ⊑ s. From this and (D′) we have
x 6= s, i.e., (β) x ⊏ s. From this and (WSP) for some u we have (γ)
u ⊏ s and (δ) u N x. From (α) and (γ): either x � u or y � u. From this
and (δ) it follows that (ε) y � u. There exists therefore a w such that
(ζ) w ⊑ y and (η) w ⊑ u. From (B) and (ζ) for some z ∈ S we have
z � w. And hence there exists a v such that (θ) v ⊑ z and (ι) v ⊑ w.
From (A) we have z ⊑ x. From this and (θ) we have v ⊑ x. From (ι)
and (η) we have v ⊑ u. Hence x � u, which contradicts (δ).

We have the following equivalent axiomatisations of the class MS:

Theorem 1.2. The nine groups of conditions below are equivalent:

1◦ (L1)–(L4);
2◦ (L1), (L2), and (L3 -L4);
3◦ (L1), (L2), (ext�), and (L4);
4◦ (L1), (L2), (SSP), and (L4);
5◦ (L1), (L2), (M1), and (L4);
6◦ (L1), (L2), (M2), and (L4);
7◦ (L1), (L2), (M3), and (L4);
8◦ (L1), (L2), (SSum), and (L4);
9◦ (L2), (WSP), and (L4).

Proof. ‘1◦ ⇔ 2◦’ See Remark II.5.3.
‘1◦ ⇔ 3◦’ By Theorem II.4.4, condition (ext�) is equivalent to (L3)

in all strict partial orders.
‘1◦ ⇔ 4◦’ Theorem II.6.1 says that (SSP) follows from (L1)–(L4).

By virtue of Lemma II.6.4, condition (L3) follows from (L2) and (SSP).
‘4◦ ⇔ 5◦ ⇔ 6◦ ⇔ 7◦’ By Corollary II.6.3, conditions (SSP), (M1),

(M2), and (M3) are equivalent in all transitive structures.
‘1◦ ⇒ 8◦’ On p. 83 we showed that (SSum) follows from (L3).
‘8◦ ⇔ 9◦’ By virtue of Lemma II.4.1(iv).
‘9◦ ⇒ 1◦’ Condition (L1) follows from (WSP) and (L2), by virtue of

Lemma II.4.1ii. The rest follows by virtue of Lemma 1.1.

At the end of this section we will prove the proposition we will use
in the next section and in Chapter V.

Proposition 1.3. Condition (SSP) does not follow from (L1)–(L3).
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123 23

1 2 3

Model 2. Conditions (L1)–(L3) hold, but (SSP) does not hold

Proof. In model 2, in which M1 = {1, 2, 3, 23, 123} and the relation ⊏

is defined by the graph1, conditions (L1)–(L3) hold, but condition (SSP)
does not hold. In fact, we have I(23) ⊆ O(123) and 23 6⊑ 123.

2. A different definition of a collective set.
The fusion of members of a set

In Chapter X of his “Foundations of Mathematics” [1931], Leśniewski
adopts a different understanding of the concept of collective class of
certain objects. In [1940], H. S. Leonard and N. Goodman capture this
concept in the language of set theory as the relation is a fusion of all
members of a given distributive set. In [Leonard and Goodman, 1940]
this relation is signified by “Fu”.2

In [1931, Chapter X] Leśniewski adopts as the primitive relation the
binary relation N is exterior with respect to. This relation, included in
M×M , is also the primary concept of the system introduced in [Leonard
and Goodman, 1940].3 The definition (C) of the expression “P is a
class of objects a [of as]” (cf. p. 47) from [Leśniewski, 1931, p. 142]
may be written in the terminology of [Leonard and Goodman, 1940] in
the manner given below, as the definition of the relation Fu included in
M × P(M):

x Fu S :⇐⇒ ∀y∈M (y N x ⇔ ∀z∈S z N y). (df Fu)

In [Leśniewski, 1931, Chapter X] there are two axioms signified by
‘(A)’ and ‘(B)’. Since they are to be written in the terminology of
Leonard and Goodman [1940], we will swap these symbols for lower-case

1 The matter of how to interpret these graphs was discussed in footnote 7 of
Chapter III on p. 121.

2 Leonard and Goodman [1940] the relation Fu also called the relation is a sum-

individual of.
3 [Leonard and Goodman, 1940] appeal to [Leśniewski, 1931] a number of times.
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Gothic letters. Axiom (A) pertains to the relation N:4

∀x,y∈M

(
x N y ⇐⇒ ∀z∈M ∃u∈M((u N x ∨ u N y) ∧ ¬u N z)

)
. (a)

The symmetry and irreflexivity of the relation N follow directly from (a).
That is, we obtain (sN) and (irrN). In fact, x N x entails a contradiction:
∃u(u N x ∧ ¬u N x).

Axiom (B) was written by Leśniewski with the help of a so-called
functor variable5. In the terminology of [Leonard and Goodman, 1940],
this axiom states that for an arbitrary non-empty subset of the set M
there exists exactly one element in M , which is a fusion of all members
of the subset:

∀S∈P+(M)∃x∈M

(
x Fu S ∧ ∀y∈M (y Fu S ⇒ x = y)

)
. (b)

Of course, from (b) we have:

∀S∈P+(M)∃x∈M x Fu S . (∃Fu)

In [Leśniewski, 1931, Chapter 10 X] the relations ⊑ and ⊏ are re-
spectively defined with the help of formulae (D) and (E). The first of
these is written in the language of the set theory as follows:

x ⊑ y :⇐⇒ ∃S∈P(M)(y Fu S ∧ x ∈ S), (d)

and the second corresponds to formula (⊏=⊑\id), which says that a part
a part of an object is any its ingrediens which is distinct from the object
(and vice versa). The relation ⊏ is therefore irreflexive.

From (df Fu) and (irrN) it follows that

¬∃x∈M x Fu ∅ . (2.1)

In fact, by (df Fu), from x Fu ∅ we have ∀y y N x, and hence x N x, which
contradicts (irrN).

Of course, from (b) and (2.1) we obtain that if a set has a fusion then
it is unique:

∀S∈P(M)∀x,y∈M (x Fu S ∧ y Fu S =⇒ x = y). (UFu)

In fact, suppose that x Fu S and y Fu S. Then S 6= ∅, by (2.1). Hence,
in the light of (b), for some x0 we have x0 Fu S and x = x0 = y.

4 We will recognise its ‘meaning’, when we prove formula (df N ⊑) in the system
currently under consideration.

5 A tool derived from Leśniewski’s “protothetic”. Leśniewski built his mereology
on top of this and his ontology.
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For S = {x}, thanks to (sN), the left-hand side of (df Fu) is trans-
formed into a tautology. Hence for each x ∈ M we have:

x Fu {x}. (2.2)

From this and (d) we have the reflexivity of the relation ⊑, i.e., (r⊑).
Observe that from (df Fu), (d) and (sN) for any x, y ∈ M we have:

y N x ⇐⇒ ∀z∈M(z ⊑ x ⇒ z N y). (2.3)

In fact, let y N x and z ⊑ x. Then for some S0 we have x Fu S0 and
z ∈ S0. Hence z N y. Conversely, let ∀z∈M (z ⊑ x ⇒ z N y). Since x ⊑ x,
then x N y.

Directly from (2.3) and (df Fu) for each x ∈ M we have:

x Fu I(x) . (2.4)

By applying (2.3) we can also prove the transitivity and antisym-
metry of the relation ⊑ in Leśniewski’s system along with the fact that
formula (df N ⊑) holds.

For (t⊑): Assume that x ⊑ y and y ⊑ z. Then, by virtue of (d), for
some sets S1 and S2 we have (a) y Fu S1, (b) x ∈ S1, (c) z Fu S2 and
y ∈ S2. It suffices to show that (@) z Fu (S1 ∪ S2). Then, by virtue
of (d) and (b), we have x ⊑ z. For the proof of (@) we show that the
appropriate definiens in (df Fu) is satisfied. Pick an arbitrary u ∈ M .
Assume that (d) u N z. Since y ⊑ z, then we have (e) y N u, by virtue of
the ‘⇒’-part in (2.3). Pick an arbitrary w ∈ S1 ∪ S2. Then, by virtue of
(a), (c), (df Fu) and either (e) or (d), we have w N u. Conversely, assume
that for each w ∈ S1 ∪S2 we have w N u, that is, that also for each w ∈ S2

we have w N u. From this and (c) we have u N z, by virtue of (df Fu).
For (antis⊑): Assume that x ⊑ y and y ⊑ x. We observe that by

virtue of (df Fu) we have: y Fu {x} iff ∀z(z N y ⇔ x N z). The right-hand
side of this equivalence is satisfied, by virtue of our assumptions, (2.3),
and (sN). Therefore y Fu {x}. Moreover, we have x Fu {x}. Thus, by
virtue of (UFu), we have x = y.

Since the relation ⊑ is reflexive, transitive and antisymmetric, the re-
lation ⊏ is asymmetric and transitive, i.e., conditions (L1) and (L2) hold.
Furthermore, since the relations ⊏ and ⊑ satisfy condition (⊏=⊑\id),
then there holds between them the connection expressed by formula
(df ⊑).6

6 Cf. Lemma 2.4 in Appendix I.
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For (df N ⊑): Assume that x ⊑ y and z N y. Then, by virtue of (2.3)
and (sN), we have z N x. Conversely, let ∀z(z N y ⇒ z N x). Then
∀z(z N y ⇔ (z N x ∧ z N y)). Hence, by the exclusive application of
(df Fu), we have y Fu {x, y}. Now, applying (d), we get: x ⊑ y.

Having proved formula (df N ⊑), axiom (a) can be reduced to formula
(df N).7 The following lemma shows this.

Lemma 2.1. If the relations N and ⊑ satisfy condition (df N ⊑), then con-
ditions (a) and (df N) are equivalent.

Proof. We subject (a) to ‘value-preserving’ changes, in which we ap-
ply  besides the logical rules  just condition (df N ⊑):

x N y ⇐⇒ ¬∃z∈M ∀u∈M

(
(u N x ∨ u N y) ⇒ u N z

)
,

⇐⇒ ¬∃z∈M

(
∀u∈M(u N x ⇒ u N z) ∧ ∀u∈M (u N y ⇒ u N z)

)
,

⇐⇒ ¬∃z∈M (z ⊑ x ∧ z ⊑ y).

Following Leśniewski [1931, Chapter X], it may be proved that the
system above with the primitive relation N is definitionally equivalent to
the system with the primitive relation ⊏ and axioms (L1)–(L4). This
means that the following two results hold: theorems 2.2 and 3.2 (cf. also
theorems 6.4 and 6.5):

Theorem 2.2. Let M be a non-empty set and N be a binary relation
in M . Moreover, in structure 〈M, N 〉 we define relations Fu, ⊑, ⊏,
and Sum by the definitions (df Fu), (d), (⊏=⊑\id), and (df Sum), re-
spectively. Suppose that 〈M, N 〉 satisfies conditions (a) and (b). Then
Fu = Sum and formulae (L1)–(L4), (df ⊑), and (df N) hold in 〈M, N 〉.

Proof. We proved that formulae (L1), (L2), (df ⊑), (df N) (t⊑), (df N ⊑),
(2.3), and (df N) hold in 〈M, N 〉. Now we prove Fu = Sum.

Suppose that x Fu S. Then, by (df Fu), for any y ∈ M we have: y N x
iff ∀z∈S y N z. First, assume for a contradiction that for some z0 ∈ S we
have z0 6⊑ x. Then, by (2.3), for some u0 we have: u0 N x and for some

7 Formula (df N) is clearly not the definition of the relation N in the system under
consideration (in this system, the relation N is a primitive concept). Condition (df N)
shows only the connection between relations N and ⊑ (the second defined by condition
(d)). It is just this connection which axiom (a) determines.

Leśniewski did not consider the relation �. He simply writes that some ingrediens
of one object is an ingrediens of a second. If this connection is expressed by means of
the relation �, then the definition will be adopted for it. We will thereby also obtain
condition (N=−�).
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w0 we have w0 ⊑ z0 and w0 ⊑ u0. Since for any z ∈ S we have u0 N z, so
we obtain a contradiction. Thus, we have shown that ∀z∈S z ⊑ x. Now
pick any y ∈ M such that y ⊑ x. Assume for a contradiction that for
any z ∈ S there is no u ∈ M such that u ⊑ y and u ⊑ z, i.e., y N z. Then,
we obtain a contradiction: y N x. Thus, we have shown that x Sum S.

Suppose that x Sum S. Then, by (df Sum), we have ∀z∈S z ⊑ x and
for any y ∈ M such that y ⊑ x for some z ∈ S and u ∈ M we have:
u ⊑ y and u ⊑ z. Pick any y ∈ M such that y N x and any z ∈ S. Then
z ⊑ x and so z N y, by (2.3). Conversely, assume for a contradiction that
∀z∈S y N z and for some v0 ∈ M we have v0 ⊑ x and v0 ⊑ y. Then for
some z0 ∈ S and u0 ∈ M we have: u0 ⊑ v0 and u0 ⊑ z0. Moreover,
by (t⊑), we obtain a contradiction: u0 ⊑ y and u0 ⊑ z0. Thus, we have
shown that x Fu S.

Since Fu = Sum, then from (UFu) and (b) we obtain (L3) and (L4),
respectively.

Since the system of Leśniewski presented here is close the system of
Leonard and Goodman in [1940], we shall therefore present the latter in
the following remark.

Remark 2.1. Leonard and Goodman [1940] take as primitive the relation
N is exterior to. The relation is a fusion of they define by condition
(df Fu). The first axiom of their system states the existence of a fusion
for an arbitrary non-empty subset of the universe [I.1 in Leonard and
Goodman, 1940], i.e., this axiom is condition (∃Fu).

In [Leonard and Goodman, 1940], the relation ⊑ is an ingrediens of
is defined by (df N ⊑).8 Therefore, by virtue of the definition itself, the
relation ⊑ in Goodman and Leonard’s system is transitive and reflexive
[theses I.3 and I.31 in Leonard and Goodman, 1940; our (t⊑) and (r⊑)].
Its antisymmetry (our (antis⊑)) is established in Leonard and Goodman
[1940] by axiom I.12. The relation ⊏ is a part of is defined by condition
(⊏=⊑\id). In Leonard and Goodman’s system, therefore, the relation ⊏

is irreflexive, asymmetric and transitive [theses I.325, I.326 and I.328 in
Leonard and Goodman, 1940]. The relation � overlapping is defined in
[Leonard and Goodman, 1940] with the help of condition (df �), i.e., it
is symmetric and reflexive. The final axiom in [Leonard and Goodman,
1940] is the equivalence: x � y ⇔ ¬x N y [I.13 in Leonard and Goodman,

8 This explains in a certain sense the ‘strength’ of Leonard and Goodman’s theory,
because formula (df N ⊑) along with the other axioms of the theory have the ‘power’
of formula (SSP) (see below).



3. Fusion in place of sum 141

1940; the counterpart to our (N=−�)]. Thus, the relation N is symmetric
and irreflexive.

In Leonard and Goodman’s system, axioms (a) and (b) adopted by
Leśniewski become theorems.9 In Corollary 6.3 we will show that their
system is definitionally equivalent to Leśniewski’s system in [Leśniewski,
1931, Chapter X] with the relation N as primitive. Furthermore, in theo-
rems 6.4 and 6.5 we will prove that in both these systems the definitions
(df Fu) and (df Sum) define the same relation and are definitionally equiv-
alent to a system with ⊏ as the primary relation and axioms (L1)–(L4).

Leonard and Goodman, besides the relation Fu, consider also a second
relation included in M×P(M). This is the relation is a product (product-
individual) of all elements of a given distributive set. This relation is
signified by the symbol “Nu” (nucleus) and its definition is as follows:

x Nu S ⇐⇒ ∀y∈M (y ⊑ x ⇔ ∀z∈S y ⊑ z). (df Nu)

It follows from the axioms and definitions we have adopted that the
relation ⊑ partially orders the set M and the right-hand side of (df Nu)
is simply the right-hand side of condition (4.15) in Appendix I written
for the relation ⊑. Thus:

Nu = inf⊑. (2.5)

For theses I.56–I.58 in [Leonard and Goodman, 1940], for an arbitrary
S ∈ P(M) we have respectively (cf. Corollary 3.4):

⋂
I(S) 6= ∅ =⇒ ∃x∈M x Nu S , (∃Nu)

∀x,y∈M (x Nu S ∧ y Nu S ⇒ x = y), (UNu)
⋂

I(S) 6= ∅ =⇒ ∃x∈M

(
x Nu S ∧ ∀y∈M (y Nu S ⇒ x = y)

)
. (∃!Nu)

3. Fusion in place of sum

Pick an arbitrary structure M = 〈M,⊏〉 in which the relations ⊑, �, N,
Sum, and Fu are defined by (df ⊑), (df �), (df N), (df Sum) and (df Fu),
respectively. By virtue of (df ⊑) we have (r⊑). By virtue of (df �) and
(df N) we have (r�), (s�), (irrN), (sN), and (N=−�). Therefore (df Fu) may
be reduced to the following form:

x Fu S ⇐⇒ ∀y∈M (y � x ⇔ ∃z∈S z � y), or

x Fu S ⇐⇒ O(x) =
⋃

O(S).
(df ′ Fu)

9 For (a) this follows from definitions I.01 and I.02 along with axiom I.13; for (b)
this is just Thesis I.53.
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Since for each x ∈ M we have O(x) 6= ∅ =
⋃

O(∅), then we have (2.1).
Furthermore, since for x ∈ M we have O(x) = O({x}), then (2.2) holds.
If the relation ⊑ is reflexive and transitive, then O(x) =

⋃
O(I(x)) and

we also have (2.4).10

Theorem 3.1. Suppose that a relation ⊏ is transitive in a non-empty
set M , i.e., ⊏ satisfies condition (L2). Then:

(i) Sum ⊆ Fu.
(ii) Condition (SSP) is equivalent to the inclusion Fu ⊆ Sum.11

Proof. Suppose that a relation ⊏ is transitive in a non-empty set M .
Ad (i): The inclusion Sum ⊆ Fu follows from the transitivity of ⊑

and our definitions, so only by (L2) and our definitions; see the proof of
(II.3.9).

Ad (ii): Assume (SSP). Let x Fu S, i.e., let (∗): O(x) =
⋃

O(S).
From (L2) and (df ⊑) it follows that (r⊑) and (t⊑). From this and (SSP)
we have (df� ⊑). From (∗) we obtain: ∀y∈M (∃z∈S z � y ⇒ y � x), which
is equivalent to ∀z∈S∀y∈M (y � z ⇒ y � x). From this and (df� ⊑) we
have (∗∗): ∀z∈S z ⊑ x. Furthermore, from (∗) we obtain ∀y∈M (y � x ⇒
∃z∈S z � y). From this and (⊑⊆�) we have: ∀y∈M (y ⊑ x ⇒ ∃z∈S z � y).
From this and (∗∗), by applying (II.df ′ Sum), we get: x Sum S. Thus,
Fu ⊆ Sum.12

Conversely, let Fu ⊆ Sum. For the proof of (SSP) we assume the
inclusion I(x) ⊆ O(y). Then, by virtue of (II.2.6), we have O(x) ⊆ O(y),
i.e., O(y) = O(x) ∪ O(y). Hence y Fu {x, y}. Therefore y Sum {x, y} as
well. And from this it follows that x ⊑ y.

As a conclusion, we obtain the following theorem:

Theorem 3.2. In all mereological structures:

(i) Sum = Fu.
(ii) Formulae (a), (b), and (d) hold.13

10 About the relation Fu see also [Gruszczyński and Pietruszczak, 2010, sect. 5].
11 This is the reverse of implication (II.3.9) mentioned in footnote II.15.
12 The equality Sum = Fu also holds in Leonard and Goodman’s system presented

in Remark 2.1. In essence, in this system the relation ⊏ satisfies conditions (L1) and
(L2). Furthermore, conditions (⊑⊆�), (df N ⊑), (df N), and (df� ⊑) hold, these being
used in the proof (in [Leonard and Goodman, 1940] the first is thesis I.332 and the
second follows from axiom I.12 and the definition of the relation ⊑).

13 Formula (b) is not the definition of the relation ⊑ in the system of the class
MS of mereological structures (in this system, the relation ⊑ is defined by (df ⊑)).
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Proof. Ad (i): By virtue of Theorem II.6.1, in mereological structures,
condition (SSP) holds. We may therefore apply Theorem 3.1.

Ad (ii): By (i), Fu = Sum. So from (L3 -L4) we have (b). Moreover,
let y ⊑ x. Since y Sum I(y), then for S := I(y) we have: y Sum S and
x ∈ S. Conversely, if y Sum S and x ∈ S, then x ⊑ y, by (df Sum).
Thus, we have shown that (d) holds in all mereological structures.

Finally, by Lemma 2.1, since (df N ⊑) and (df N) hold in all mereological
structures, then (a) also holds.

Corollary 3.3. Let 〈M,⊏〉 satisfy conditions (L2) and (SSP). Then
conditions (L4) and (∃Fu) are equivalent, and (L3 -L4) and also condi-
tions (b) are equivalent.

Proof. If (L2) and (SSP) hold in 〈M,⊏〉, then Sum = Fu, by virtue
of Theorem 3.1(i). Thus, (∃Fu) and (b) arise from (L4) and (L3 -L4),
respectively, when “Sum” is exchanged for “Fu”, and vice versa.

Corollary 3.4. Conditions (∃Nu), (UNu) and (∃!Nu)

(i) follow from conditions (L2), (SSP), and (∃Fu);
(ii) hold in all mereological structures.

Proof. Ad (i): Firstly, from (2.5) and (4.10) in Appendix I we have:
x Nu S iff x inf⊑ S iff x sup

⊑

⋂
I(S). If conditions (L2) and (SSP) hold,

then Fu = Sum, and so conditions (∃Fu) and (L4) say the same thing.
Hence (∃Fu) and (SSP) entail (Sum-sup

⊑
). Hence if

⋂
I(S) 6= ∅ then:

x sup
⊑

⋂
I(S) iff x Sum

⋂
I(S) iff x Fu

⋂
I(S), i.e.: x Nu S iff x Fu

⋂
I(S).

Thus, we obtain (∃Nu) from (∃Fu).
Condition (UNu) follows from (2.5) and from the fact that the relation

inf⊑ is a function of the second argument. Condition (∃!Nu) follows from
(∃Nu) and (UNu).

Ad (ii): Because conditions (L2), (SSP), and (∃Fu) hold in all mere-
ological structures.

Directly from (df Nu) and (df ⊑) for an arbitrary S ∈ P(M) follows
the converse implication to (∃Nu):

∃x∈M x Nu S =⇒
⋂

I(S) 6= ∅ . (3.1)

Condition x Nu S entails: ∃y∈M y ⊑ x iff ∃y∈M ∀z∈S y ⊑ z iff
⋂

I(S) 6= ∅.
Since x ⊑ x, then the left-hand side is satisfied.

Proposition 3.5. The inclusion Fu ⊆ Sum cannot be derived from con-
ditions (L1)–(L3).
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Proof. This follows from Proposition 1.3 and Theorem 3.1(ii). It is also
visible from model 2, in which conditions (L1)–(L3) hold, but Fu * Sum.
In fact, we since O(123) = M1 =

⋃
O(M1), then 123 Fu M1. But it is not

the case that 123 Sum M1.

Lemma 3.6. For any transitive structure M = 〈M,⊏〉, conditions (L3)
and (UFu) are equivalent.

Proof. Let M = 〈M,⊏〉 satisfy condition (L2).
Assume that (L3) holds and that x Fu S and y Fu S. Then, by virtue

of (df ′ Fu), we have O(x) =
⋃

O(S) = O(y). Hence x = y, by virtue of
condition (ext�) which  by virtue of Theorem II.4.4  is equivalent in
any transitive structure to condition (L3).

Assume that (UFu) holds and that x Sum S and y Sum S. Then  by
virtue of Theorem 3.1(i)  we have x Fu and y Fu S. Hence x = y.

Corollary 3.3 and Lemma 3.6 show that by applying conditions (∃Fu)
and (UFu) we may get two further equivalent axiomatisations of mere-
ological structures. In the group 1◦ in Theorem 1.2, formula (L3) may
be exchanged in an equivalent way for formula (UFu). Moreover, in the
group 4◦–7◦ formula (L4) may be exchanged for formula (∃Fu). We shall
further prove that it is not possible to carry out this second change in
the groups 1◦, 3◦, 8◦ and 9◦. Finally, with regards to groups 1◦– 9◦, we
will show that it is not possible to exchange the last two formulae in
them for the formulae (UFu) and (∃Fu).

Theorem 3.7. The nine groups from Theorem 1.2 are also equivalent
to the five groups of conditions below:

10◦ (L1), (L2), (UFu), and (L4);
11◦ (L1), (L2), (SSP), and (∃Fu);
12◦ (L1), (L2), (M1), and (∃Fu);
13◦ (L1), (L2), (M2), and (∃Fu).
14◦ (L1), (L2), (M3), and (∃Fu).

Proof. ‘1◦ ⇔ 10◦’ By Lemma 3.6, conditions (L3) and (UFu) are equiv-
alent in all transitive structures.

‘4◦ ⇔ 11◦ ⇔ 12◦ ⇔ 13◦ ⇔ 14◦’ By Corollary 3.3, conditions (L4)
and (∃Fu) are equivalent in all structures satisfying conditions (L2) and
(SSP). Moreover, by Corollary II.6.3, conditions (SSP), (M1), (M2), and
(M3) are equivalent in all transitive structures.
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123

12 13 23

1 2 3

Model 3. Conditions (L1)–(L3), (∃Fu) hold, but (L4) does not hold

Directly by virtue of Lemma 3.6 and Theorem II.4.4, respectively, we
obtain:

Proposition 3.8. The three sets {(L2), (L3)}, {(L2), (UFu)}, and {(L2),
(ext�)} are equivalent. So the three sets {(L1), (L2), (L3), (∃Fu)}, {(L1),
(L2), (ext�), (∃Fu)}, and {(L1), (L2), (UFu), (∃Fu)} are equivalent, too.

We shall prove below that

Proposition 3.9. (i) By putting condition (∃Fu) in place of condition
(L4) in the equivalent groups 1◦, 3◦, and 10◦ we obtain groups
which are too weak for the axiomatisation of mereological struc-
tures.

(ii) So, by putting conditions (UFu) and (∃Fu) in place of conditions
(L3) and (L4) in the group 1◦ we obtain a group which is too weak
for the axiomatisation of mereological structures.

(iii) So, by putting condition (b) in place of condition (L3 -L4) in the
group 2◦ we obtain a group which is too weak for the axiomatisation
of mereological structures.

Proof. Ad (i): First, by virtue of theorems 3.2, 1.2, and 3.7, formula
(∃Fu) follows from each of equivalent groups 1◦, 3◦, and 10◦.

Second, we prove that the equivalent sets {(L1), (L2), (L3), (∃Fu)},
{(L1), (L2), (ext�), (∃Fu)}, and {(L1), (L2), (UFu), (∃Fu)} from Proposi-
tion 3.8 are essentially weaker than each of equivalent groups 1◦, 3◦,
and 10◦. We show that (L4) does not follow from the set {(L1), (L2),
(L3), (∃Fu)}. In fact, (L1), (L2), (ext�), and (∃Fu) hold in model 3, but
(L4) does not hold. On p. 122 we presented a single (with respect to
isomorphism) seven-element structure from MS. Thus, model 3 is not a
model of mereology. So (L4) does not hold in this model.
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Let M2 := {1, 2, 3, 12, 13, 23, 123} be the universe of model 3. In
model 3 conditions (L1) and (L2) hold. Condition (ext�) also holds. In
fact, O(1) = {1, 12, 13, 123}, O(2) = {2, 12, 23, 123}, O(3) = {3, 13, 23,
123}, O(12) = M2 \ {3}, O(13) = M2 \ {2}, O(23) = M2 \ {1}, O(123) =
M2. Moreover, the equalities given above show that for any at least a
two-element subset S of M2, we obtain:

12 Fu S ⇐⇒ 3 6∈
⋃

O(S),

13 Fu S ⇐⇒ 2 6∈
⋃

O(S),

23 Fu S ⇐⇒ 1 6∈
⋃

O(S),

123 Fu S ⇐⇒
⋃

O(S) = M2.

From this and (2.2) it follows that sentence (∃Fu) holds in model 3.
Note that it is obvious that (L4) is false in model 3. In this model,

there is no unity and therefore: ¬∃x∈M2
x Sum M2. Moreover, any

two-element subset of {12,13, 23} does not also have a sum.
Ad (ii): Directly by (i).
Ad (iii): By (i) Proposition 3.8, conditions (UFu) and (∃Fu) hold in

model 3. Therefore, condition (b) holds, too. But (L3 -L4) does not hold
in model 3, since (L4) follows from (L3 -L4).

It is clear that it follows from the above proposition, that putting
condition (∃Fu) in place of condition (L4) in the groups 8◦ and 9◦ in
Theorem 1.2, we get groups of conditions which are also too weak for
the axiomatisation of mereological structures. We will show below that,
having made the above change, we obtain even weaker sets than those
from Proposition 3.8, i.e., those sets obtained after the changes made in
Proposition 3.9(i). However, we first notice that by Lemma II.4.1(iv) we
obtain the following fact.

Proposition 3.10. The sets {(L1), (L2), (SSum)} and {(L2), (WSP)} are
equivalent. So the sets {(L1), (L2), (SSum), (∃Fu)} and {(L2), (WSP),
(∃Fu)} are equivalent too.

Proposition 3.11. The two sets {(L1), (L2), (SSum), (∃Fu)} and {(L2),
(WSP), (∃Fu)} are essentially weaker than each of the three equivalent
sets {(L1), (L2), (L3), (∃Fu)}, {(L1), (L2), (ext�), (∃Fu)}, and {(L1), (L2),
(UFu), (∃Fu)}.

Proof. First, formulae (L1)–(L3) entail (SSum) and (WSP) (see p. 83
and Lemma II.4.1(v)).
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12 21

1 2

Model 4. Conditions (L1), (L2), (WSP), (SSum), (∃Fu) hold,
but (L3), (ext�), (UFu), (∃⊓), (ext⊏) do not hold

Second, we prove the two sets {(L1), (L2), (SSum), (∃Fu)} and {(L2),
(WSP), (∃Fu)} are essentially weaker than each of the three equivalent
sets {(L1), (L2), (L3), (∃Fu)}, {(L1), (L2), (ext�), (∃Fu)}, and {(L1), (L2),
(UFu), (∃Fu)}. We show that (L3) does not follow from the set {(L1), (L2),
(WSP), (SSum), (∃Fu)}. In fact, (L1), (L2), (WSP), (SSum) and (∃Fu) hold
in model 4, but (L3) does not hold.

Let M3 := {1, 2, 12, 21} be the universe of model 4. In the model
conditions (L1), (L2), (WSP) hold. Condition (∃Fu) also holds. In fact,
by virtue of (2.2), for each x ∈ M3, we have x Fu {x}. Moreover, for any
at least two-element subset S of M3, we have

⋃
O(S) = M3 = O(12) =

O(21), i.e., 12 Fu S (and 21 Fu S). Thus, every non-empty subset of M3

has a fusion.
Condition (L3) does not hold in model 4, because 12 Sum {1, 2} and

21 Sum {1, 2}, but 12 6= 21.14

Remark 3.1. (i) Certain ‘misunderstandings’ attend the groups of con-
ditions (L2), (WSP) and (∃Fu) which relate to Simons’ “Classical Ex-
tensional Mereology” from his [1987, pp. 37–41]. Simons adopts ele-
mentary counterparts to these conditions as axioms in his theory. The
elementary counterpart of (∃Fu) is a certain sentential schema which is
obtained from (∃Fu) by ‘unravelling’ the definition (df ′ Fu) and replacing
the set-theoretic formula “z ∈ S” with the sentential schema “Fz” (see
condition (GSP) on p. 166. One may, however, substitute various for-
mulae for the schema “Fz”, such as “‘z = x ∨ z = y”, etc. In [Simons,
1987], an elementary counterpart of condition (L1) is also (superfluously)
adopted, which follows from (L2) and (WSP) (cf. Lemma II.4.1(ii)).

Simons is of the view that the group of conditions he accepts axioma-
tises Leśniewski’s mereology in an elementary fashion. He mistakenly
believes that from (L1), (L2), (WSP) and (GSP) follows a third axiom

14 Let us also notice that it follows from the comment made on p. 122 that there
are no four-element mereological structures. So model 4 is not a model of mereology.
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of Breitkopf’s system in [1978] (see condition (8.2) on p. 167), which is
an elementary counterpart of condition (∃Nu). We shall return to this
in Section 8.

(ii) Observe that model 4 is also a model of Simons’ “Classical Ex-
tensional Mereology”. An arbitrary non-empty ‘whole’ of elements in M3

is finite and therefore is ‘described’ by the elementary formula “z = x1 ∨
· · · ∨ z = xn” (where 1 ¬ n ¬ 4 and xi ∈ {1, 2, 21, 21}), which we may
substitute in (GSP) for “Fz”.

The situation is entirely different if we add the condition below15 to
the equivalents sets {(L1), (L2), (SSum), (∃Fu)} and {(L2), (WSP), (∃Fu)}.

∀x,y∈M

(
x � y =⇒ ∃u∈M ∀z∈M(z ⊑ u ⇐⇒ z ⊑ x ∧ z ⊑ y)

)
. (∃⊓)

Proposition 3.12. (i) Condition (∃⊓) follows from (∃Nu).
(ii) Condition (∃⊓) holds in all mereological structures.

Proof. Ad (i): For all x, y ∈ M such that x � y we have
⋂

I({x, y} 6= ∅.
Therefore, by virtue of (∃Nu), there is a u such that u Nu {x, y}, i.e.,
for any z ∈ M : z ⊑ u iff ∀w∈{x,y} z ⊑ w iff z ⊑ x and z ⊑ y.16

Ad (ii): By (i) and Corollary 3.4.

By using (r⊑) and (df �), condition (∃⊓) may be strengthened to the
following equivalence:

∀x,y∈M

(
x � y ⇐⇒ ∃u∈M ∀z∈M(z ⊑ u ⇐⇒ z ⊑ x ∧ z ⊑ y)

)
.

In Theorem 3.15 we will show that by adding (∃⊓) to the sets (L1),
(L2), (SSum), (∃Fu)} and {(L2), (WSP), (∃Fu)} we get sets of axioms of
mereology. For this we will need:

Lemma 3.13. (i) (SSP) follows from (L2), (WSP), and (∃⊓).
(ii) (SSP) follows from (L1), (L2), (SSum) and (∃⊓).

Proof. Ad (i): Let x 6⊑ y. Then if x N y, then the consequent of (SSP)
holds, since x ⊑ x. Assume therefore that x � y. Then, by virtue of
(∃⊓), for some v it is the case that (b) for each z: z ⊑ v iff both z ⊑ x

15 This is axiom SA6 of “Minimal Extensional Mereology” considered by Simons
in [1987, p. 31]. The formulae SA1–SA3 are other specific axioms of this system (see
[Simons, 1987, p. 31]), i.e., which are counterparts to our conditions (L1), (L2). and
(WSP) (the first of these is inessential in this group).

16 Another proof: Condition (∃⊓) holds in the class MS, because the formula
(II.9.10) holds. So, in mereological structures, the element postulated in (∃⊓) is
simply the product x ⊓ y (cf. also (2.5)).
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and z ⊑ y. Therefore  since v ⊑ v  we have (c) v ⊑ x and (d) v ⊑ y.
From (d) and (a) we have v 6= x, i.e., v ⊏ x, by virtue of (c). Hence, by
virtue of (WSP), for some u we have: (e) u ⊏ x and (f) u N v. We will
show that (g) u N y. Assume for a contradiction that u � y. Then for
some w we have: (h) w ⊑ u and (i) w ⊑ y. From (h) and (e) we have
w ⊑ x, by virtue of (L2). From this and (i) and (b) we have w ⊑ v.
From this and (h) we obtain u � v, which contradicts (f). Thus, (e) and
(g) give us the thesis.17

Ad (ii): By virtue of Lemma II.4.1(iv), condition (WSP) follows from
(L1), (L2), and (SSum). We therefore apply (i).

Lemma 3.14. (i) Conditions (r⊑), (t⊑) and the following

∀S∈P(M)∀u∈M

(
u Fu S ⇐⇒ S 6= ∅ ∧ u sup

⊑
S

)
(∗)

entail
∀S∈P(M)∀u∈M

(
u Nu S ⇐⇒ u Fu

⋂
I(S)

)
. (∗∗)

(ii) Condition (∗∗) entails

∀x,y,u∈M

(
v Nu {x, y} ⇐⇒ u Fu

⋂
I({x, y})

)
. (∗∗∗)

(iii) Conditions (∃Fu) and (∗∗∗) entail (∃⊓).

Proof. Ad (i): If
⋂

I(S) = ∅ then it follows directly from the defini-
tions (df Nu) and (df ′ Fu) that both sides of the equivalence (∗) are false.
Assume therefore that

⋂
I(S) 6= ∅. Since the relation ⊑ is reflexive and

transitive, we can apply (4.15) of Appendix I. Furthermore, by applying
(4.10) of Appendix I we obtain: u Nu S iff u inf⊑ S iff u sup

⊑

⋂
I(S) iff

u Fu
⋂

I(S).
Ad (ii): We apply (∗∗) for S = {x, y}.
Ad (iii): Let x � y. Then

⋂
I({x, y}) = {z ∈ M : z ⊑ x ∧ z ⊑ y} 6= ∅.

Therefore, by virtue of (∃Fu), for some u we have u Fu {z ∈ M : z ⊑ x ∧
z ⊑ y}. Hence, by virtue of (∗∗∗), we have u Nu {x, y}, which, by virtue
of (df Nu), gives, for each z ∈ M : z ⊑ u iff both z ⊑ x and z ⊑ x.

Theorem 3.15. The groups in theorems 1.2 and 3.7 are also equivalent
to the five groups of conditions below:

15◦ (L1), (L2), (SSum), (∃⊓), and (∃Fu);
16◦ (L2), (WSP), (∃⊓), and (∃Fu);

17 A similar proof of this result is given by Simons in [1987, p. 31]. In Simons’
proof, “x · y” occurs in place of “v”.
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17◦ (L2), (WSP), (∃Fu) and (∗∗∗);
18◦ (L2), (WSP), (∃Fu) and (∗∗);
19◦ (L2), (WSP), (∃Fu) and (∗).

Proof. ‘15◦ ⇔ 16◦’ By virtue of Lemma II.4.1(iv).
‘1◦ ⇒ 19◦’ By virtue of Theorem 3.2, in mereological structures we

have Sum = Fu. We obtain therefore (∃Fu) from (L4), and (∗) from
(Sum-sup

⊑
).

‘19◦ ⇒ 18◦ ⇒ 17◦ ⇒ 16◦’ By virtue of Lemma 3.14.
‘15◦ ⇒ 11◦’ By virtue of Lemma 3.13(ii).

4. Aggregate of the elements of a set

In line with the intuitions presented in Chapter I, a collective set is a
‘joining together in one whole’ of some objects, out of which it is to
be composed. Adopting the concept of being a mereological sum as an
explication of the concept of being a collective set does, however, generate
certain ‘unnatural’ consequences. These are that the definition of sum
allows it to be the case that:
• the collective set itself may be amongst the objects out of which it is

composed;
• the collective set may be the only object ‘composed into a whole’

(we therefore lose the desired ‘plural reading’ of the phrase “some
objects”).

We shall introduce a new relation which should capture the intuitions
associated with the concept of being an aggregate.18 It should satisfy
the condition: if an object x is an aggregate of objects y1, . . . , yn, then
no y1, . . . , yn is identical with x. It follows from this that: n > 1 and
y1 ⊏ x, . . . , yn ⊏ x.19

18 The term “aggregate” replaces Goodman’s “fusion”. The term “aggregate” for
a collective set is used by Quine [1953] and Russell [2010], amongst others. See the
passages from [Quine, 1953] and [Słupecki and Borkowski, 1984] on pages 24 and 30.

19 For example: The European Union arose through the joining together of cer-
tain European nations and not through the joining together of the European Union
and certain nations. Can a fusion (as a type of aggregate) arise out of one company
(in the sense of a business)? Can a fusion of companies arise in which one of them
already contains others?
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Let us accept below that M is an arbitrary non-empty set, that ⊏ is
an arbitrary binary relation in M , and that the relations ⊑, �, N and Sum

are defined by means of (df ⊑), (df �), (df N) and (df Sum), respectively.
The fact that x is an aggregate of all elements of a set S will be

expressed with the help of the relation Agr holding between x and S, i.e.
(a relation) included in M × P(M). We accept the following definition
for the relation Agr:

x Agr S :⇐⇒ S 6= ∅ ∧ ∀z∈S z ⊏ x ∧ ∀y∈M (y ⊏ x ⇒ ∃z∈S z � y).
(df Agr)

Thus, x is an aggregate of all elements of a set S iff (a) the set S has
in general some elements (cf. Proposition 4.2), (b) each element of S is
a part of x and (c) each part of x overlaps some element of S.20 By
exploiting the functions P and O, the definition above may be written
for arbitrary x ∈ M and S ∈ P(M) as:

x Agr S ⇐⇒ ∅ 6= S ⊆ P(x) ⊆
⋃

O(S). (df ′ Agr)

Therefore, directly from (df ′ Agr), (II.3.1) and (r⊑) we obtain:

Agr ⊆ Sum . (4.1)

Moreover, observe that the definition of an aggregate arose by swapping
condition (ii) in Lemma II.3.1 for the stronger condition (b). Thus, for
arbitrary x ∈ M and S ∈ M (in an arbitrary structure M) we obtain:

x Sum S ∧ x 6∈ S =⇒ x Agr S, (4.2)

x Sum S ∧ S has no greatest element =⇒ x Agr S. (4.3)

In fact, if x Sum S and S has no greatest element, then x /∈ S.

Proposition 4.1. If M = 〈M,⊏〉 is an irreflexive structure then

∀S∈P(M)∀x∈M (x Agr S ⇐⇒ x Sum S ∧ x /∈ S).

Proof. ‘⇒’ If x Agr S, then x Sum S, by (4.1). If it were the case that
x ∈ S, then  by virtue of the assumption and (irr⊏)  there would exist
a z ∈ S such that z 6⊏ x, since x 6⊏ x. ‘⇐’ By (4.2).

20 About the relation Agr see also [Gruszczyński and Pietruszczak, 2010, sections
6 and 7].
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Proposition 4.2. If 〈M,⊏〉 is a transitive structure satisfying (WSP),
then for arbitrary x ∈ M and S ∈ P(M) we have:

∀S∈P(M)∀x∈M (x Agr S ⇐⇒ x Sum S ∧ S has no greatest element).

Thus, if x Agr S then CardS > 1.

Proof. ‘⇒’ By Lemma II.4.1.(i), from (WSP) we obtain (irr⊏). Thus,
by Proposition 4.1, if x Agr S then x Sum S and x /∈ S. Assume for a
contradiction that S has a greatest element and that it is z0. So z0 ⊏ x.
Therefore, by virtue of (WSP), for some y0 we have y0 ⊏ x and y0 N z0.
Therefore, by (t⊏), we have ∀z∈S z N y0, which contradicts y0 ⊏ x with
x Agr S, by (df Agr). ‘⇐’ By (4.3).

Proposition 4.3. If M = 〈M,⊏〉 is an irreflexive structure then:

∀x∈M

(
P(x) 6= ∅ ⇐⇒ x Agr P(x)

)
.

Proof. ‘⇒’ If P(x) 6= ∅, then x Sum P(x), by (II.3.5). Since by (irr⊏)
we have x /∈ P(x), then also x Agr P(x), by (4.2). ‘⇐’ By (df Agr).

Proposition 4.4. Let M = 〈M,⊏〉 be any structure.

(i) If in M condition (L3) holds, then M satisfies the following condi-
tion of the uniqueness of the relation Agr:

∀S∈P(M)∀x,y∈M (x Agr S ∧ y Agr S =⇒ x = y) (UAgr)

(ii) If in M conditions (L2), (WSP) and (UAgr) hold, then M satisfies
condition (L3).

Proof. Ad (i): Assume that M satisfies (L3). If x Agr S and y Agr S,
then also x Sum S and y Sum S, by (4.1). So x = y, by (L3).

Ad (ii): Suppose that M satisfies (L2), (WSP) and (UAgr). Let
x Sum S and y Sum S. Then if S has a greatest element, then x = y,
by virtue of Lemma II.4.2. If, however, S has no greatest element, then
x Agr S and y Agr S, by (4.3). So x = y, by (UAgr).

Proposition 4.5. (i) Condition (UAgr) does not follow from (L1),
(L2) (SSum) and (WSP).

(ii) Condition (WSP) does not follow from (L1), (L2) and (UAgr), and
hence (L3) does not either.

Proof. Ad (i): In model 4 we have 12 Agr {1, 2} and 21 Agr {1, 2}.
Ad (ii): In model 5 conditions (L1) and (L2) hold. Furthermore, we

only have 2 Agr {1}, and therefore (UAgr) holds. Condition (WSP) and
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2

1

Model 5. Conditions (L1), (L2), (UAgr) and (PPP) hold,
but (WSP), (SSum), (∄0), (L3) do not hold

(SSum) do not hold, since: 1 ⊏ 2 and P(2) = {1} ⊆ {1, 2} = O(1); and
1 Sum {1} and 2 Sum {1}.

Proposition 4.6. If in an irreflexive structure 〈M,⊏〉 the following
condition of ‘aggregate existence’ holds:

∀S∈P+(M)(S has no greatest element =⇒ ∃x∈M x Agr S) (∃Agr)

then in M there exists a greatest element.

Proof. Assume for a contradiction that M satisfies (irr⊏) and (∃Agr),
and M has no greatest element. Then, by virtue of (∃Agr), there exists
an x such that x Agr M . From this we obtain ∀y∈M y ⊏ x, and so
x ⊏ x, which contradicts (irr⊏).

Proposition 4.7. In an arbitrary structure 〈M,⊏〉, conditions (L4) and
(∃Agr) are equivalent.

Proof. Assume that (L4) holds and S is an non-empty set which has
no greatest element. Then there exists an x ∈ M such that x Sum S.
Hence, by (4.3), we have x Agr S.

Assume that (∃Agr) holds and pick an arbitrary S ∈ P+(M). If x is
the greatest element in S, then x Sum S, by virtue of Lemma II.3.2. If
S has no greatest element, then  by virtue of (∃Agr)  for some x we
have x Agr S. Hence x Sum S, by (4.1).

With propositions 4.4 and 4.7 established, we may now obtain the
following theorem which concerns further conditions relation to the ax-
iomatization of mereological structures.

Theorem 4.8. The groups of conditions in theorems 1.2, 3.7 and 3.15
are also equivalent to the groups of conditions which arise from groups
1◦, 3◦–10◦ by the replacement of (L4) for (∃Agr). In addition, in 1◦ we
can replace condition (L3) by two conditions (WSP) and (UAgr).
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Mereological structures may therefore be axiomatised by using the
relation Agr in place of the relation Sum.

5. Axiomatisations with the primary relation ⊑.
Either (WSP), (SSum) or (SSP) instead of (L3)

In this section we shall take, just as Tarski did, the relation ⊑ is an
ingrediens of to be primary. By saying that the structure T = 〈M,⊑〉
satisfies certain conditions, we mean to say that that the relation ⊑
satisfies them and potentially the relations ⊏, �, N, Sum and Fu too, which
are to be defined respectively via the definitions (⊏=⊑\id), (df �), (df N),
(df Sum) and (df Fu). By virtue of (⊏=⊑\id), we have (irr⊏), i.e., ⊏ is
irreflexive. By virtue of (df �) and (df N), we have , (s�), (sN) and (N=−�),
i.e.. � and N are symmetric and N is the set-theoretical complement of �.
Thus (df Fu) and (df ′ Fu) are equivalent. Finally, if ⊑ is reflexive, i.e., we
have (r⊑), then � is also reflexive (r�) and N is irreflexive (irrN).

We note first of all, that the following results hold (see also lemmas
4.3, 6.2 and 6.4 from Chapter II):

Lemma 5.1. For an arbitrary structure T = 〈M,⊑〉:

(i) If T satisfies (WSP), then it also satisfies (SSum).
(ii) If T satisfies (r⊑) and (SSum), then it also satisfies (WSP).

(iii) If T satisfies (r⊑) and (L3), then it also satisfies (SSum).
(iv) If T satisfies (r⊑) and (L3), then it also satisfies (WSP).
(v) If T satisfies (r⊑), (antis⊑) and (M2), then it also satisfies (SSum)

and (WSP).

Proof. Ad (i): Assume for a contradiction that y Sum {x} and x 6= y.
Then, by (df Sum), we have x ⊑ y; and so x ⊏ y, since ⊏ := ⊑ \ idM .
Hence, in virtue of (WSP), for some z ∈ M we have z ⊏ y and z N x.
Therefore we get a contradiction, since z ⊏ y and y Sum {x} entail z � x.

Ad (ii): Let x ⊏ y, i.e., x ⊑ y and x 6= y. Note that, by (⊏=⊑\id)
and (r⊑), for any z ∈ M we have: z ⊑ y iff z ⊏ y or z = y. Assume for
a contradiction that ¬∃z∈M(z ⊏ y ∧ z N x), i.e., P(y) ⊆ O(x). Then, by
(r⊑), we have x ⊑ x; and so y � x. Thus, y Sum {x}. Hence, by (SSum),
we have a contradiction: x = y.

Ad (iii): By (r⊑) we have x Sum {x}. Therefore, if y Sum {x}, then
x = y, by (L3).

Ad (iv): From (ii) and (iii).
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Ad (v): By Lemma II.6.2(viii), conditions (antis⊑) and (M2) entail
(L3). So we use (iii) and (iv), respectively.

Lemma 5.2. For an arbitrary structure T = 〈M,⊑〉:

(i) If T satisfies conditions (SSum) and (L4), then it also satisfies (r⊑).
(ii) If T satisfies (r⊑), (t⊑) and (SSum), then it also satisfies (antis⊑).

(iii) If T satisfies (r⊑), (t⊑) and (WSP), then it also satisfies (antis⊑).
(iv) If T satisfies (r⊑), (t⊑) and (L3), then it also satisfies (antis⊑).

Proof. Ad (i): Pick an arbitrary x ∈ M . By virtue of (L4) there exists
a y ∈ M such that y Sum {x}. Hence x = y and x ⊑ y, by virtue of
(SSum) and (df Sum), respectively. Therefore, x ⊑ x.

Ad (ii): Assume that (a) x ⊑ y and (b) y ⊑ x. We show that (c)
y Sum {x}. In fact, for any z ∈ M such that z ⊑ y we have z ⊑ x, by
virtue of (b) and (t⊑). Hence z � x, because z ⊑ z, by (r⊑). From this
and (a) we have y Sum {x}. Thus, x = y, by virtue of (SSum).

Ad (iii): By virtue of Lemma 5.1(i), condition (SSum) follows from
(WSP). So we use (ii).

Ad (iv): By virtue of Lemma 5.1(iii), condition (SSum) follows from
(r⊑) and (L3). So we use (ii).

By the above lemma and Lemma 1.1 we also obtain:

Lemma 5.3. (i) Condition (L3) follows from (t⊑), (WSP) and (L4).
(ii) Condition (L3) follows from (t⊑), (SSum) and (L4).

Proof. Ad (i): By virtue of Lemma 5.1(i), condition (SSum) follows
from (WSP). By virtue of Lemma 5.2(i), condition (r⊑) follows from
(SSum) and (L4). From (r⊑), (t⊑) and (WSP) we obtain (antis⊑), by
Lemma 5.2(iii). From (antis⊑) and (t⊑)  by virtue of Lemma 2.4 from
Appendix I  the relation ⊏ satisfies (L2). From (L2), (WSP) and (L4)
we have (L3), by virtue of Lemma 1.1.

Ad (ii): By virtue of Lemma 5.1(ii), condition (WSP) follows from
(SSum) and (r⊑). So we use (i).

As Lemma 3.13(i) we obtain:

Lemma 5.4. Condition (SSP) follows from (t⊑), (WSP) and (∃⊓).

Lemma 5.5. Ifi T satisfies conditions (t⊑) and (L3 -L4), then it also
satisfies conditions (r⊑), (antis⊑), (L3), (L4) and (SSP).



156 Chapter IV. Equivalent axiomatisations . . .

Proof. Ad (r⊑), (antis⊑), and (L4): The structure T meeting the con-
ditions (t⊑) and (L3 -L4) belongs to TS. Hence, by virtue of Theo-
rem III.3.2(iii) the relation ⊑ is also reflexive and anti-symmetric, i.e.,
it meets conditions (r⊑) and (antis⊑). Furthermore, (L4) follows from
(L3 -L4).

Ad (L3): In Remark II.5.3 we showed that (L3) follows from (r⊑)
and (L3 -L4).

Ad (SSP): In the proof of Theorem II.6.1 we derived condition (SSP)
by using only (t⊑), (L3), (L4), (df Sum), (⊑⊆�), and (II.3.4). The two
final conditions follow directly from (r⊑).

In the proof of Theorem III.3.2 we used Theorem 12.1 from Ap-
pendix I, which is not proved in this book. We therefore also ‘elementar-
ily’ derive conditions (r⊑) and (antis⊑) from conditions (t⊑) and (L3 -L4).

Ad (r⊑): Pick an arbitrary x ∈ M . We have from (L4) that there is
a y such that y Sum {x}. From (df Sum) we obtain (a) x ⊑ y and (b)
∀u(u ⊑ y ⇒ u � x). From this it follows that x � x. By applying (df �),
we get ∃vv ⊑ x, i.e., I(x) 6= ∅. Thus, by virtue of (L4), there exists a z
such that z Sum I(x). Now from (df Sum) we have ∀u(u ⊑ x ⇒ u ⊑ z)
and ∀u(u ⊑ z ⇒ ∃v(v ⊑ x ∧ v � u)). (c) ∀v(v ⊑ x ⇒ ∃v(v ⊑ x ∧ v �
u)). This suffices  applying (df Sum)  for us to state that x Sum I(x).

We shall show that y Sum I(x) as well. Hence, by virtue of (L3 -L4),
we will get x = y which  by virtue of (a)  will give us x ⊑ x.

Firstly, by virtue of (a) and (t⊑), we obtain: ∀u(u ⊑ x ⇒ u ⊑ y).
Secondly, by virtue of (b) and (df �), we have ∀u(u ⊑ y ⇒ ∃w(w ⊑ x ∧
w ⊑ u)). From this and (c) we obtain ∀u(u ⊑ y ⇒ ∃v,w(v ⊑ x ∧ v � w ∧
w ⊑ u)). Thus, ∀u(u ⊑ y ⇒ ∃v,w,u′ (v ⊑ x ∧ u′ ⊑ v ∧ u′ ⊑ w ∧ w ⊑ u)).
Hence, by virtue of (t⊑) and (df �), we have ∀u(u ⊑ y ⇒ ∃v(v ⊑ x∧ v �
u)). From both of the above results along with (df Sum) it follows that
y Sum I(x).

Ad (antis⊑): Both (r⊑) and (L3) follow from (t⊑) and (L3 -L4).
Hence, by Lemma 5.1(iii), we have (SSum). Thus, by Lemma 5.2(ii),
condition (antis⊑) holds.

Lemma 5.6. If T satisfies conditions (antis⊑), (t⊑) and (SSP), then it
also satisfies (L3) and (UFu).

Proof. Lemma II.6.2 says that: (M1) follows from z (t⊑) and (SSP);
that (M2) follows from (M1); and that (L3) follows from (M2) and
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(antis⊑). From (t⊑) and (SSP) we obtain Fu = Sum, by Theorem 3.1.
So from (L3) we have (UFu).

Lemma 5.7. If T satisfies (t⊑) and (SSP), then it also satisfies (r⊑).

Proof. Assume for a contradiction that for some x ∈ M we have x 6⊑ x.
Then, by virtue of (SSP), for some y ∈ M we have (a) y ⊑ x and (b)
y N x. From (b)  by applying (df N)  we have (c): ∀z(z ⊑ y ⇒ z 6⊑ x).
From (a), (c) and (t⊑) we have ¬∃z z ⊑ y. Hence y 6⊑ y. By applying
(SSP) therefore, we get a contradiction: ∃z z ⊑ y.

Notice that the inclusion Sum ⊆ Fu follows from the transitivity of ⊑
and our definitions; see the proof of (II.3.9). So we obtain:

Lemma 5.8. Condition (L3) follows from conditions (t⊑) and (UFu).

Proposition 5.9. Condition (antis⊑) does not follow from conditions
(t⊑), (SSP) and (L4).

Proof. Let us take the structure T0 = 〈{1, 2},⊑0〉 in which ⊑0 is a full
relation, i.e., ⊑0 := {1, 2} × {1, 2}. Thus ⊑0 is transitive and satisfies
(SSP), but it is not antisymmetric. In T0 the relation � is full and
therefore condition (L4) holds (but (L3) does not hold).

We have the follow equivalent axiomatisations of the class TS:21

Theorem 5.10. The groups of conditions below are equivalent:

1◦ (t⊑) and (L3 -L4);
2◦ (t⊑), (L3) and (L4);
3◦ (t⊑), (antis⊑), (SSP) and (L4);
4◦ (t⊑), (antis⊑), (SSP) and (∃Fu);
5◦ (t⊑), (UFu) and (L4);
6◦ (t⊑), (antis⊑), (SSum), (∃⊓) and (L4);
7◦ (t⊑), (antis⊑), (SSum), (∃⊓) and (∃Fu);
8◦ (t⊑), (antis⊑), (WSP), (∃⊓) and (L4);
9◦ (t⊑), (antis⊑), (WSP), (∃⊓) and (∃Fu);

10◦ (t⊑), (WSP) and (L4);
11◦ (t⊑), (SSum) and (L4).

21 The following theorem and Proposition 5.9 show that if the relation ⊑ is not
antisymmetric, then, in the structure 〈M,⊑〉, the ‘strong’ condition (SSP) is weaker
than (SSum) and the ‘weak’ condition (WSP).
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Proof. ‘1◦ ⇔ 2◦’ Firstly, (L3 -L4) follows from (L3) and (L4). Sec-
ondly, we use Lemma 5.5.

‘2◦ ⇔ 3◦’ By virtue of lemmas 5.5 and 5.6, respectively
‘3◦ ⇔ 4◦’ By virtue of Lemma 5.8 and Theorem 3.1, in both groups

we have Fu = Sum.
‘3◦ ⇒ 5◦’ By Lemma 5.6, from (antis⊑), (t⊑) and (SSP) we have

(UFu).
‘5◦ ⇒ 2◦’ By Lemma 5.8, condition (L3) follows from (t⊑) and (UFu).
‘6◦ ⇔ 8◦’ and ‘7◦ ⇔ 9◦’ Firstly, from (SSum) and (L4) we have (r⊑),

by Lemma 5.2(i). Moreover, from (r⊑) and (SSum) we obtain (WSP), by
Lemma 5.1(ii). Secondly, from (WSP) we have (SSum), by Lemma 5.1(i).

‘8◦ ⇔ 9◦’ By Lemma 5.4, in both groups condition (SSP) follows
from (t⊑), (WSP), and (∃⊓). Hence, by Lemma 5.8 and Theorem 3.1,
in both groups we have Fu = Sum.

‘8◦ ⇒ 3◦’ By virtue of Lemma 5.4, condition (SSP) follows from (t⊑),
(WSP) and (∃⊓).

‘1◦ ⇒ 6◦’ By Corollary III.4.5, Proposition 3.12(i), and Lemma 5.5.
‘3◦ ⇒ 10◦’ By virtue of Lemma 5.6, (L3) follows from (antis⊑), (t⊑)

and (SSP). Since the relation ⊏ := ⊑\idM is irreflexive, we have (WSP),
by virtue of Lemma II.4.1(iv) and (L3).

‘10◦ ⇒ 11◦’ By virtue of Lemma 5.1(i).
‘11◦ ⇒ 10◦’ By Lemma 5.2(i), condition (r⊑) follows from (SSum) and

(L4). So we use Lemma 5.1(ii).
‘10◦ ⇒ 2◦’ By virtue of Lemma 5.3(i).

Theorems 1.2, 3.7, 3.15, 4.8 and 5.10 may be used to extend Corol-
lary III.4.5, which presents the connection between the axiomatisations
of the classes MS and TS. If the relations ⊏, ⊑, �, N, Sum, Fu and Agr

satisfy the conditions associated with the groups of those theorems, then
〈M,⊏〉 ∈ MS and 〈M,⊑〉 ∈ TS.

6. Axiomatisations with the primitive relation N

Let us return to Leonard and Goodman’s system as well as Leśniewski’s
system discussed in Section 2. We will begin with the following auxiliary
results.

Lemma 6.1. For arbitrary binary relations N and ⊑ in a non-empty set
M , the following groups of conditions are equivalent:
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(a) (t⊑), (SSP) and (df N);
(b) (df N ⊑) and (df N);
(c) (df N ⊑) and (a).

Proof. ‘(a) ⇒ (b)’ By virtue of Lemma 5.7, (r⊑) follows from (SSP)
and (t⊑).

If x ⊑ y and ∃u(u ⊑ z ∧ u ⊑ x), then by virtue of (t⊑), we obtain
∃u(u ⊑ z ∧ u ⊑ y). Thus conditions (t⊑) and (df N) entail the implication
‘⇒’ in w (df N ⊑).

For the proof of the implication ‘⇐’ in (df N ⊑) assume that (i): ∀z(z N
y ⇒ z N x). From (i), (r⊑) and (df N) we have (ii): ∀z(z ⊑ x ⇒ ¬ z N y).
In fact, if z ⊑ x, then ¬ z N x. From this and (i) we have ¬ z N y. From
(ii) and (SSP) we have x ⊑ y.

‘(b) ⇒ (a)’ From (df N ⊑) we get (t⊑). Assume that (i) ∀z(z ⊑ x ⇒
¬ z N y), From (i) and (t⊑) we have (ii) ∀z(z N y ⇒ z N x). Basically, let
¬ z N x. Then, by virtue of (df N), for some u we have u ⊑ z and u ⊑ x.
From this and (i): ¬u N y. For a certain v we have therefore v ⊑ u and
v ⊑ y. By virtue of (t⊑) that is, v ⊑ z and v ⊑ y, i.e., ¬ z N y. From (ii)
and (df N ⊑) we have x ⊑ y, which proves (SSP).

‘(b) ⇔ (c)’ By virtue of Lemma 2.1.

Lemma 6.2. Let M be an arbitrary non-empty set, N and ⊑ be binary
relations in M , and Fu ⊆ M × P(M) be a relation defined by (df Fu).
Then for N, ⊑ and Fu the groups of conditions below are equivalent:

1◦ (t⊑), (SSP), (df N), (antis⊑) and (∃Fu);22

2◦ (df N ⊑), (a), (antis⊑) and (∃Fu);
3◦ (df N ⊑), (df N), (antis⊑) and (∃Fu);
4◦ (df N ⊑), (df N), (b) and (d);
5◦ (a), (b) and (d).

Proof. ‘1◦ ⇔ 2◦ ⇔ 3◦’ By virtue of Lemma 6.1.
‘3◦ ⇒ 4◦’ From (df N ⊑) we have (r⊑) and (t⊑), and from (df N) we

have (irrN) and (sN).
Ad (b): Choose an arbitrary S ∈ P+(M). By virtue of (∃Fu) there

exists an x such that x Fu S. Assume that y Fu S. Then  by virtue of
(df Fu)  we have: ∀u(u N x ⇔ u N y). Hence, by virtue of (df N ⊑), we
have: x ⊑ y and y ⊑ x. Therefore, by virtue of (antis⊑), we have x = y.

22 Since (r⊑) results from (t⊑) and (SSP), the group (t⊑), (antis⊑) and (SSP)
defines the class of polarised partial orders of the form 〈M,⊑〉 with the relation N.
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Ad (d): Condition (2.3) follows from (df N ⊑) and (r⊑). Hence  by
applying (df Fu)  we have y Fu I(y). Therefore if x ⊑ y, then for a
certain S we have y Fu S and x ∈ S. Conversely, for a certain S let
y Fu S and x ∈ S. Hence — applying (Def Fu)(df Fu)  we have ∀u(u N
y ⇒ u N x). Therefore x ⊑ y, by virtue of (df N ⊑).

‘4◦ ⇒ 5◦’ From (df N) and (df N ⊑) we obtain (a), by Lemma 2.1.
‘5◦ ⇒ 2◦’ On p. 138 we derived conditions (antis⊑) and (df N ⊑)

from 5◦. Condition (∃Fu) follows directly from condition (b).23

Group 3◦ with the additional condition (df Fu) is definitionally equiv-
alent to the group of axioms and the definition of Leonard and Good-
man’s system as introduced in Remark 2.1. To see this, one needs merely
to define two binary relations ⊏ and � by condition (⊏=⊑\id) and the
identity � = −N. That condition is also a definition in Leonard and
Goodman’s system, and the identity is an axiom. Furthermore, under
this identity, (df N) and (df �) are equivalent.

Group 5◦ with the added condition (df Fu) is a restriction of the group
of axioms and definitions of the system from [Leśniewski, 1931, ch. X].
We obtain Leśniewski’s full system by adding condition (⊏=⊑\id) which
defines the relation ⊏.

From the above comments and from Lemma 6.2 we obtain the fol-
lowing conclusion:

Proposition 6.3. Leonard and Goodman’s system in [1940] and Leś-
niewski’s system in [1931, ch. X] are definitionally equivalent.

Proof. It suffices to describe the relation � (in Leśniewski’s system)
either either by the identity � = −N or by condition (df �), because
condition (df N) holds in his system.

One may accept that in groups 3◦ and 4◦  as in Leonard and Good-
man’s system  the primitive relation is N and condition (df N ⊑) defines
the relation ⊑. It is equally ‘natural’ to accept that the primitive relation
is ⊑ and the relation N is defined by (df N).

We will prove below that the systems mentioned in Proposition 6.3
are equivalent to the systems of axioms and definitions defining struc-
tures from the class MS (resp. TS), namely that the following theorems
hold.

23 We have used the ‘power’ of condition (b), this being greater than the power
of condition (∃Fu), to derive condition (antis⊑). Clearly, for the derivation of (antis⊑)
condition (UFu) itself sufficed, this resulting from (b) and (2.1).
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Theorem 6.4. Let M be an arbitrary non-empty set, N and ⊑ be bi-
nary relations in M satisfying some group of conditions from 1◦–5◦,
and Fu,Sum ⊆ M × P(M) be relations defined by conditions (df Fu) and
(df Sum), respectively. Then:

(i) Fu = Sum.
(ii) The structure 〈M,⊑〉 belongs to TS.

(iii) If the binary relation ⊏ is defined by condition (⊏=⊑\id), then the
structure 〈M,⊏〉 belongs to MS.

Proof. To begin with, we shall note a few results which we shall make
use of later. From (df N ⊑) we have (r⊑) and (t⊑) directly. Hence the
relation ⊑ partially orders M . From this and the identity ⊏ := ⊑ \ idM

it follows that the relation ⊏ satisfies conditions (L1) and (L2).
Thus, if we will prove that (i) holds, then from condition (b) we

obtain condition(L3 -L4), i.e., (ii) holds. Furthermore, (L4) follows from
(L3 -L4), and from (r⊑) and (L3 -L4) we have (L3). Therefore (iii) holds.

The identity Fu = Sum remains to be proved. In order not to repeat
earlier proofs in a different form, however, let us introduce the auxiliary
relation � defined by the identity � := −N.

Since the relations ⊑ and N satisfy conditions (df N ⊑) and (df N), the
relations ⊑ and � therefore satisfy conditions (df� ⊑) and (df �). It
follows from the second condition and (r⊑) that ⊑ is included in �.
Furthermore, the relations Fu and Sum satisfy conditions (df ′ Fu) and
(II.df ′ Sum), respectively.

On p. 81 we proved the inclusion Sum ⊆ Fu by using just (df Sum),
(df ′ Fu), (df �) and (t⊑). On p. 142 we proved the inclusion Fu ⊆ Sum

by using only (df Sum), (df ′ Fu), (df �), (df� ⊑) and (r⊑).

Theorem 6.5. Let M be an arbitrary non-empty set, ⊏, ⊑ and N be
binary relations in M , and Fu,Sum ⊆ M × P(M) be relations defined by
conditions (df Fu) and (df Sum), respectively. Then in both of the cases
below, when

(a) the relation N satisfies condition (df N) and the structure 〈M,⊑〉 be-
longs to TS,

(b) the relations ⊑ and N satisfy conditions (df ⊑) and (df N), and the
structure 〈M,⊏〉 belongs to MS,

then the relations ⊑ and N also satisfy the conditions in groups 1◦–5◦.

Proof. Suppose that (a) holds. Then for the relation ⊏ := ⊑ \ idM ,
the structure 〈M,⊏〉 belongs to MS and condition (df ⊑) is satisfied.
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Suppose that (b) holds. Then we proved earlier that all the condi-
tions in 3◦ follow from conditions (L1)–(L4) and definitions (df ⊑), (df N),
(df Sum) and (df Fu).

By introducing a suitable elementary language with a predicate as-
sociated with the relation N and by using theorems 6.4 and 6.5, we can
prove theorems which affirm the elementary definitional equivalence of
the classes MS and TS with the class of structures of the form 〈M, N〉, in
which the relation N and two defined relations Fu and ⊑ together satisfy
some system from 1◦–5◦ and (df Fu).24

7. Axiomatisations with the primitive relation �

The follow lemmas will come in useful for presenting the next definition-
ally equivalent axiomatisation of mereological structures:

Lemma 7.1. Assume that the binary relations � and ⊑ in a non-empty
set M satisfy condition (df� ⊑). Then:

(i) Conditions (antis⊑) and (ext�) are equivalent.
(ii) Condition (df �) is equivalent to the following25

x � y ⇐⇒ ∃z∈M∀u∈M

(
u � z ⇒ (u � x ∧ u � y)

)
. (G1)

Proof. Ad (i): Condition (ext�) follows in an obvious way from (df� ⊑)
and (antis⊑). Furthermore, if x ⊑ y and y ⊑ x, then  by virtue of
(df� ⊑)  we have: ∀z(z � x ⇔ z � y). Therefore (ext�) gives x = y.

Ad (ii): We subject (G1) to ‘equivalence’ transformations, in which
we apply  besides the logical rules  only condition (df� ⊑):

x � y ⇐⇒ ∃z∈M

(
∀u∈M (u � z ⇒ u � x) ∧ ∀u∈M (u � z ⇒ u � y)

)
,

x � y ⇐⇒ ∃z∈M

(
z ⊑ x ∧ z ⊑ y

)
.

The final formula is (df �).

24 Compare p. 129. The formula elementarily defining the relation N in terms of
the relation ⊑ (resp. ⊏) would arise from the elementary notation of condition (df N)
(resp. the ‘compilation’ of conditions (df N) and (df ⊑)) and, in the other direction, of
the condition (df N ⊑) (resp. (⊏=⊑\id) and (df N ⊑)).

If we accept that the relation ⊑ is primitive and N defined then  with the groups
of conditions we have accepted  the class of structures of the form 〈M,⊑〉 is simply
the class TS.

25 Condition (G1) is the first of the axioms of the calculus of individuals from
[Goodman, 1951] (formula 2.41 on p. 44). If the identity N = −� holds, then it is easy
to show that (G1) is equivalent to (a) (cf. lemmas 2.1 and 6.1).
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Lemma 7.2. If relations � and ⊑ satisfy conditions (t⊑) and (SSP), then
⊑ is reflexive.

Proof. Assume for a contradiction that for a certain x ∈ M , we have
x 6⊑ x. By virtue of (SSP), there exists a y such that y ⊑ x and ¬ y � x.
By applying (df �) we further get a contradiction, just as in the proof of
Lemma 5.7.

Lemma 7.3. For arbitrary binary relations � and ⊑ in a non-empty set
M , the following systems of conditions are equivalent:

(a) (t⊑), (SSP) and (df �);
(b) (df� ⊑) and (df �);
(c) (df� ⊑) and (G1).

Proof. ‘(a) ⇔ (b)’ By virtue of lemma 7.2, (r⊑) follows from (SSP) and
(t⊑). We showed on p. 90 that (df� ⊑) follows from (SSP), (r⊑) and (t⊑).

From (df� ⊑) we obtain the reflexivity and transitivity of the relation
⊑. Condition (II.2.6) follows from (r⊑), (t⊑) and (df �), i.e., for all
x, y ∈ M we have I(x) ⊆ O(y) iff O(x) ⊆ O(y). From this and (df� ⊑) for
all x, y ∈ M we get: if I(x) ⊆ O(y) then x ⊑ y, i.e., (SSP) holds.

‘(b) ⇔ (c)’ By virtue of Lemma 7.1(ii).

From lemmas 7.1(i) and 7.3 follows:

Proposition 7.4. If we add one of conditions (antis⊑) or (ext�) to the
groups (a)–(c) from Lemma 7.3, then we will obtain six equivalent groups
of conditions.

Lemma 7.5. Let M be an arbitrary non-empty set, � and ⊑ be binary
relations in M satisfying one of the six expanded systems from Propo-
sition 7.4 and Fu,Sum ⊆ M × P(M) be relations defined by conditions
(df ′ Fu) and (df Sum), respectively. Then:

(i) Fu = Sum.
(ii) Conditions (L4) and (∃Fu) are equivalent.

Proof. On p. 81, by using just (df Sum), (df ′ Fu), (df �) and (t⊑), we
proved the inclusion Sum ⊆ Fu. On p. 142, by using just (df Sum),
(df ′ Fu), (df �), (df� ⊑) and (r⊑), we proved the inclusion Fu ⊆ Sum. We
therefore have: Sum = Fu, i.e., conditions (L4) and (∃Fu) state the same
thing.

The theorem below may be used in deriving the following various
equivalent axiomatisations of mereological structures.
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Theorem 7.6. Let M be any non-empty set, � and ⊑ be binary relations
in M , and Fu,Sum ⊆ M × P(M) be defined by (df ′ Fu) and (df Sum).
Moreover, suppose that �, ⊑, Fu, Sum meet one of the six groups from
Proposition 7.4 plus one of the equivalent sentences (∃Fu) or (L4). Then:

(i) If the binary relation ⊏ is defined by the condition (⊏=⊑\id), then
the structure 〈M,⊏〉 belongs to MS.

(ii) The structure 〈M,⊑〉 belongs to TS.

Proof. Ad (i): If x Sum S and y Sum S then, by Lemma 7.5(i), x Fu S
and y Fu S as well. Therefore O(x) =

⋃
O(S) = O(y), by virtue of

(df ′ Fu). Hence x = y, by virtue of (ext�). We have therefore proved (L3).
By virtue of our assumptions, we have: (r⊑), (t⊑), (antis⊑). The rela-

tion ⊏, defined by the equality⊏ := ⊑ \ idM , therefore meets conditions
(L1) and (L2).

Ad (ii): We have (t⊑), and (L3 -L4) follows from (L3) and (L4).

Eberle [1967] and Smith [1993] have considered mereology as a first-
order theory with identity with a primitive two-place predicate “<” as-
sociated with the relation ⊑ (corresponding to our “�”). The predicate
associated with the relation � they defined with the help of a formula
whose counterpart here is (df �). They established that the relations ⊑
and � satisfy conditions (antis⊑) and (df� ⊑). Furthermore, they adopted
an infinite number of elementary axioms falling under one schema. We
obtain these axioms from (∃Fu) by ‘unravelling’ the definition (df ′ Fu)
and replacing the formula “x ∈ S” with an arbitrary formula ϕ(x) of
their theory, which has at least one free variable “x”. It may therefore
be accepted that Eberle and Smith were using a system composed out of
(df� ⊑), (df �), (antis⊑) and (∃Fu), whilst bypassing the fact that they
explored mereology as a first-order theory.26

In his calculus of individuals Goodman [1951] also considers mere-
ology as a first-order theory with a primitive two-place predicate “o”
associated with the relation �. With the help of this predicate, other
two-place predicates are defined: “≪”, “<”, “qx” and “=”. The first three
predicates correspond to our relations ⊏, ⊑, and N, respectively. They
are defined by elementary counterparts of conditions (⊏=⊑\⊒), (df� ⊑)

26 We shall talk about the difference between both approaches in Chapter VI.
Under the ‘elementary’ approach  from a structure-theoretical point of view  we
will assume only the existence of fusions for non-empty sets {x ∈ M : ϕ(x)}, i.e.,
elementarily definable sets (they can be elementary definability with parameters when
other free variables occur in the formula ϕ(x); see p. 292 in Appendix II).
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and (N=−�). Furthermore, Goodman adopts a near-undefined predicate
in his theory, which is marked schematically by “. . . x”.27 The predicate
“=” is defined via an elementary counterpart of condition (ext�) and
is supposed to fill the role of identity, i.e., the axiom-schema “x = y ∧
. . . x ⇒ . . . y” is implicitly accepted.28 The axioms are moreover certain
elementary formulae, of which the first corresponds to condition (G1) and
the others guarantee that in an arbitrary model 〈M,�〉 of the theory for
arbitrary x, y ∈ M , there exists a sum x+ y such that x+ y Fu {x, y}; if
x � y, then there exists a product xy such that xy Nu {x, y}; there exists
a complement −x such that I(−x) = {z ∈ M : z N x}, if the indicated
set is non-empty, because the relation ⊑ is reflexive, i.e, −x ∈ I(−x).

Breitkopf [1978] broadens Goodman’s calculus of individuals [1951].
Breitkopf adopts the same definitions as Goodman. The first axiom in
[Breitkopf, 1978]  as in [Goodman, 1951]  is an elementary counterpart
of (G1). The second axiom is an elementary sentential schema arising
from (∃Fu), which we mentioned in footnote 3.1 on p. 147. Bypassing
the fact, therefore, that an elementary theory was explored in [Breitkopf,
1978], Breitkopf adopted system: (df� ⊑), (G1), (ext�) and (∃Fu).29

We may also prove an counterpart of Theorem 6.5 for the six equiv-
alent groups of Proposition 7.4 by swapping in them every occurrence of
the symbol “N” and condition (df Fu) for the symbol “�” and condition
(df ′ Fu), respectively. The final conclusion of this counterpart should
have the form: the relations ⊑ and � also satisfy the conditions given in
the extended groups of Proposition 7.4.

27 Which corresponds to the sentential schema “Fx”.
28 This schema is mentioned by Libardi [1990, p. 134] as the third axiom of

Goodman’s theory. This schema is essential. As a matter of fact, it is possible
to prove the reflexivity, symmetry and transitivity of the predicate “=” from the
axioms and definitions he adopts, and that it behaves like identity with respect to the
predicates “o”, “≪”, “<” and “qx”. We will not, however, prove the general schema
“x = y ∧ Fx ⇒ Fy”.

29 Breitkopf also accepted a third axiom, which is an elementary counterpart of
our condition (∃Nu) (see condition (8.2) on p. 167) . It is a certain sentential schema
obtained from (∃Nu) by ‘unravelling’ definition (df Nu) and replacing the set-theoretic
formula “z ∈ S” with the sentential schema “Fz”. As Simons [1987, (fn. 22, p. 36]
correctly observes this third axiom is dependent on the first two (cf. Corollary 3.4
and Theorem 7.6). Simons’ proof of this is unsuccessful, however, and because of this
draws the false conclusion, that the conditions (∃⊓) is not necessary in the group of
conditions: (L2), (WSP), (∃⊓) and (∃Fu) (the group 16◦ in Theorem 3.15). We shall
return to this matter in the next section.
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We shall end by observing that, for structures of the form 〈M,�〉,
which satisfy the conditions given in Theorem 7.6, analogous comments
to those made after Theorem 6.5 may be made.

8. Simons’ Classical Extensional Mereology

Classical Extensional Mereology, Simons’ theory from [1987, p. 37], is
formulated in a schematic first-order language with certain specific sym-
bols added to it. The first of these is a two-place predicate “≪” (cor-
responding to our predicate “�”) associated with the relation ⊏. Other
two-argument predicates “<” (corresponding to our predicate “�”), “�”
and “N” are associated with the relations ⊑, � and N, respectively, and
are defined with the help of certain elementary formulae corresponding
to our (df ⊑), (df �) and (N=−�). In presenting the theory from [Simons,
1987], we shall use our terminology because the formulae expressed in
terms of it may be easily translated into the elementary formulae as
expressed by Simons.

The axioms of Simons’ Classical Extensional Mereology are: (L1),
(L2), (WSP)30 and the equivalent of the condition signified in [Simons,
1987, pp. 36–37] by “SA24” and “GSP”:31

∃x Fx =⇒ ∃y∀z

(
z � y ⇔ ∃x(Fx ∧ x � z)

)
. (GSP)

Considering the condition (df ′ Fu) (equivalent to (df Fu), based on
(N=−�)), we see that the schema (GSP) states the same as in our ter-
minology the following schema:

∃x∈M Fx =⇒ ∃y∈M y Fu {x ∈ M : Fx} , (8.1)

i.e., condition (∃Fu) applied to the set S := {x ∈ M : Fx}.
It may be taken that Simons intended to axiomatise ‘ordinary’ clas-

sical mereology. This is attested to by the results below and  in the
context of the equivalence of systems 1◦–19◦ from theorems 1.2, 3.7
and 3.15  the passage from his [Simons, 1987] which is reprinted below.

The group of axioms described on p 165 (and in footnote 29) accepted
by Breitkopf [1978] axiomatises classical mereology (in an elementary

30 We have already noted (in footnote 15) that axiom (L1) is inessential here.
31 In (GSP), so as to standardise things, we have swapped some symbols used

in [Simons, 1987] for the symbols we are using here. And so we have used brackets
instead of the ‘corners’ playing the role of brackets in [Simons, 1987].
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form). Simons [1987, p. 36, fn. 22] observes that the third axiom in
[Breitkopf, 1978] is not independent of the first two. As was already
mentioned in footnote 29, Brietkopf’s third axiom, i.e., the schema (1.3)
in Breitkopf [1978] corresponds to the condition (∃Nu) from p. 141 which
was given the following elementary form:

∃z∀x(Fx ⇒ z ⊑ x) =⇒ ∃y∀z

(
z ⊑ y ⇔ ∀x(Fx ⇒ z ⊑ x)

)
. (8.2)

That is, it corresponds to condition (∃Nu) applied to S = {x ∈ M : Fx}.
By substituting the formula “x = u ∨ x = v” for the schema “Fx”, we
obtain S = {u, v}. Thus, as on p. 148, we derive condition (∃⊓) from
(8.2), the former being condition (1.19) in [Breitkopf, 1978].32

Simons considers that (8.2), i.e., (∃⊓) as well, is not independent
of (L1), (L2), (WSP) and (GSP). Since he has earlier derived condi-
tion(SSP) from the axioms of his “Minimal Extensional Mereology” 
i.e., from (L1), (L2), (WSP) and (∃⊓)  by applying “the rule of cut”,
he comes to the conclusion that he can also derive condition (SSP) from
the axioms of this Classical Extensional Mereology.33

Condition (∃⊓) is, however, independent of (L1), (L2), (WSP) and
(GSP) and the definitions established in [Simons, 1987]. As we have
already noted in footnote 14, model 4 is a model of Simons’ theory, but
condition (∃⊓) does not hold in this model. For in that structure we have
12 � 21, but there does not exist a y ∈ M3 such that for any z ∈ M3 we
have: z ⊑ y iff z ⊑ 12 and z ⊑ 21.

We observe also that since we have 12 6⊑ 21 and I(12) ⊆ O(21)
in model 4, condition (SSP) is therefore not true in it. Hence condi-
tion (SSP) does not follow from the axioms and definitions accepted by
Simons. Thus the formula SCT12 should not be amongst the list of
theorems he gives, as it is  written in an elementary way  the coun-
terpart of our formula (II.6.1). In a similar respect  as we have shown
in the proof of Proposition 3.11  formulae SCT15 and SCT16 should

32 Breitkopf [1978] does not in general use the third axiom to introduce condition
(1.19), but takes a somewhat roundabout route which uses just the first two axioms
(G1) and (GSP). From the first and from definition (df� ⊑) he gets (df �). He later
substitutes the formula “x ⊑ u ∧ x ⊑ v” in (GSP) for the schema “Fx”, in other
words, he applies (∃Fu) to S = {x : x ⊑ u ∧ x ⊑ v}. Besides this, he makes use of
condition (df� ⊑) many times. In short, Breitkopf shows that condition (∃⊓) follows
from: (r⊑), (t⊑), (df �), (SSP) and (GSP) (resp. (df ′ Fu) and (∃Fu)).

33 From (SSP) and (L1), (L2) and (GSP), in fact, we get ‘true’ classical elemen-
tary mereology. Compare the group 11◦ in Theorem 3.7.
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not find themselves included in his list, since they are the elementary
counterparts of our formulae (df� ⊑) and (ext�). Simons [1987] does not
prove that the aforementioned formulae are theses of his system. He just
cites the list of theorems given by Breitkopf [1978]. Simons’ axioms and
definitions, however, create an essentially weaker system than the system
created by Breitkopf’s axioms and definitions. As we proved above, by
extending the axiomatisation of his minimal extensional mereology by
the inclusion of (GSP), Simons unnecessarily rejected axiom (∃⊓). We
will try to explain below what drove Simons to this.

Simons [1987, pp. 35 and 37] introduced definition SD9 by means of a
singular description, in which the definiendum “sx(Fx)” is supposed to
be a ‘general sum’ (fusion) of all F -ers, formally corresponding  in our
terminology  to the sum

⊔
{x ∈ M : Fx}. Definition SD9 is as follows:sx(Fx) ≈ (i y) ∀z

(
z � y ⇔ ∃x(Fx ∧ x � z)

)
, (SD9)

where the symbol “≈” is used with the following sense: a formula of
the form “a ≈ b” says that a and b signify the same object or signify
nothing.34

In the language we are using, definition (SD9) may be written as a
definition of the partial operator Σ of the sum (fusion) of all elements of a
given subset of the universe, i.e., an operator, which need not be defined
on P+(M). The definition of the operator Σ therefore looks like this:

Σ(S) := (i y) ∀z∈M

(
z � y ⇔ ∃x∈S x � z

)
. (df Σ)

The formulation “sx(Fx)” used by Simons would correspond to “Σ{x :
Fx}” in our language. By applying the definitions in [Simons, 1987] and
(df ′ Fu) and (df Σ) we see that Σ(S) = (i y)y Fu S. Hence, for the domain
dom Σ of the operator Σ we have dom Σ = {S ∈ P(M) : ∃!y∈M y Fu S}.
Moreover, it follows from axioms (∃Fu) that dom Σ ⊆ P+(M).

34 On p. 22 in [Simons, 1987] there is a table in which the formula “a ≈ b” is
explained as “Truth-conditions ‘a’ and ‘b’ designate the same individual or are both
empty”. Notice that on both sides of the symbol the names are empty not only
when there is no such y for the predicate F which would satisfy the the condition
“∀z(z � y ⇔ ∃x(Fx ∧ x � z))”. Both names are also empty when there is a y
but not just one y. Axiom (GSP) ensures that if something is F , then we have a y
which satisfies the aforementioned formula. Yet  as Proposition 3.11 entails  all the
axioms accepted by Simons do not ensure that this y is unique. This is not the case
in mereological structures, where an expression of the type “

⊔
{x ∈ M : Fx}” is a

monoreferential term if and only if some element of the set M is F
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The operator Σ is associated with the relation s included in M ×
dom Σ and defined by the following condition:s := {〈y, S〉 ∈ M × dom Σ : y = Σ(S)}. (df s)

Clearly, s ⊆ Fu, but in model 4 we have s ( Fu. In fact, 12 Fu {1, 2},
but {1, 2} 6∈ dom Σ, because 21 Fu {1, 2} as well, i.e., ¬ 12 s {1, 2}.35

Alongside the definition of a “general sum” on p. 35 Simons intro-
duces the definition SD10, in which the definiendum “px(Fx)” is sup-
posed to be the “general product” of all F -ers, which corresponds to the
product ⊔{x ∈ M : Fx}. Definition SD10 is as follows:px(Fx) ≈ (i y) ∀z

(
y < z ⇔ ∀x(Fx ⇒ x < z)

)
, (SD10)

Simons adds that he adopts SD10 from Breitkopf. In our language,
definition SD10 is none other than the definition of the partial operator
inf⊑ of the lower bound with respect to relation ⊑, which satisfies the
following condition: inf⊑(S) := (i y) y inf⊑ S. One just needs to consider
condition (4.15) from Appendix I, that the relation ⊑ is reflexive and
transitive and that and the relation inf⊑ satisfies condition (Uinf). It
follows from this last result and from (2.5) that, for arbitrary y ∈ M
and S belonging to the domain of the operator inf⊑ we have:

y = inf⊑(S) ⇐⇒ y inf⊑ S ⇐⇒ y Nu S . (8.3)

Having accepted axiom (GSP) and definition (SD10), Simons writes
the following, however:

There is no need for a special axiom for products, since if something is
a part [36] of all F -ers, them the product may be defined as the sum
of all such common parts. [37] In fact, in this case it may equally well

35 We observe that the group of axioms (L1), (L2), (WSP) and (∃Fu) expanded
by the equality s = Fu is equivalent to the group: (L1), (L2), (UFu) and (∃Fu) (and
also  by virtue of Lemma 3.6  to the group: (L1), (L2), (L3) and (∃Fu)). In fact,
the pair (∃Fu) and s = Fu is equivalent to the pair (∃Fu) and dom Σ = P+(M) (i.e.,
y = ΣS iff y Fu S, by virtue of (df Σ)), and this is equivalent to the pair (∃Fu) and
(UFu). Furthermore, (WSP) follows from (L1), (L2) and (L3).

Thus, even if we were additionally to accept that s = Fu, we would not obtain an
axiomatisation for mereology, because the formulae in that extended group are true
in model 3.

36 Remember that Simons’ “part” is our “ingrediens”.
37 Footnote 22 added here reads: “Thus the third axiom of BREITKOPF 1978

is not independent.”
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be defined as the least upper bound of all such common parts. The
proof that the two definitions of product are equivalent uses the Strong
Supplementation Principle and the existence of binary products to de-
rive a contradiction from the assumption that the least upper bound of
all common parts is not itself a common part. Since it therefore is a
common part, it is then straightforward to show that this least upper
bound is also the sum of common parts. [Simons, 1987, p. 36]

Taking into account the previously-indicated connection between (SD10)
and the definition of the lower bound, we see that the first sentence in
the passage above states that:

⋂
I(S) 6= ∅ =⇒ inf⊑(S) = Σ(

⋂
I(S)), (8.4)

or  with reference to (8.3)  asserts the truth of condition (∗∗). Simons
later justifies (8.4) by saying that the lower bound is definable by the
upper bound (i.e., inf⊑(S) = sup

⊑
(
⋂

I(S))) and that from (SSP) and
(∃⊓) we can derive:

⋂
I(S) 6= ∅ =⇒ sup

⊑
(
⋂

I(S)) = Σ(
⋂

I(S)). (8.5)

Since it is easy to derive condition (∃Nu) from (8.3), (8.4) and (∃Fu),38

we may also derive condition (∃⊓).39 Simons has ‘overlooked’ the fact,
however, that without (∃⊓) he cannot derive (8.5), which is the justifi-
cation for condition (8.4). Quite simply, as Theorem 3.15 shows, in the
context of formulae (L2), (WSP) and (∃Fu), the formulae (∃⊓) and (∗∗)
(resp. (8.4)) are equivalent.

In accordance with his position as presented in the first sentence of
the passage above, Simons introduces the following definition in present-
ing his Classical Extensional Mereology on p. 37.px(Fx) ≈ sx(

∀y(Fy ⇒ x ⊑ y)
)
, (�)

giving it once again the name “SD10”.40 Definition (�) may be trans-
formed into our terminology into the definition of the partial operator

38 That is why in [Simons, 1987, s. 36] there was the need for footnote 22 (see
footnote 37).

39 Cf. Lemma 3.14.
40 Considering the passage cited as a whole, it follows that Simons considers that

definition (�) is equivalent in his theory with definition SD10 (previously taken from
Breitfkopf).
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Π of the product of all elements of a given subset of the universe. We
therefore define it by the identity Π(S) := Σ(

⋂
I(S)). It follows from

(8.5) that Π = inf⊑ or that:

⋂
I(S) 6= ∅ =⇒ Π(S) = (ix) x Nu S . (8.6)

But in Simons’ theory condition (8.5) is not satisfied.
To end, let us add that formula SCT61 should also not be on Simons’

list, this being the elementary counterpart of our formula (8.6). Nor
should formulae SCT65 and SCT66 appear there, these being elementary
counterparts of the formulae below:

S 6= ∅ =⇒ Σ(S) = (ix) x sup
⊑
S ,

S 6= ∅ =⇒ Σ(S) = (ix) x Sum S .

Simons [1987, p. 40, fn. 24] states that, in his theory, the following are
equivalent: his definition of a sum, the definition of a sum used by Tarski,
and the definition of an upper bound. This is not true.

To sum up, we see that Simons has implicitly adopted condition
(∗∗), which corresponds to both (8.4) and (8.5). Theorem 3.15 shows
that Simons could have equally well adopted  in the context of (8.5) 
he more general condition (∗) instead of (∗∗), or  the context of (8.4) 
the more particular condition (∗∗∗). He could also have simply not
rejected sentence (∃⊓).



Chapter V

The lattice of certain superclasses of the class MS 

independence of conditions

Throughout this chapter, we shall be considering L�-structures of the
form 〈M,⊏〉. As in Chapter II  irrespective of the properties we estab-
lished for the relation ⊏  we define in the structure 〈M,⊏〉 auxiliary
relations ⊑, �, N and Sum by applying (df ⊑), (df �), (df N) and (df Sum),
respectively. It follows from the definitions themselves, that the relations
⊑ and � are reflexive, that the relation N is irreflexive, that � and N are
symmetric, that ⊑ is included in �, and that the equality N = −� holds.

Theorem III.2.4 says that the class MS is not elementarily axiomati-
sable. All the remaining superclasses of the class MS considered in this
chapter will be finitely axiomatisable (see Theorem 8.1)

1. The lattice of certain classes between L123 and L12

First we use the following three conditions:

∀x,y∈M (x ⊏ y =⇒ y 6⊏ x), (L1)

∀x,y,z∈M (x ⊏ y ∧ y ⊏ z =⇒ x ⊏ z), (L2)

∀S∈P(M)∀x,y∈M (x Sum S ∧ y Sum S =⇒ x = y), (L3)

(L1) and (L2) say that the relation ⊏ is asymmetric and transitive,
respectively, and (L3) says that if a set has a mereological sum then it
is unique. On p. 71 we described L12 as the class of all those structures
in which the relation ⊏ satisfies conditions (L1) and (L2). Thus, L12 is
the class SPOS of all strictly partially ordered sets in which the relation
⊏ is also irreflexive, i.e.:

∀x∈M x 6⊏ x . (irr⊏)

We define L123 as the class of all structures of L12 in which (L3) holds.
From Proposition IV.4.5(ii) we have:

Proposition 1.1. L123 ( L12.



1. The lattice of certain classes between L123 and L12 173

In this section we will examine the lattice of certain classes of struc-
tures K such that L123 ( K ( L12. The addition of the name of a
condition C to the name of a class K of structures generates the name
of the class of those structures in which C holds. Furthermore, the
connection between these names of conditions creates the name of the
class of structures in which the conditions hold.

In this section we will use the following conditions to designate classes
of structures:

∃x∈M ∀y∈M x ⊑ y ⇐⇒ CardM = 1 , (∄0)

CardM > 1 ⇐⇒ ∃x,y∈M x N y , (∃ N)

∀x,y∈M (∅ 6= P(x) = P(y) =⇒ x = y), (ext⊏)

∀x,y∈M

(
O(x) = O(y) =⇒ x = y

)
, (ext�)

∀x,y∈M (x Sum {y} =⇒ x = y), (SSum)

∀x,y∈M

(
x ⊏ y =⇒ ∃z∈M(z ⊏ y ∧ z N x)

)
, (WSP)

∀x,y∈M

(
∅ 6= P(x) ⊆ P(y) =⇒ x ⊑ y

)
, (PPP)

∀x,y∈M

(
∅ 6= P(x) ( P(y) =⇒ x ⊏ y

)
. (PPP′)

Of course we have for all classes K1 and K2 such structures we have:

K1 ⊆ K2 iff from the set of conditions defining K1

follow all conditions defining K2.

For example, we have:

1. L12 = (L2) + (irr⊏)
2. L12 + (WSP) = (L2) + (WSP) = L12 + (SSum) by Lemma II.4.1
3. L123 := L12 + (L3) = L12 + (ext�) by Theorem II.4.4
4. L12 + (∃ N) ⊆ L12 + (∄0) see p. 85
5. (L2) + (WSP) ⊆ (L2) + (∃ N) see p. 85
6. L123 ⊆ (L2) + (WSP) + (ext⊏) see p. 83
7. L12 + (PPP) = L12 + (PPP′) + (ext⊏) see Remark II.6.1

We will prove that the classes featured in Diagram 1 (which are
composed out of structures we shall be examining in this chapter) create
a lattice in which the relation of inclusion ⊆ is a partial order. The
dependence K1 → K2 in Diagram 1 indicates that K1 ( K2. The fact
that the appropriate inclusions hold in diagram 1 follows either from the
definitions of the classes that occur there or from the above points 2–6.
We will now show that these inclusions are proper and that no others
hold.
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L12

L12 + (ext⊏) L12 + (∄0)

L12 + (ext⊏) + (∄0) L12 + (∃ N)

L12 + (ext⊏) + (∃ N) (L2) + (WSP)

(L2) + (ext⊏) + (WSP)

L123

Diagram 1. The lattice of certain classes between L123 and L12

12 21

1 2

Model 6. (L1), (L2), (WSP) and (ext⊏) hold, but (L3) does not hold

Proposition 1.2. Condition (L3) does not follow from the set {(L1),
(L2), (WSP), (ext⊏)}. Thus, we obtain:

• L123 ( (L2) + (WSP) + (ext⊏).

Proof. By expanding model 4 we obtain model 6 of the formulae (L1),
(L2), (WSP) and (ext⊏), in which (L3) is not true, since we have both
12 Sum {1, 2} and 21 Sum {1, 2}.1

Proposition 1.3. Condition (ext⊏) does not follow from the set {(L1),
(L2), (WSP)}, so also it does not follow both from {(L1), (L2), (∃ N)} and
{(L1), (L2), (∄0)}. Thus, we obtain:

1 Note that model 4 suffices to show that (L3) does not follow from (L1), (L2)
and (WSP). Furthermore, model 5 suffices to show that (L3) does not follow from
(L1), (L2) and (ext⊏).
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2

1

Model 7. (L1), (L2), (ext⊏), (∃ N), (PPP) hold, but (WSP) does not hold

• L12 + (WSP) + (ext⊏) ( (L2) + (WSP),
• L12 + (ext⊏) + (∃ N) ( L12 + (∃ N),
• L12 + (ext⊏) + (∄0) ( L12 + (∄0),
• L12 + (ext⊏) ( L12,
• L12 + (WSP) * L12 + (ext⊏) + (∃ N),
• L12 + (∃ N) * L12 + (ext⊏) + (∄0),
• L12 + (∄0) * L12 + (ext⊏).

Proof. In model 4, (L1), (L2) and (WSP) hold, but (ext⊏) does not
hold, because P(12) = {1, 2} = P(21).

Proposition 1.4. Condition (WSP) does not follow from the set {(L1),
(L2),(PPP),(∃ N)}, so also it does not follow from the set {(L1), (L2),
(ext⊏), (∃ N)}. Thus, we obtain:

• L12 + (ext⊏) + (WSP) ( L12 + (ext⊏) + (∃ N),
• L12 + (WSP) ( L12 + (∃ N),
• L12 + (ext⊏) + (∃ N) * L12 + (WSP).

Proof. In model 7 of conditions (L1), (L2), (ext⊏) and (∃ N) condition
(WSP) does not hold, because 1 ⊏ 2 and P(2) ⊆ O(1).2

Proposition 1.5. Condition (∃ N) does not follow from the set {(L1),
(L2), (PPP), (∄0)}, so also it does not follow from the set {(L1), (L2),
(ext⊏), (∄0)}. Thus, we obtain:

• L12 + (ext⊏) + (∃ N) ( L12 + (ext⊏) + (∄0),
• L12 + (∃ N) ( L12 + (∄0),
• L12 + (ext⊏) + (∄0) * L12 + (∃ N).

Proof. Let M = 〈M,⊏〉 be a structure in which M is the set of negative
integers and ⊏ is the relation <. Then ⊑ is the relation ¬, � is the full
relation, and N is the empty one. Thus, conditions (L1), (L2), (∄0) and
(PPP) hold, but (∃ N) do not hold.

2 Model 5 suffices to show that (WSP) does not follow from {(L1), (L2), (PPP)}.
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Proposition 1.6. Condition (∄0) does not follow from the set {(L1),
(L2), (PPP)}, so also it does not follow from the set {(L1), (L2), (ext⊏)}.
Thus, we obtain:

• L12 + (ext⊏) + (∄0) ( L12 + (ext⊏),
• L12 + (∄0) ( L12,
• L12 + (ext⊏) * L12 + (∄0).

Proof. In model 5 of conditions (L1), (L2) and (PPP) (we have P(1) =
∅ 6= P(2)) condition (∄0) does not hold.

Moreover notice that conditions (irr⊏) (and thus a fortiori condition
(L1)) and (WSP) do not follow from the set composed of conditions:
(L2), (L3), (L4), (ext⊏), (∃ N), (SSum), (∄0), (ext�), (PPP), (PPP′), (SSP),
(M1), (M2), where

∀S∈P+(M)∃x∈M x Sum S , (L4)

∀x,y∈M

(
x 6⊑ y =⇒ ∃z∈M(z ⊑ x ∧ z N y)

)
, (SSP)

∀S∈P(M)∀x,y∈M (I(x) ⊆
⋃

O[S] ∧ S ⊆ I(y) =⇒ x ⊑ y), (M1)

∀S1,S2∈P(M)∀x,y∈M (x Sum S1 ∧ y Sum S2 ∧ S1 ⊆ S2 =⇒ x ⊑ y). (M2)

We take the structure with the one-element universe {0} and such that
0 ⊏ 0. Thus, the structure does not fulfil conditions (irr⊏) and (WSP).
It is clear that conditions (L2), (ext⊏), (PPP), (PPP′) and (SSum) are
true in it. By virtue of the definitions we have 0 ⊑ 0 and 0 � 0. Thus,
the equivalences (∃ N) and (∄0) hold, because both sides of the former
are false and both sides of the latter are true. Furthermore, 0 Sum {0}.

2. The lattice of certain classes between L12+(SSP) and L12

To the class L12 + (SSP) belong those and only those structures of the
form 〈M,⊏〉 which are polarised strict partial orders. In the class L12,
condition (SSP) is equivalent to each of the conditions (M1) and (M2)
(cf. Lemma II.6.2). Hence we have:

8. L12 + (SSP) = L12 + (M1) = L12 + (M2).

Furthermore, by virtue of Theorem IV.3.1, the identity Sum = Fu holds
for the relation Fu as defined by condition (df Fu).

The theory of the class L12 + (SSP) is the strongest one which does
not postulate the existence of mereological sums [see Pietruszczak, 2013,
pp. 67–68]. So we might call it either Neutral Existential Mereology or
Non-Existential Mereology.
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L12

L12 + (ext⊏)

L12 + (PPP) L12 + (ext⊏) + (∄0)

L12 + (PPP) + (∄0) L12 + (ext⊏) + (∃ N)

L12 + (PPP) + (∃ N) (L2) + (ext⊏) + (WSP)

(L2) + (PPP) + (WSP) L123

L123 + (PPP)

L12 + (SSP)

Diagram 2. The lattice of certain classes between L12 + (SSP) and L12

On the strength of identity 7 we also have the following equalities:

9. (L2) + (PPP) + (WSP) = (L2) + (PPP′) + (ext⊏) + (WSP),
10. L123 + (PPP) = L123 + (PPP′) + (ext⊏).

We will now expand the lattice from diagram 1 to diagram 2 with
classes that are created using conditions (PPP) and (SSP).

The fact that all corresponding inclusions hold in diagram 2 follows
from the definitions of the classes occurring there or from results proved
in II.4. By using propositions 1.4–1.6 and the results proven below we
will show that these inclusions are proper and that no others hold.

Proposition 2.1. Condition (SSP) does not follow from the set {(L1),
(L2), (L3), (PPP)}. Thus, we obtain:

• L12 + (SSP) ( L123 + (PPP).

Proof. In model 8 of formulae (L1)–(L3) and (PPP), the sentence
(SSP) is false, because I(234) ⊆ O(1234) and 234 6⊑ 1234.3

3 It is also easy to observe that in model 8, conditions (M1) and (M2) are false
and that the inclusion Fu ⊆ Sum does not hold. Essentially, we have 234 6⊑ 1234
but I(234) ⊆ O({1234}); 1234 Sum {1,2, 3, 4} and 234 Sum {2,3, 4}; O(1234) = M =
⋃

O(M) and ¬ 1234 Sum M .
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234

1234

1 2 3 4

Model 8. Conditions (L1)–(L3) and (PPP) hold, but (SSP) does not hold

Proposition 2.2. Condition (PPP′) (and so also (PPP)) does not follow
from the set {(L1), (L2), (L3)}, so also it does not follow both from {(L1),
(L2), (ext⊏), (∃ N)}, {(L1), (L2), (ext⊏), (WSP)} and {(L1), (L2), (ext⊏),
(∄0)}. Thus, we obtain:

• L123 + (PPP) ( L123,
• L12 + (PPP) + (∃ N) ( L12 + (ext⊏) + (∃ N),
• L12 + (PPP) + (WSP) ( L12 + (ext⊏) + (WSP),
• L12 + (PPP) + (∄0) ( L12 + (ext⊏) + (∄0),
• L12 + (ext⊏) ( L12 + (PPP),
• L123 * L12 + (PPP) + (WSP),
• L12 + (ext⊏) + (WSP) * L12 + (PPP) + (∃ N),
• L12 + (ext⊏) + (∃ N) * L12 + (PPP) + (∄0),
• L12 + (ext⊏) + (∄0) * L12 + (PPP).

Proof. In model 2 of conditions (L1)–(L3), conditions (PPP′) and
(PPP) do not hold, because ∅ 6= P(23) ( P(123) and 23 6⊑ 123.

Proposition 2.3. Condition (L3) does not follow from the set {(L2),
(PPP), (WSP)}, so also it does not follow from the set {(L2), (ext⊏),
(WSP)}. Thus, we obtain:

• L123 ( L12 + (ext⊏) + (WSP),
• L12 + (PPP) + (WSP) * L123.

Proof. In model 9 of conditions (L1), (L2), (PPP) and (WSP), condi-
tion (L3) does not hold, because 12 Sum {1, 2} and 21 Sum {1, 2}.

Moreover, by propositions 1.4–1.6 we obtain:
• L12 + (PPP) + (WSP) ( L12 + (PPP) + (∃ N),
• L12 + (ext⊏) + (WSP) ( L12 + (PPP) + (∃ N),
• L12 + (PPP) + (∃ N) ( L12 + (PPP) + (∄0),
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12 21

1 2

Model 9. (L1), (L2), (PPP) and (WSP) hold, but (L3) does not hold

• L12 + (PPP) + (∄0) * L12 + (ext⊏) + (∃ N),
• L12 + (PPP) + (∄0) ( L12 + (PPP),
• L12 + (PPP) * L12 + (ext⊏) + (∄0).

3. The relation Sum versus the relation of supremum in classes
between L12 + (SSP) and L12

If 〈M,⊏〉 belongs to L12, then the relation ⊑ partially orders the set
M . The relation of the least upper bound sup

⊑
defined by the condition

(df sup
⊑

) therefore has well-known properties (see Lemma II.8.1).

1. By virtue of Lemma II.8.2, in L12 condition (SSP) is also equivalent
to the following:

Sum ⊆ sup
⊑
. (†)

Thus, to the class L12+ (SSP) belong those and only those strict partial
orders in which the inclusion Sum ⊆ sup

⊑
holds. Thus, we have:

11. L12 + (SSP) = L12 + (†).

Proposition 3.1. The following condition

∀S∈P+(M)∀x∈M (x sup
⊑
S =⇒ x Sum S). (‡)

does not follow from the set {(L1), (L2), (SSP)}. Thus, we obtain:
• L12 + (SSP) + (‡) ( L12 + (SSP).

Proof. In model 10 of conditions (L1), (L2) and (SSP), the set {1, 2}
has no mereological sum, but we have 123 sup

⊑
{1, 2}.

2. From conditions (L1)–(L3) and (PPP) themselves follows no general
connection between the relation Sum and sup

⊑
, besides the fact that
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123

1 2 3

Model 10. Conditions (L1), (L2), (SSP), (WSP) and (∃⊓) hold,
but condition (‡) does not hold

these relations coincide on singletons. In fact, in model 8 of the formulae
(L1)–(L3) and (PPP) we have: 234 Sum {2, 3, 4} but ¬∃xx sup

⊑
{2, 3, 4};

and 1234 sup
⊑

{1, 2} but ¬∃x x Sum {1, 2}. Therefore both Sum * sup
⊑

and sup
⊑
* Sum.4

3. We will prove that in all structures of the class (L2) + (WSP), if the
mereological sum and the least upper bound of a given set exist, then
they are equal to one another. In fact, we obtain:

Lemma 3.2. In the class (L2) + (WSP) the following condition holds:

∀S∈P(M)∀x,y∈M (x sup
⊑
S ∧ y Sum S =⇒ x = y). (⋄)

Proof. Let (a) x sup
⊑
S and (b) y Sum S. From (b) we have S ⊆ I(y).

Hence, by virtue of (a) and (df sup
⊑

), we have x ⊑ y. Assume for a
contradiction that x 6= y. Therefore x ⊏ y. Thus, by virtue of (WSP),
for some v ∈ M we have (c) v ⊏ y and (d) v N x. From (b) and (c), by
virtue of (df Sum), there exist ∈ zS and u ∈ M such that u ⊑ v and
u ⊑ z. Since z ⊑ x by virtue of (a), then from (L2) we have u ⊑ x.
Therefore v � x, which contradicts condition (d).5

Moreover, we also have:

Lemma 3.3 (Pietruszczak, 2013). In L12 + (⋄) condition (WSP) holds.

Proof. Assume for a contradiction that in L12 + (⋄) condition (WSP)
does not hold. Then for some x, y ∈ M : (a) x ⊏ y and (b) P(y) ⊆ O(x).
By (a) and (t⊑) we have (c) I(x) = I(x) ∩ I(y). Moreover, by (a), (b)

4 If conditions (L1)–(L3) were the only ones to interest us, then model 2 would
suffice by itself. For in that model we have: 23 Sum {2,3} but ¬∃x x sup

⊑
{2,3}; and

123 sup
⊑

{1, 2} but ¬∃x x Sum {1,2}.
5 For structures of L12 + (SSP) we have an easier proof of condition (⋄). Assume

that x sup
⊑
S and y Sum S. Since Sum ⊆ sup

⊑
, then y sup

⊑
S. Thus x = y, by (Usup).
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and (r⊑), also I(y) ⊆ O(x). Hence, in virtue of Lemma II.4.3, we have
y Sum I(x) ∩ I(y). So, by (c), also y Sum I(x). However, x sup

⊑
I(x), by

(r⊑). Thus, by (⋄), we have x = y, and by (a) we obtain a contradiction:
x ⊏ x.6

Thus, the two above lemmas give:

12. (L2) + (WSP) = L12 + (⋄).

4. Mereological strictly partially ordered sets

Any strictly partially ordered set satisfying the following condition:

∀S∈P(M)∀x∈M (x Sum S ⇐⇒ S 6= ∅ ∧ x sup
⊑
S). (Sum-sup

⊑
)

will be called a mereological strictly partially ordered set. Let ML12 be
the class of all these structures, i.e., we put:

ML12 := L12 + (Sum-sup
⊑

).

By definition, in all mereological strictly partially ordered sets condi-
tions (†) and (‡) hold. Hence  by virtue of Lemma II.8.2  in all struc-
tures of ML12, condition (SSP) holds, i.e., ML12 ⊆ L12 + (SSP). In
other worlds, all mereological strictly partially ordered sets are polarised
and we obtain:

13. ML12 = L12 + (†) + (‡) = ML12 + (SSP) + (‡).

Thus, by Proposition 3.1 we obtain:
• ML12 ( L12 + (SSP).

Remark 4.1. Condition (‡) does not explicitly postulate the existence of
a mereological sum that it implicitly postulates one.

Consider the structure from the model 10. Since 123 is the least
upper bound for the pairs {1, 2}, {2, 3} and {1, 3}, then the presence in
the theory of condition (‡) would enforce the existence of mereological
sums for these pairs. Therefore, enriching the theory with this condition,
we force the ‘closure’ of model 10 by sums: 1 ⊔ 2, 2 ⊔ 3 and 1 ⊔ 3. We
obtain model 11. Thus, we see that the addition of condition (‡) as
an axiom will mean that two objects that have the least upper bound
automatically must also have a mereological sum.

6 Because, by (r⊑), we also have that x Sum I(x), so the above proof can be
converted into the proof that in the class L123 condition (WSP) holds.
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123

12 13 23

1 2 3

Model 11. From model 10 to the structure satisfying condition (‡)

5. Simons’ Minimal Extensional Mereology

Let MEM be the class of models of Simons’ Minimal Extensional Mere-
ology (cf. footnote 15 on p. 148), i.e., MEM := (L2) + (WSP) + (∃⊓),
where

∀x,y∈M

(
x � y =⇒ ∃u∈M ∀z∈M(z ⊑ u ⇐⇒ z ⊑ x ∧ z ⊑ y)

)
. (∃⊓)

Just as in mereological structures, the element postulated in (∃⊓) is
simply the product x ⊓ y. In fact, using the relation Nu defined by
(df Nu) we see that condition (∃⊓) is equivalent to the following:

∀x,y∈M

(
x � y =⇒ ∃u∈M u Nu {x, y}

)
.

But in the class L12 we have Nu = inf⊑ (see p. 141). So in the class,
condition (∃⊓) is equivalent to the following:

∀x,y∈M

(
x � y =⇒ ∃u∈M u inf⊑ {x, y}

)
. (5.1)

Thus, by (Uinf), we have:

∀x,y∈M

(
x � y =⇒ ∃!u∈M u inf⊑ {x, y}

)
.

Thus, in the class MEM  in an analogous way for the operation ⊓ in
mereological structures  we may generate a partial binary operation
⊓ : M ×M → M :

x � y =⇒ x ⊓ y := inf⊑{x, y}.

This operation has properties (II.9.6)–(II.9.11) and (II.9.14)–(II.9.15).
Notice that, by points 2 and 12, we have:

14. MEM = L12+(WSP)+(∃⊓) = L12+(SSum)+(∃⊓) = L12+(⋄)+(∃⊓).

Moreover, by Lemma IV.3.13, we have:

15. MEM ⊆ L12 + (SSP).
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12 21

1 2

Model 12. Conditions (L1), (L2) and (SSP) hold, but (∃⊓) does not hold

12 21

1 2

Model 13. (L1), (L2), (SSP) and (‡) hold, but (∃⊓) and (SSP+) do not hold

Proposition 5.1. Condition (∃⊓) does not follows from the set {(L1),
(L2), (SSP)}. Thus, we obtain:

• MEM ( L12 + (SSP).

Proof. In model 12 of conditions (L1), (L2) and (SSP) we have 12 � 21
and there is no element whose ingredienses would be the elements 1 and 2
and only those elements. Thus elements 12 and 21 have no product.

However, we can strengthen the last proposition:

Proposition 5.2. Condition (∃⊓) does not follows from the set {(L1),
(L2), (SSP), (‡)}. Thus, we obtain:

• MEM * ML12,
• MEM ∩ ML12 ( MEM.

Proof. In model 13 of conditions (L1), (L2), (SSP) and (‡) we have
12 � 21 and there is no element whose ingredienses would be the elements
1 and 2 and only those elements. The elements 12 and 21 do not therefore
have a product.

Notice that, by lemmas II.4.1(v) and II.6.4, conditions (L2) and
(SSP) entail (WSP). Moreover, by Lemma IV.3.13, conditions (L2),
(WSP) and (∃⊓) entail (SSP). Therefore we obtain:

MEM ∩ ML12 = L12 + (∃⊓) + (SSP) + (‡)

= (L2) + (WSP) + (∃⊓) + (‡).
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Now we prove:

Proposition 5.3. Condition (‡) does not follow from the set {(L1),
(L2), (WSP), (∃⊓)}. Thus, we obtain:

• ML12 * MEM,
• MEM ∩ ML12 ( ML12.

Proof. In model 10 of conditions (L1), (L2), (WSP) and (∃⊓), the set
{1, 2} has no mereological sum, but we have 123 sup

⊑
{1, 2}.

6. The class L12+(SSP+)

Now we will examine the class of structures from L12 that satisfy the
Super Strong Supplementation Principle, i.e., the following condition:

∀x,y∈M

(
x 6⊑ y =⇒ ∃z∈M(z ⊑ x ∧ z N y ∧

∀u∈M (u ⊑ x ∧ u N y ⇒ u ⊑ z))
)
.

(SSP+)

Condition (SSP+) intuitively says is that if x is not an ingrediens of y,
then we can not only find some z being an ingrediens of x and external to
y, but we can also find an element of the structure in question possessing
the aforementioned property and being the greatest such object in the
structure. Thus, if x 6⊑ y then there is a greatest element in the following
set:

Dx
y := {u ∈ M : u ⊑ x ∧ u N y}.

By Lemma II.3.2, in class L12 the the greatest element in a given set is
also the mereological sum of the set. Thus, for all x, y ∈ M we have:

• Dx
y 6= ∅ iff x 6⊑ y.

• If x 6⊑ y, then there is a greatest element in the set Dx
y .

• If x 6⊑ y, then there is exactly one z ∈ Dx
y such that z sup

⊑
Dx

y .
• If x 6⊑ y, then there is exactly one z ∈ Dx

y such that z Sum Dx
y .

Thus, in the class L12 + (SSP+) we may generate a partial binary
operation r : M ×M → M :

x 6⊑ y =⇒ xr y := the greatest element in Dx
y = sup

⊑
Dx

y =
⊔
Dx

y .

By definition, if x 6⊑ y, then xr y ⊑ x and xr y N y and: x = x − y
iff x N y. Moreover, if x � y and x 6⊑ y, then x 6⊑ xr y; and so there is
an element xr (xr y).
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Lemma 6.1 (Pietruszczak, 2013). In the class L12+(SSP+) the following
condition holds:

∀x,y∈M

(
x � y ∧ x 6⊑ y =⇒ xr (xr y) inf⊑ {x, y}

)
.

Moreover, if y ⊑ x and x 6⊑ y, then y = xr (xr y).

Of course, if x ⊑ y then x inf⊑ {x, y}. Thus, we have:

Proposition 6.2 (Pietruszczak, 2013). In the calss L12 + (SSP+) con-
ditions (5.1) and (∃⊓) hold.

Thus, in the class L12 + (SSP+)  as in MEM  we may generate a
partial binary operation ⊓ : M ×M → M :

x � y =⇒ x ⊓ y := inf⊑{x, y}.

This operation has the following property for all x, y ∈ M :

x � y =⇒ x ⊓ y :=







x if x ⊑ y

y if y ⊑ x

xr (xr y) if x 6⊑ y and y 6⊑ x

Of course, from (SSP+) we obtain (SSP); and so also (†).

Proposition 6.3. In the class L12 + (SSP+) both conditions (‡) and
(Sum-sup

⊑
) hold.

Proof. For (‡): Let us assume that (a) x sup
⊑
S, (b) S 6= ∅ and

indirectly that (c) ¬x Sum S. From (a) and (c) it follows that for some
u0 ∈ M we have: (d) u0 ⊑ x and (e) ∀z∈S z N u0.

Now assume for a contradiction that u0 = x. Then, by virtue of (a),
(b) and (e), for some z0 ∈ S we have z0 ⊑ x and and z0 N x, which
contradicts (r⊑). So u0 6= x. Thus, (f) x 6⊑ u0, by (d) and (antis⊑).

From (f), by virtue of (SSP+), for some y0 ∈ M we have (g) y0 ⊑ x,
(h) y0 N u0 and (i) for an arbitrary u: u ⊑ x and u N u0 entails u ⊑ y0.
From (a) and (e) it follows that for an arbitrary z ∈ S we have: z ⊑ x
and z N u0. Hence, by (i), we have ∀z∈S z ⊑ y0. So x ⊑ y0, by virtue
of (a). Hence, by (g) and (antis⊑), we have x = y0, which contradicts
(d) ∧ (h).

For (Sum-sup
⊑

): Condition (SSP) gives (†) and two conditions (†)
and (‡) give (Sum-sup

⊑
).
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By propositions 5.2, 6.2 and 6.3 we obtain:

Proposition 6.4. L12 + (SSP+) ( ML12.

Proof. Firstly, from Proposition 6.3 we have L12 + (SSP+) ⊆ ML12.
Secondly, by propositions 5.2 and 6.2, condition (SSP+) does not

follow from the set {(L1), (L2), (SSP), (‡)}.

By propositions 5.2, 6.2 and 6.4 we obtain:

Proposition 6.5. L12 + (SSP+) ( MEM.

Proof. Firstly, by virtue of Lemma II.6.4, condition (L3) follows from
{(L2), (SSP)}. Moreover, by Lemma II.4.1(v), conditions (L1) and (L3)
entail (WSP). Hence L12 + (SSP+) ⊆ MEM, by Proposition 6.2.

Secondly, by propositions 5.2 and 6.4, if L12 + (SSP+) = MEM then
we obtain a contradiction: MEM * ML12 and MEM ⊆ ML12.

In [Pietruszczak, 2013, Fact 6.11, p. 102] we prove:

Proposition 6.6. Condition (SSP+) does not follows from the set {(L1),
(L2), (∃⊓), (SSP), (‡)}.

Hence, by propositions 6.4 and 6.5, we obtain:

Proposition 6.7. L12 + (SSP+) ( MEM ∩ ML12.

7. Grzegorczyk’s mereological structures

Let GMS be the class of L�-structures which are models of Grzegorczyk’s
theory in [1955], i.e., these and only these L�-structures that satisfy the
following conditions: (L1), (L2), (SSP+) and

∀x,y∈M ∃z∈M z sup
⊑

{x, y}. (∃pairsup)

We remember that (SSP+) entails (SSP). Elements of GMS we call
Grzegorczyk mereological structures or mereological fields.7

Remark 7.1. (i) Grzegorczyk [1955] accepted the additional axiom (5.1).
Since the relation ⊑ in the class GMS partially orders the universe, then
Nu = inf⊑, i.e., (5.1) is equivalent to (∃⊓). We know, however (see
Lemma 6.2), that condition (5.1) follows from {(L1), (L2), (SSP+)}.

7 The class GMS has been thoroughly researched in [Pietruszczak, 2013]
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(ii) In place of axioms (L1) and (L2) Grzegorczyk assumes the re-
flexivity, antisymmetry and transitivity of the relation ⊑, i.e., conditions
(r⊑), (antis⊑) and (t⊑). Although the relation ⊑ is defined in [Grzegor-
czyk, 1955] (in the original, the relation is named ingr) with the help of
condition (df ⊑), it may be taken that this is only an ‘intuitive’ explana-
tion of this relation. If this were not the case, then, in an obvious way,
the axiom (r⊑) which follows from the definition (df ⊑) itself would be
inessential. In any case, this axiom is indeed inessential in [Grzegorczyk,
1955], as we know that (r⊑) follows from {(t⊑), (SSP)}.

It follows from the results given in Chapter II (sections 8 and 11)
that MS ⊆ GMS. Furthermore we have:

Theorem 7.1. (i) All finite structures from Grz belong to MS.
(ii) MS ( GMS.

Proof. Ad (i): Via (∃pairsup), for an arbitrary non-empty finite set
S ⊆ M there exists an x ∈ M such that x sup

⊑
S. By virtue of Proposi-

tion 6.3, we have x Sum S. Thus, in finite structures in GMS condition
(L4) holds. Furthermore, (L3) follows from {(L2), (SSP)}, by virtue of
Lemma II.6.4.

Ad (ii): Let X be an arbitrary infinite set and let F+(X) be the
family of all finite and non-empty subsets of the set X . Then 〈F+(X),(〉
belongs to the class GMS, but does not belong to the set MS.

The first result follows from the observation, that for all A,B ∈
F+(X): A ⊑ B iff A ⊆ B; A � B iff A∩B 6= ∅; and A N B iff A∩B = ∅.
Furthermore, sup

⊑
{A,B} = A ∪ B ∈ F+(X); and if A ∩ B 6= ∅, then

inf⊑ {A,B} = A ∩B ∈ F+(X). Finally, if A * B, then A \ B ∈ F+(X)
and this is the set postulated in (SSP+).

The structure 〈F+(X),(〉 does not belong to MS, as 〈F+(X)∪{∅},⊆〉
is not a Boolean lattice.

The results proven above may be depicted by complementing dia-
gram 2 with diagram 3.

8. Finite elementary axiomatisability of superclasses of MS

Theorem 8.1. All superclasses of the class MS in diagrams 1–3 are
finitely elementarily axiomatisable.
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Daigram 2

L12 + (SSP)

MEM ML12

MEM ∩ ML12

L12 + (SSP+)

GMS

MS

Diagram 3. The lattice of certain superclasses of the class MS

Proof. If K 6= L123, then we can take the formulae of the language
L� as axioms, which arise in an obvious manner from the conditions
describing the class K . We make use of the L�-formulae e-defining the
relations ⊏, ⊑, � and N and the sets that are the values of the operators
P, I and O. Clearly, conditions CardM > 1 and CardM = 1 can be
translated in to the L�-sentences p∃x∃y ¬ x = yq and p∀x∀y x = yq,
respectively. For the class L123 we use the identity 3 and proceed as
above (see p. 87).

9. Elements isolated in superclasses of the class MS

We shall give the name “isolated element” to an arbitrary element in the
structure M = 〈M ⊏〉 which has no part and which is not a part of any
element. We will therefore define the e-definable set:

is := {x ∈ M : ∀y∈M (y 6⊏ x ∧ x 6⊏ y)} .

We were not concerned earlier with isolated elements because, quite
simply, there are not any in non-trivial mereological structures. This is
also the case for all structures of the class GMS:

M ∈ GMS =⇒ (is 6= ∅ ⇔ CardM = 1 ⇔ is = M).
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Model 14. Conditions (L1), (L1) and (SSP+) hold

In fact, if CardM = 1, then  by virtue of (irr⊏)  we have: is = M 6= ∅.
Assume for a contradiction that CardM > 1 and x ∈ is. Then there
exists a y such that (a) y 6= x and (b) y 6⊏ x. By virtue of (∃pairsup),
there exists a z such that z Sum {x, y}. Thus, (c) x ⊑ z and (d) y ⊑ z.
By virtue of (a), (b) and (d) we have z 6= x. From this and (c) we
have x ⊏ z which contradicts our assumption. Thus is 6= ∅ entails
CardM = 1. Finally, if is = M then is 6= ∅.

For all of the proper superclasses of the class GMS considered in
this chapter, it is not possible to say anything general about isolated
elements. For example, model 14 belongs to the class L12 + (SSP+). In
this model there occurs only one isolated element.

Let C be one of conditions (L1)–(L3), (ext⊏), (∄0), (∃ N), (SSum),
(WSP), (PPP), (SSP), (∃⊓), (Sum-sup

⊑
) and (SSP+). Assume that the

structure M′ = 〈M ′,⊏′〉 arise from M by the addition of a non-empty
set of isolated elements. It is then easy to see that M′ meets a condition
C iff M meets C. If K is therefore one of the proper superclasses of the
GMS considered here, then

M′ ∈ K ⇐⇒ M ∈ K .





Part B

ELEMENTARY THEORIES CONNECTED

WITH MEREOLOGY



In this part of the book we will be concerned with various first-order
theories connected with mereology.

In Chapter VI, we will formulate the theory M, which is a first-order
(elementary) theory with identity constructed in the language L� and
which we will call elementary mereology. The class of the models of M
will be the class of L�-structures qMS which we mentioned on p. 72. This
class is narrower than the class MEM and wider than the class MS.

We will formulate M with an infinite number of axioms, this being
how it is usually done. We will, however, also give a finite axiomatisation
for M, which is to say that the class qMS will turn out to be finitely
elementarily axiomatisable (see p. 290 in Appendix II). We will obtain
these results by making use of the relationship between the class qMS

and the class ecBL of e-complete Boolean lattices, this being a relation
analogous to the one that holds between the classes MS of mereological
structures and CBL of complete Boolean lattices.

By drawing on the above relationships and the identity Th(ecBL) =
Th(CBL) we will show the identity Th(qMS) = Th(MS), i.e., that a
given L�-sentence is true in all structures of the class qMS iff it is true in
all structures of the class MS (see Section 1 of Appendix II). From this
and from Gödel’s completeness theorem it follows that a given L�-formula
is a thesis of the theory M iff it is true in all structures of the class MS.

In Chapter VII, we will present a first-order theory MDC in which
we can speak of a mereological sum composed of distributive classes.
Besides the concepts of being a distributive class and being a member of
a distributive set, it will involve the concepts of being a mereological sum
of and being a mereological part of. We will interpret Morse’s [1965]
first-order class theory in this theory. We will show that our theory
MDC has a model, if Morse’s theory has one.

In the final chapter of the book we will present unitary theories of
individuals and sets. This is possible thanks to a mereological broadening
of ZF set theory. We will show how in that theories it is possible to
define the concept of an individual on the basis of the following primitive
concepts: being a part of, being a distributive set, and being a member of
a distributive set. We will show that our theories have models, if ZF set
theory has one.



Chapter VI

The elementary aspect of mereology

1. Elementary mereology

Let us build in the language L� a theory M (first-order with the iden-
tity predicate “=”) which will be determined by the set of extralogical
axioms AxM (that is, M := Cn(AxM)) and which we will name elemen-
tary mereology. The set AxM will be composed of an infinite number
of L�-formulae. This is a standard way of presenting M. We will later
prove that it also has a finite axiomatisation (see Section 9).

In order to more easily formulate the theory M, we will extend the
language L� by three two-argument predicates: “�”, “o” and “℄”. These
three predicates, however, will be definable in the theory M by the defi-
nitions used in Chapter II. That is, we put:

∀x∀y(x � y ≡ (x � y ∨ x = y)) (d �)

∀x∀y(x o y ≡ ∃z(z � x ∧ z � y)) (do)

∀x∀y(x ℄ y ≡ ¬ ∃z(z � x ∧ z � y)) (d ℄)

Thus, as in Chapter II, these predicates we can read as “is an ingrediens
of”, “overlaps with” and “is exterior to”, respectively. Let us extend the
language L� to the elementary language Ld� , which arises in the same way
except for the use of the predicates: “�”, “�”, “o” and “℄”. Set-theoretic
interpretations of the language Ld� are provided by Ld� -structures of the
form 〈M,⊏,⊑,�, N〉 in which the predicates “�” and “�” we will interpret
as the binary relations ⊏, ⊑, � and N, where the last three relations are
defined by (df ⊑), df � and (df �), respectively.

Let us build in the language Ld� the theory M (first-order with iden-
tity) which will be determined by the infinite set of non-logical axioms
defined below. To this set belongs, inter alia, the following L�-sentences
(l1) and (l2) (given on p. 72):

∀x∀y(x � y → ¬ y � x) (l1)
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∀x∀y∀z(x � y ∧ y � z → x � z) (l2)

and the definitions (d �), (do) and (d ℄) of the predicates “�”, “o” and
“℄”, respectively.

In any Ld� -structure M = 〈M,⊏,⊑,�, N〉, axioms (l1) and (l2) say,
respectively, that the relation ⊏ is asymmetric and transitive, i.e., that
it satisfies conditions (L1) and (L2) (so also ⊏ is irreflexive). Axiom
(d �) says that the relation ⊑ satisfies condition (df ⊑). Therefore the
relation ⊑ is reflexive, antisymmetric and transitive. From this and from
Gödel’s completeness theorem, it follow that from (l1), (l2) and (d �)
we can derive the following theses:1

∀x ¬ x � x (irr�)
∀x x � x (r�)

∀x∀y∀z(x � y ∧ y � x → x = y) (antis�)
∀x∀y∀z(x � y ∧ y � z → x � z) (t�)

Moreover, axioms (do) and (d ℄) say that the relations � and N satisfy
conditions (df �) and (df N), respectively. Hence the relation � is reflexive
and symmetric, and the relation N is irreflexive and symmetric. Also from
(r�), (do) and (d ℄) we get:

∀x x o x (ro)

∀x∀y(x o y ≡ y o x) (so)

∀x ¬ x ℄ x (irr℄)
∀x∀y(x ℄ y ≡ y ℄ x) (s℄)

Since axioms (d �), (do) and (d ℄) are definitions of the predicates
“�”, “o” and “℄” in the theory M, then they may be eliminated.

Let M be any Ld� -structure and ϕ be any Ld� -formula such that vf(ϕ) =
{x1, . . . , xk+1}, for some k ­ 0 (note that x := x1). If k = 0 then we will
connect with ϕ the set M x

ϕ of elements of M satisfying ϕ in M

M x

ϕ := {x ∈ M : M � ϕ [x/x ] } .

The set M x

ϕ is elementarily definable in M with the help of ϕ (see p. 291
in Appendix II). For example, if ϕ := “x = x” then we obtain:

M x

x=x
:= {x ∈ M : M � x = x [x/x ] } = {x ∈ M : x = x} = M.

1 This is easy to do with the help of the resources of the elementary theories
themselves.
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If k > 0, however, then for arbitrary y1, . . . , yk from M we put:

M x

ϕ(y1, ..., yk) := {x ∈ M : M � ϕ [x/x , y1/x2, ..., yk/xk+1] }.

The set M x

ϕ(y1, ..., yk) is elementarily definable in A with parameters y1,
. . . , yk and with the help of ϕ (see p. 292 in Appendix II). For example,
for any y ∈ M and ϕ := “x = y”, ϕ := “x � y”, ϕ := “x � y” we get,
respectively (note that y := x2):

M x

x=y
(y) := {x ∈ M : M � x = y [x/x , y/y ] } = {y},

M x

x �y (y) := {x ∈ M : M � x � y [x/x , y/y ] } = P(y),

M x

x �y (y) := {x ∈ M : M � x � y [x/x , y/y ] } = I(y).

Moreover, to the formula ϕ we assign the following Ld� -formula:sx

ϕ := p∀x(ϕ → x � xk+2) ∧ ∀xk+3
(xk+3 � xk+2 → ∃x(ϕ ∧ x o xk+3))q

Notice that vf(sx

ϕ) = {x2, . . . , xk+2}; so if k = 0 then vf(sx

ϕ) = {y}.
If k = 0 then we get (notice that x := x1, y := x2 and z := x3;

vf(ϕ) = {x} and vf(sx

ϕ) = {y}):sx

ϕ := p∀x(ϕ → x � y) ∧ ∀z(z � y → ∃x(ϕ ∧ x o z))q

Thus, when k = 0, the formula sx

ϕ says that the object represented by
the free variable “y” (“x2”) is the mereological sum of all x ’s satisfying ϕ,
i.e., that this object is the mereological sum of the set M x

ϕ. Formally:

Lemma 1.1. If k = 0 then for any y ∈ M :

M � sx

ϕ [y/y ] ⇐⇒ y Sum M x

ϕ.

Proof. If k > 0 and y ∈ M , then: y Sum M x

ϕ iff ∀x(x ∈ M x

ϕ ⇒ x ⊑ y)
and ∀z(z ⊑ y ⇒ ∃x(x ∈ M x

ϕ ∧ x � z)) iff the valuation [y/y ] satisfies in
M the formula sx

ϕ.

For example, if ϕ := “x = x” then we obtain:sx

x=x
:= “∀x(x = x → x � y) ∧ ∀z(z � y → ∃x(x = x ∧ x o z))”

Thus, the formula sx

x=x
is logically equivalent to “∀x x � y ∧ ∀z(z � y →

∃x x o z)”. Hence for any y ∈ M : M � sx

x=x
[y/y ] ⇐⇒ y Sum M .

If, however, k > 0, then the formula sx

ϕ says that for arbitrary mem-
bers y1, . . . , yk of M represented by the free variables “x2”, . . . , “xk+1”,
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the object represented by the free variable “xk+2” is the mereological
sum of all x ’s satisfying ϕ(x , y1/x2, . . . , yk/xk+1), i.e., that this object is
the mereological sum of the set M x

ϕ(y1, ..., yk). Formally:

Lemma 1.2. If k > 0 then for all y1, . . . yk, z ∈ M :

M � sx

ϕ[y1/x2, ..., yk/xk+1, z/xk+2] ⇐⇒ z Sum M x

ϕ(y1, ..., yk)

⇐⇒ z Sum {x ∈ M : M � ϕ [x/x1, y1/x2, ..., yk/xk+1] }.

Proof. Let k > 0 and y1, . . . , yk, z ∈ M . Then: z Sum M x

ϕ(y1, ..., yk) iff
∀x(x ∈ M x

ϕ(y1, ..., yk) ⇒ x ⊑ z) and ∀u(u ⊑ z ⇒ ∃x(x ∈ M x

ϕ(y1, ..., yk)
∧ x � u)) iff the valuation [y1/x2, ..., yk/xk+1, z/xk+2] satisfies in M the
formula sx

ϕ.

For example, if ϕ := “x = y” then we obtain:sx

x=y
:= “∀x(x = y → x � z) ∧ ∀u(u � z → ∃x(x = y ∧ x o u))”

The formula sx

x=y
logically equivalent to “y � z ∧ ∀u(u � z → y o z)”.

Hence for all y, z ∈ M : M � sx

x=y
[y/y , z/z ] ⇐⇒ z Sum M x

x=y
(y) ⇐⇒

z Sum {y}. Since, by (r�), the formula “y � y ∧ ∀u(u � y → y o y)” is a
thesis, then for any y ∈ M we have: M � sx

x=y
[y/y , y/z ], which means

that y Sum {y}.
For example, if ϕ := “x � y” then we obtain:sx

x �y := “∀x(x � y → x � z) ∧ ∀u(u � z → ∃x(x � y ∧ x o u))”

Hence for all y, z ∈ M : M � sx

x �y [y/y , z/z ] ⇐⇒ z Sum M x

x=y
(y) ⇐⇒

z Sum I(y). Since, by (r�), the formula “∀x(x � y → x � y) ∧ ∀u(u � y

→ ∃x(x � y ∧ x o u))” is a thesis, then for any y ∈ M we have:
M � sx

x �y [y/y , y/z ], which means that y Sum I(y).

For any Ld� -formula ϕ such that vf(ϕ) = {x1, . . . , xk+1}, from the
formula sx

ϕ we obtain the Ld� -formula sx

ϕ
∗ by the substitution xk+4/xk+2.

Clearly, this substitution is allowed and we have vf(sx

ϕ
∗) = {x2, . . . , xk+1,

xk+4} (for k = 0 we have vf(sx

ϕ
∗) = {x4}).

As the next axioms of theory M we adopt the following Ld� -sentences:

∀x2
. . . ∀xk+1

∀xk+2
∀xk+4

(sx

ϕ ∧ sx

ϕ
∗
→ xk+2 = xk+4) (l3k

ϕ)

∀x2
. . .∀xk+1

(∃x ϕ → ∃xk+2
sx

ϕ) (l4k
ϕ)
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Therefore  taking into account the interpretation of the formulae sx

ϕ andsx

ϕ
∗ in the structure M  axiom (l3k

ϕ) says that at most one mereological
sum of the set M x

ϕ(y1, ..., yk), i.e., we have:

∀z,v,y1,...,yk∈M

(
z Sum M x

ϕ(y1, ..., yk) ∧ v Sum M x

ϕ(y1, ..., yk) =⇒ z = v
)
,

and axiom (l4k
ϕ) says that if the set M x

ϕ(y1, ..., yk) is not empty, then
there is at least one mereological sum of it, i.e., we have:

∀y1,...,yk∈M

(
M x

ϕ(y1, ..., yk) 6= ∅ =⇒ ∃z∈M z Sum M x

ϕ(y1, ..., yk)
)
.

Clearly, for k = 0 we obtain (note that y := x2 and u := x4):

∀y∀u(sx

ϕ ∧ sx

ϕ
∗
→ y = u) (l30

ϕ)

∃x ϕ → ∃y sx

ϕ (l40
ϕ)

In Section 10 we will show that in formulating axioms (l3k
ϕ) and (l4k

ϕ)
we can not accept that the formula ϕ should have only one free variable,
that is, be limited to k = 0.2

2. Quasi-mereological structures – models of theory M

We will define and examine the class qMS composed of L�-structures,
which we mentioned on p. 72. We will prove that it is a class of the
models of theory M.3

As in Chapter II, for an arbitrary L�-structure we will define auxiliary
relations ⊑, �, N and Sum by applying definitions (df ⊑), (df �), (df N) and
(df Sum), respectively. From these definitions it follows that relations ⊑
and � are reflexive (so also for any x ∈ M we have x Sum {x} and
x Sum I(x)), the relation N is irreflexive, � and N are symmetric, ⊑ is
included in �, and the identity N = −� holds.

An L�-structure M = 〈M,⊏〉 we will call quasi-mereological iff in
M conditions (L1) and (L2) hold, along with counterparts of conditions
(L3) and (L4) with one universal quantifier restricted to parametrically

2 Such an insufficient solution was adopted, for example, by Smith [1993].
3 In Section 9 will we show that it is possible to base theory M on a finite number

of specific axioms; in other words, that the class is finitely elementarily axiomatisable.
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e-definable (in short: pe-definable) sets in M.4 In order to present these
definitions formally, we must accept that peP(M) be the family of sets
which are parametrically elementarily definable (or pe-definable) in M

and that peP+(M) := peP(M) \ {∅}. Therefore an L�-structure M =
〈M,⊏〉 is quasi-mereological (in short: q-mereological) iff the relation ⊏

satisfies conditions (L1) and (L2), and the conditions below hold in M:

∀S∈peP(M)∀x,y∈M (x Sum S ∧ y Sum S =⇒ x = y), (peL3)

∀S∈peP+(M)∃x∈M x Sum S . (peL4)

Let qMS be a class of all q-mereological structures. It follows from the
definition, that each mereological structure is q-mereological.5

Lemma 2.1. MS ⊆ qMS.

However, we have:

Proposition 2.2. Each q-mereological structure with a finite universe
belongs to the class MS.

Proof. If M has an finite universe, then peP(M) = P(M), because
each finite set is e-definable with parameters.

For theory M the following lemmas hold.

Lemma 2.3. If an L�-structure 〈M,⊏〉 belongs to the class qMS, then
the Ld�-structure 〈M,⊏,⊑,�, N〉 is a model of the theory M.

Proof. Given the assumptions made so far, it is obvious that in Md :=
〈M,⊏,⊑,�, N〉 the axioms (l1), (l2), (d �), (do) and (d ℄) hold. It
remains to show that in Md, all axioms of the form (l3k

ϕ) and (l4k
ϕ)

hold. Let us take, therefore, an arbitrary Ld� -formula for which vf(ϕ) =
{x1, . . . , xk+1}, for some k ­ 0.

(a) For k > 0. Ad (l3k
ϕ): Take an arbitrary valuation [y1/x2, ...,

yk/xk+1, z/xk+2, u/xk+4] in M . If the valuation [y1/x2, ..., yk/xk+1,

4 Recall that elementarily definable sets with empty sets of parameters are also
parametrically elementarily definable sets (cf. p. 291 in Appendix II).

In the case of (L3), it will turn out that restricting the range of the universal
quantifier will not be essential (see Proposition 2.7). In Section 10 we will show how
weak we get the conditions if the range of this quantifier will be restricted to definable
sets without parameters.

5 On p. 200, we will show that MS ( qMS, i.e., that restricting the range of the
universal quantifier in (peL4) is essential.
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z/xk+2, u/xk+4] satisfies in Md the conjunction psx

ϕ ∧ sx

ϕ
∗q in Md,

then  on the basis of Lemma 1.2  we have x Sum M x

ϕ(y1, ..., yk) and
y Sum M x

ϕ(y1, ..., yk). Hence z = u, in virtue of (peL3). Therefore the
arbitrarily chosen valuation satisfies the implication (l3k

ϕ).
Ad (l4k

ϕ): Take an arbitrary valuation [y1/x2, ..., yk/xk+1] in M . If
it satisfies in the antecedent of the implication (l4k

ϕ), then for a cer-
tain x0 ∈ M , the valuation [x0/x , y1/x2, ..., yk/xk+1] satisfies ϕ. Hence
Mϕ(y1, ..., yk)x 6= ∅. Therefore, in virtue of (peL4), for some z0 ∈ M
we have z0 Sum M x

ϕ(y1, ..., yk). Hence, in virtue of Lemma 1.2, Md �sx

ϕ [y1/x2, ..., yk/xk+1, x0/xk+2], i.e., Md � ∃xk+2
sx

ϕ [y1/x2, ..., yk/xk+1].
Therefore, the initial valuation satisfies the implication (l4k

ϕ).
(b) For k = 0. The proof is as in case (a) but without parameters

(so we use Lemma 1.1).

Lemma 2.4. If an Ld� -structure Md = 〈M,⊏,⊑,�, N〉 is a model of theory
M then the relations ⊑, � and N satisfy conditions (df ⊑), (df �) and
(df N), respectively, and 〈M,⊏〉 belongs to class qMS.

Proof. Given the assumption made, it is clear that the relations ⊑, �
and N satisfy conditions (df ⊑), (df �) and (df N), respectively, and that
in M = 〈M,⊏〉 conditions (L1) and (L2) hold. It remains to show that
in M conditions (peL3) and (peL4) hold.

Ad (peL3): Let us take an arbitrary set S ∈ peP(M). Then there is
an Ld� -formula such that for some k ­ 0 we obtain: vf(ϕ) = {x1, ..., xk+1}
and for some y1, . . . , yk from M , we have S = M x

ϕ(y1, ..., yk). As in the
proof of Theorem 2.3 we can assume that k > 0.

Now assume that z Sum S and u Sum S. Then, by virtue of
Lemma 1.2, for Md we have Md � psx

ϕ ∧ sx

ϕ(xk+4/xk+2)q [y1/x2, ...,
yk/xk+1, z/xk+2, u/xk+4]. Hence, since the implication (l3k

ϕ) is true Md,
the valuation [z/xk+2, u/xk+4] satisfies the formula “pxk+2 = xk+4q”, i.e.,
z = u.

Ad (peL4): Let us take an arbitrary set S ∈ peP+(M), and an
Ld� -formula ϕ and parameters y1, . . . yk ∈ M , as in the proof for (peL3).
Since S 6= ∅, then for some x0 ∈ M we have Md � ϕ [x0/x , y1/x2, ...,
yk/xk+1] and Md � ∃x ϕ [y1/x2, ..., yk/xk+1]. Since the implication (l4k

ϕ)
is true in Md, the valuation [y1/x2, ..., yk/xk+1] satisfies in Md the
Ld� -formula p∃xk+1

sx

ϕq. Therefore, for some z0 ∈ M the valuation [y1/x2,
..., yk/xk+1, z0/xk+2] satisfies the formula sx

ϕ, i.e., in virtue of Lemma 1.2,
z0 Sum S.
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Remark 2.1. For convenience, we will identify any structure M = 〈M,⊏〉
with its definitional extension Md = 〈⊏,⊑,�, N〉, where relations ⊑, �
and N are defined by (df ⊑), df � and (df �), respectively. Thus, we will
further recognize that the class qMS consists of structures of the form
〈⊏,⊑,�, N〉.

From lemmas 2.3 and 2.4, and Remark 2.1 we obtain:

Theorem 2.5. The class qMS is elementarily axiomatisable as the class
of models of the theory M, i.e.,

qMS = Mod(AxM) = Mod(M) .

Proof. Assume that M = 〈M,⊏〉 belongs to qMS. Then, by virtue
of Lemma 2.3, Md = 〈M,⊏,⊑,�, N〉 is a model of theory M. Con-
versely, if Md = 〈M,⊏,⊑,�, N〉 is a model of the set AxM then  by
using Lemma 2.4  M belongs to qMS.

Thus, we obtain:

Th(qMS) = M , (2.1)

where Th(qMS) is the set of all true Ld� -sentences in all structures from
qMS and M is the set of all theses of M which are sentences. In fact,
from Gödel’s completeness theorem we have: Th(qMS) :=

⋂
{Th(M) :

M ∈ qMS} =
⋂

{Th(M) : M ∈ Mod(M)} = M.
Moreover, from Lemma 2.1 and theorems III.2.4 and 2.5 we obtain:

Theorem 2.6. MS ( qMS.6

Proof. Theorem III.2.4 says that MS is not elementarily axiomatisable,
but qMS is. Hence MS 6= qMS. Therefore, the inclusion MS ⊆ qMS is
strict.

The following fact will come in handy later:

Proposition 2.7. In all structures from qMS, the following conditions
hold: (L3), (SSP) and (WSP). Therefore, in quasi-mereological struc-
tures, all those conditions are in force that we demonstrated in Chapter II
using just (L1)–(L3), (WSP) and (SSP).

6 Besides this fact we will show belong that Th(qMS) = Th(MS), i.e., in both
classes qMS and MS the same sentences are true.
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Proof. In the proof of Theorem II.6.1, which said that sentence (SSP)
holds in the class MS, axioms (L3) and (L4) apply only to pe-definable
sets. Therefore, we may repeat that proof, applying axioms (peL3) and
(peL4). By Lemma II.6.2, condition (L3) follows from (L1), (L2) and
(SSP). Hence, by Lemma II.4.1, condition (WSP) also holds.

Moreover, since M ∈ peP+(M), there exists therefore in the struc-
ture M the unity 1 defined by condition (df 1) and satisfying condition
(II.5.1), i.e., we have:

1 := (ix) x Sum M ,

∀z∈M z ⊑ 1 .

3. The relation Sum versus the relation of supremum in qMS

From Proposition 2.7, conditions (L1), (L2) and (SSP) hold in qMS. As
in Section 8 of Chapter II we showed that these conditions entail the
inclusion:

Sum ⊆ sup
⊑
. (3.1)

Furthermore, we obtain:

Theorem 3.1. In an arbitrary structure M from qMS, the relation
is a mereological sum of all elements of a given non-empty set that is
pe-definable in M coincides with the relation is a least upper bound of
all elements of the set. That is, we have:

∀S∈peP+(M)∀x∈M

(
x Sum S ⇐⇒ S 6= ∅ ∧ x sup

⊑
S

)
.

Proof. ‘⇒’ By using (II.3.2) and (3.1).
‘⇐’ Assume that S ∈ peP+(M) and x sup

⊑
S. Then, in virtue of

(peL4), for a certain y0 we have y0 Sum S. Hence y0 sup
⊑
S, by (3.1).

Therefore x = y0, because sup
⊑

satisfies condition (Usup). Therefore, we
have x Sum S.

Thus, by using a singular description, we may write Theorem 3.1 as:

∀S∈peP+(M) (ix) x Sum S = (ix) x sup
⊑
S . (3.2)

In fact, thanks to (peL3) and (peL4), for an arbitrary S ∈ peP+(M)
there is exactly one x such that x Sum S. In virtue of (3.1) and (Usup),
in an equivalent way, x is the only element in M such that x sup

⊑
S.
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4. The operations of sum, produce and supplementation in the
class qMS

Let M ∈ qMS. Thanks to (peL3) and (peL4), in M we may define on

the set peP+(M) the unary operation
⊔

: peP+(M) → M the sum of all
elements of a given set with the help of the condition from p. 94:

⊔
S := (ix) x Sum S . (df

⊔
)

On the strength of (3.2), we have:

∀S∈peP+(M)

⊔
S = sup

⊑
(S). (4.1)

Since for arbitrary x, y ∈ M we have {x, y} ∈ peP+(M), then we may
create a binary operation ⊔ : M×M → M the sum of two elements with
the help of condition (df ⊔) from p. 95:

x ⊔ y :=
⊔

{x, y}.

It satisfies conditions (II.7.3)–(II.7.13) (condition (II.7.3) holds because
for arbitrary x, y ∈ M the set {z ∈ M : z ⊑ x ∨ z ⊑ y} belongs to
peP+(M), as e-definable with parameters x and y with the help of the
L�-formula “z � x ∨ z = x ∨ z � y ∨ z = y”).

In order to introduce further operations in quasi-mereological struc-
tures, the lemma below will come in handy:

Lemma 4.1. In each L�-structure M = 〈M,⊏〉 for arbitrary S ∈ peP(M)
and x, y ∈ M we have:

(i)
⋂

I(S) ∈ peP(M),
(ii) {z ∈ M : z ⊑ x ∧ z ⊑ y} ∈ peP(M),

(iii) {y ∈ M : y N x} ∈ peP(M).

Proof. Ad (i): We have
⋂

I(S) = {y ∈ X : ∀z∈S y ⊑ z}; cf. Re-
mark II.9.1. The proof runs just like the proof of Lemma 3.2(i) in Ap-
pendix II.

Applying Lemma 4.1, and conditions (peL3) and (peL4), we may
define in the set peP(M) a partial unary operation ⊔: peP(M) → M
by using condition (def ⊔) given on p. 99:

⋂
I[S] 6= ∅ =⇒ ⊔S :=

⊔ ⋂
I[S].

This operation has those properties given on pp. 99–100. By making use
of the mutual definition of the relations of supremum and infimum, for
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arbitrary S ∈ P(M) and x ∈ M we get: x sup
⊑

{y ∈ M : ∀z∈S y ⊑ z} iff
x inf⊑ S. Therefore from (4.1) we have:

∀S∈peP+(M)

(⋂
I(S) 6= ∅ =⇒ ⊔S = inf⊑(S)

)
. (4.2)

In an analogous manner with respect to the operation ⊔ we can create
a partial binary operation ⊓ : M×M → M the product of two elements
with the domain {〈x, y〉 ∈ M × M : x � y}, by condition (df ⊓) from
p. 101:

x � y =⇒ x ⊓ y := ⊔{x, y} = inf⊑{x, y}.

From Lemma 4.1, it follows that the operation ⊓ satisfies condition
(II.9.9). It is also easy to show that the operation ⊓ satisfies conditions
(II.9.6)–(II.9.15). As was shown on p. 148, condition (II.9.10) entails:

∀x,y∈M

(
x � y =⇒ ∃u∈M ∀z∈M(z ⊑ u ⇐⇒ z ⊑ x ∧ z ⊑ y)

)
. (∃⊓)

We can repeat in its entirety the analysis from Section 10 in Chap-
ter II. Therefore, in all quasi-mereological structures the following two
distributivity conditions hold for all x, y, z ∈ M :

(x ⊔ y) ⊓ (x ⊔ z) =

{

x ⊔ (y ⊓ z) if y � z,

x if y N z.
(∆1)

x � y ∨ x � z =⇒

x ⊓ (y ⊔ z) =







(x ⊓ y) ⊔ (x ⊓ z) if x � y and x � z,

x ⊓ y if x � y and x N z,

x ⊓ z if x N y and x � z.

(∆2)

Similarly, as on p.104, we can show that for any x ∈ M : x 6= 1 iff
{y ∈ M : y N x} 6= ∅. From this, Lemma 4.1 and the facts proved on
p. 104, it follows that if M 6= {1}, then on the set M \{1} we can define
the mereological complement operation ∁ : M \ {1} → M \ {1}:

x∁ :=
⊔

{y ∈ M : y N x} = sup
⊑

{y ∈ M : y N x}. (df ∁)

It is easy to show that the mereological complement operation in quasi-
mereological structures also has the properties presented by conditions
(II.11.3)–(II.11.13) (DM1) and (DM1).

On the strength of (II.11.8) and (II.11.3) in all quasi-mereological
structures the following condition holds:

∀x∈M

(
x 6= 1 =⇒ ∃y∈M (x ⊔ y = 1 ∧ x N y)

)
. (Υ)
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5. The class qMS on diagram 3

Let us note that in quasi-mereological structures  by making use of
(II.9.8), (II.9.10), (II.11.3), (II.11.4) and (II.11.6)  we can derive the
Super Strong Supplementation Principle from p. 106:

∀x,y∈M

(
x 6⊑ y =⇒ ∃z∈M(z ⊑ x ∧ z N y ∧

∀u∈M (u ⊑ x ∧ u N y ⇒ u ⊑ z))
)
,

(SSP+)

Therefore every axiom of the class GMS holds in all structures from
qMS. Thus, qMS ⊆ GMS. We prove, however, that:

Theorem 5.1. qMS ( GMS.

Proof. For any set X , the model 〈F+(X),(〉 from the proof of Theo-
rem 7.1(ii) belong to the class GMS. If X is infinite then the universe
F+(X) has no mereological sum in 〈F+(X),(〉. Of course, the universe
is e-definable by the formula “x = x”. So, condition (peL4) does not hold
in 〈F+(X),(〉. Thus, this condition does not follow from the axioms of
the class GMS.

From theorems 2.6 and 5.1 we can supplement diagram 3 to dia-
gram 4.

6. Atoms and atomic and atomless elements in
quasi-mereological structures

Let M ∈ qMS and at be a set of mereological atoms in M as defined on
p. 75 with the following condition:

x ∈ at :⇐⇒ ¬∃z∈M z ⊏ x ⇐⇒ P(x) = ∅ . (df at)

In all quasi-mereological structures conditions (2.4) and (2.5) from Chap-
ter II hold:7

x ∈ at ⇐⇒ I(x) = {x} ⇐⇒ ∀z∈M(z ⊑ x ⇔ z = x),

x ∈ at ⇐⇒ ∀y∈M (x � y ⇒ x ⊑ y).

7 Since MS ( qMS, then all the considerations of this section concern mereolog-
ical structures too.
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Daigram 2

L12 + (SSP)

MEM ML12

MEM ∩ ML12

L12 + (SSP+)

GMS

qMS

MS

Diagram 4. The lattice of certain superclasses of the classes qMS and MS

Below, we will make use of the following property of the set at:

a ∈ at =⇒ ∀x,y∈M (a ⊑ x ⊔ y ⇔ a ⊑ x ∨ a ⊑ y). (6.1)

In fact, applying (⊑⊆�), (II.2.5) and (II.7.7) we have: a ⊑ x ⊔ y iff
a � x ⊔ y iff either a � x or a � y iff either a ⊑ x or a ⊑ y.

Notice that we have:

CardM = 1 ⇐⇒ 1 ∈ at . (6.2)

In fact, if CardM = 1, then M = {1} and 1 6⊏ 1, in virtue of (irr⊏).
Conversely, if CardM > 1, then there exists a y ∈ M such that y ⊏ 1,
i.e., 1 6∈ at. Furthermore, in virtue of (∄0), besides the trivial case where
CardM = 1, no element in M is a ‘zero’, and therefore no mereological
atom is either.

We say that an element x from M is atomic in M iff each ingrediens
x has some ingrediens that is an atom. Let atc be the set of all atomic
elements in M, i.e., for any x ∈ M :

x ∈ atc :⇐⇒ ∀y∈M (y ⊑ x =⇒ ∃a∈at a ⊑ y). (df atc)

Obviously, at ⊆ atc, by (II.2.4) and (r⊑).
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Atomic elements have the following property:

∀x,y∈M

(
x ∈ atc ∧ y ∈ atc ⇐⇒ x ⊔ y ∈ atc

)
. (6.3)

In fact, let x ∈ atc, y ∈ atc and take a z such that z ⊑ x ⊔ y. If x N z,
then  in virtue of (II.7.12)  we have z ⊑ y, and so we make use of our
assumptions. Let therefore x � z. Since x⊓ z ⊑ x, there therefore exists
an a ∈ at such that a ⊑ x⊓z. Hence a ⊑ z. The converse implication we
obtain from the fact that x ⊑ x⊔ y and y ⊑ x⊔ y and by condition (t⊑).

We call the structure M atomic iff all elements are atomic, i.e., we
have atc = M .

Lemma 6.1. A structure M is atomic iff any one of the (equivalent)
conditions holds:

1◦ ∀x∈M ∃a∈at a ⊑ x,
2◦ 1 ∈ atc,
3◦ 1 Sum at.

Proof. Ad (1◦): If M ⊆ atc then for any x ∈ M , then there is an
a ∈ at such that a ⊑ x, by (r⊑). Of course, if ∀x∈M ∃a∈at a ⊑ x holds,
then M ⊆ atc.

Ad (2◦): Of course, if M ⊆ atc then 1 ∈ atc. If 1 ∈ atc then
M ⊆ atc, by (1◦), (t⊑) and the fact that: ∀z∈M z ⊑ 1.

Ad (3◦): If M ⊆ atc then 1 Sum at, by (2◦) and (II.2.5). If 1 Sum at

then M ⊆ atc, by (t⊑) and (II.2.5).

We say that an element x ∈ M is atomless iff no atom in M is an
ingrediens of x. Let atl be a set of all atomless elements in M, i.e.,

x ∈ atl :⇐⇒ ¬∃a∈at a ⊑ x . (df atl)

We have atl ∩ at = ∅ = atl ∩ atc. From (6.1) it follows that

∀x,y∈M

(
x ∈ atl ∧ y ∈ atl ⇐⇒ x ⊔ y ∈ atl

)
. (6.4)

We call a structure M atomless iff each of its elements is atomless,
i.e., M = atl. From (r⊑) it follows that:

Lemma 6.2. A structure M is atomless iff at = ∅.

Notice that all atomic elements are exterior to all atomless element:

∀x,y∈M

(
x ∈ atc ∧ y ∈ atl =⇒ x N y

)
. (6.5)
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Assume for a contradiction that (a) x ∈ atc, (b) y ∈ atl and (c) x � y.
From (c), for some z0 we have (d) z0 ⊑ x and (e) z0 ⊑ y. From (a)
and (d), for some a0 ∈ at we have a0 ⊑ z0. Hence, by (e) end (t⊑), also
a0 ⊑ y. But this contradicts (b).

Theorem 6.3. For any quasi-mereological structure M = 〈M,⊏〉 ex-
actly one of the conditions below holds:

(a) M is atomless,
(b) M is atomic,
(c) there are x ∈ atc and y ∈ atl such that 1 = x ⊔ y.

In other words, in any M ∈ qMS the following condition hold:

at = ∅ ∨ ∀x∈M ∃a∈at a ⊑ x ∨ ∃x∈atc∃y∈atl 1 = x ⊔ y . (Σ1)

Moreover, in all quasi-mereological structures condition (c) is equiv-
alent to the following:

(d) there is an x ∈ M \ {1} such that x ∈ atc and x∁ ∈ atl.

In other words, in any M ∈ qMS the following condition hold:

at = ∅ ∨ ∀x∈M ∃a∈at a ⊑ x ∨ ∃x∈M\{1}(x ∈ atc ∧ x∁ ∈ atl). (Σ2)

Proof. Let M ∈ qMS and assume that M is neither atomless nor
atomic. Hence at 6= ∅. So 1 6∈ atl. Moreover, on p. 74 in footnote 8 we
noted that the set at belongs to eP(M). Hence, via (peL4), there exists
an x ∈ M such that x Sum at. By Lemma 6.1, we have x 6= 1. It is
obvious that −x ∈ atl. By (3.1) we have x sup

⊑
at.

It is obvious that (a) x 6∈ atl. Assume for a contradiction that x /∈
atc. Then there is a y such that (b) y ⊑ x and (c) y ∈ atl. From (a)
and (c) we have x 6= y 6= 1, i.e., y ⊏ x. Hence and from (b) we have (d)
x 6⊑ −y. Moreover, on the strength of (WSP), there exists a z such that
z ⊏ x and z N y, i.e., z ⊑ −y. Therefore, x � −y. From (d) it follows
that x⊓ −y ⊏ x. Furthermore, on the strength of (b) and (∆1) we have
(x ⊓ −y) ⊔ y = (x ⊔ y) ⊓ (−y ⊔ y) = x ⊓ 1 = x. Hence, from (c) and
(6.1) it follows that x ⊓ −y is an upper bound of the set at. And that
contradicts the fact that x sup

⊑
at.

Of course, condition (d) entails condition (c). Moreover, by virtue of
(II.11.10) and (6.5), condition (c) entails condition (d).
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7. Quasi-mereological structures versus e-complete Boolean
lattices

In Section 1 of Chapter III we examined the connection between the
class MS and the class CBL of complete Boolean lattices. An analogous
connection holds between the class qMS and the class ecBL (= pecBL)
of e-complete (also pe-complete) Boolean lattices.8

As in the case of Theorem III.1.1, we prove the theorem below:

Theorem 7.1. Let B = 〈B,≤〉 be a non-trivial e-complete Boolean
lattice with the zero 0 and the unity 1 (0 6= 1). We put M := B\{0} and
⊏ := ≤ |M \ idM . Then M = 〈M,⊏〉 is a quasi-mereological structure in
which conditions from Theorem III.1.1 hold, where conditions (iv) and
(vii) only for non-empty parametrically elementarily definable sets in M.

Proof. We demonstrate (i)–(iii) just as in the case of the proof of The-
orem III.1.1.

Ad (iv): Let S ∈ peP+(M). We must show that S ∈ peP+(B) too. On
the basis of the assumption for a certain Ld� -formula, for which vf(ϕ) =
{x , x2, ..., x1+k} for some k ­ 0, and for certain parameters y1, . . . , yk

from M , we have S = {x ∈ M : M � ϕ [x/x , y1/x2, ..., yk/x1+k]}. It is
clear that if we put A := M and 0 := 0 in Lemma III.2.1, then Ao = B.
With the help of that transformed lemma, let us assign to formula ϕ a
certain L0

≤
-formula ϕ∗. It is easy to prove that for each x ∈ B we have:

M � ϕ [x/x , y1/x2,..., yk/x1+k] ⇐⇒

B � px ≠ 0 ∧ ϕ∗q [x/x , y1/x2, ..., yk/x1+k] .

Therefore, S is pe-definable in B with parameters y1, . . . , yk from M .
Since the lattice is pe-complete, then S has the least upper bound in
this lattice. Moreover, sup≤ S 6= 0, since ∅ 6= S ⊆ M . As in the proof
of Theorem III.1.1, we show that sup

≤
S Sum S. And this proves that

sentence (peL4) is true in M.
We prove the further conditions just as we did in the case of Theo-

rem III.1.1.

The theorem below is the counterpart of Theorem III.1.2.

8 We discuss these lattices in Section 1 of Appendix II. We show there also that
CBL ( ecBL.
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Theorem 7.2. Let M = 〈M,⊏〉 ∈ qMS, 0 6∈ M , M0 := M ∪ {0} and
≤ := ⊑ ∪ ({0} ×M0 ), i.e., for arbitrary x, y ∈ M0

x ≤ y :⇐⇒ x ⊑ y ∨ x = 0 .

Then Mo := 〈M0 ,≤, 0 , 1〉 is a non-trivial e-complete Boolean lattice in
which 0 is the zero, 1 is the unity, ⊑ = ≤ |M and in which for each
S ∈ peP+(M) conditions (iii) and (iv) hold from Theorem III.1.2.

Proof. The identity ⊑ = ≤ |M we prove as we did on p. 117.
If M ∈ qMS then the facts given in Section 2 on pp. 202–203 permit

us to repeat the proof (without the axiom of choice) of Theorem III.1.2
to the point at which we stated that the structure Mo := 〈M0 ,≤, 0 , 1〉 is
a non-trivial Boolean lattice with the zero 0 and the unity 1. It therefore
remains to show that it is an e-complete lattice. To this end, we make
use Lemma 17.1(ii) from Appendix I and Theorem 6.6 from Appendix II,
and we show that 1 ∈ E(Mo).

Let us observe that in the lattice Mo the operation + coincides with
the operation ⊔ on M × M and the operation · coincides with the op-
eration ⊓ on {〈x, y〉 ∈ M × M : x � y}. Moreover, At(Mo) = at,
Atc(Mo) = atc ∪ {0 } and Atl(Mo) = atl∪ {0 }. We must therefore show
that there exists an x ∈ Atc(Mo) and a y ∈ Atl(Mo) such that 1 = x+y.

If the structure M is atomic, then 1 ∈ atc and 1 = 1 + 0 . If the
structure M is atomless, then 1 ∈ atl and 1 = 0 + 1. In the remaining
case  on the basis of Theorem 6.3  there are an x ∈ atc and a y ∈ atl

such that 1 = x ⊔ y.

By making use of the two theorems below, we may prove the iden-
tity Th(qMS) = Th(MS) that we mentioned earlier. To this end, the
auxiliary fact below will be necessary:

Lemma 7.3. Assign to an arbitrary L�-sentence an L0

≤
-sentence as in

Lemma III.2.1. Then:

(i) ϕ ∈ Th(MS) iff ϕ∗ ∈ Th(CBL),
(ii) ϕ ∈ Th(qMS) iff ϕ∗ ∈ Th(ecBL).

Proof. Ad (i): Assume that ϕ ∈ Th(MS) and take an arbitrary B ∈
CBL, in which 0 is the zero. To the lattice B we assign the structure
B+

⊏ ∈ MS, which arose from B as a result of the operation carried out
in Theorem III.1.1. On the strength of the assumption, ϕ ∈ Th(B+

⊏).
Putting 0 := 0 we assign to the structure B+

⊏ a complete Boolean lattice
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Mo = 〈M0 ,≤〉, as described in Theorem III.1.2. Obviously, Mo = B.
From this and from Lemma III.2.1, we have ϕ∗ ∈ Th(B).

Conversely, let ϕ∗ ∈ Th(CBL) and take an arbitrary M ∈ MS. Then
for an arbitrarily chosen 0 6∈ M , on the strength of Theorem III.1.2, we
have Mo ∈ CBL. Therefore ϕ∗ ∈ Th(Mo). Hence, on the strength of
Lemma III.2.1, we have ϕ ∈ Th(M).

Ad (ii): As in (i) but changing MS to qMS, and CBL to ecBL, and
theorems III.1.1 and III.1.2 to theorems 7.1 and 7.2.

8. M = Th(qMS) = Th(MS)

Although MS 6= qMS, then in these classes the same elementary sen-
tences are true.

Theorem 8.1. Th(qMS) = Th(MS).

Proof. Since MS ⊆ qMS then Th(qMS) ⊆ Th(MS).
To prove the converse inclusion, take arbitrary ϕ ∈ Th(MS) and

M ∈ qMS. We will show that ϕ ∈ Th(M), which will prove the inclusion
we want.

Let ϕ∗ be an L0

≤
-sentence assigned to ϕ in Lemma III.2.1. On the

strength of Lemma 7.3(i), we have ϕ∗ ∈ Th(CBL). Hence, in virtue of
Proposition II.6.8, we have ϕ∗ ∈ Th(ecBL). Therefore ϕ ∈ Th(qMS),
on the strength of Lemma 7.3(ii).

Thus, by virtue of (2.1), we obtain:

M = Th(qMS) = Th(MS) .

9. The class qMS is finitely elementarily axiomatisable – finite
axiomatization of the theory M

To prove that the class qMS is finitely elementarily axiomatisable, or 
in other words  that theory M has a finite axiomatization, the following
theorem will be needed:

Theorem 9.1. Let M = 〈M,⊏,⊑,�, N〉 be an arbitrary Ld�-structure,
in which the sets at, atc and atl are defined by the conditions (df at),
(df atc) and (df atl), respectively. Then, for structure M to belong to
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the class qMS, it is both necessary and sufficient that all the conditions
below be satisfied:

(a) The relation ⊏ is asymmetric and transitive.
(b) For for arbitrary x, y ∈ M there exists a z ∈ M such that z sup

⊑

{x, y}, and if x � y then for some u ∈ M we have u inf⊑ {x, y}; so,
by (a), we can define two binary operators ⊔ : M × M → M and
⊓ : {〈x, y〉 ∈ M × M : x � y} → M , with the equalities x ⊔ y :=
(i z) z sup

⊑
{x, y} and x ⊓ y := (i z) z inf⊑ {x, y}).

(c) There exists an x ∈ M such that for each y ∈ M we have y ⊑ x;
so, by (a), we can distinguish in M an element 1 which satisfies the
condition: ∀y∈M y ⊑ 1.

(d) The relation N and the operation ⊔ satisfy the condition (Υ).
(e) The operations ⊔ and ⊓ satisfy condition (∆1), for all x, y, z ∈ M .
(f) For the operation ⊔, for the element 1 and for the sets atc and atl,

condition (Σ1) holds.

Proof. ‘⇒’ Let M ∈ qMS. Then the relation ⊏ is asymmetric and
transitive. Moreover, on p. 202–203 we showed that M satisfies condi-
tions (b)–(e). The satisfaction of condition (f) holds in virtue of Theo-
rem 6.3.

‘⇐’ If a structure M satisfies conditions (a)–(e), then we may repeat
the proof (without the axiom of choice) of Theorem III.1.2 to the point
where we stated that the structure Mo := 〈M0 ,≤, 0 , 1〉 is a non-trivial
Boolean lattice with the zero 0 and the unity 1 (see pp. 117–119).9

Using condition (f) just as we did in the proof of Theorem 7.2, we
can show that the lattice Mo is pe-complete.10

We have shown, therefore, that Mo ∈ ecBL. It is obvious that by
applying the procedure of ‘throwing out the zero’ applied in Theorem 7.1,
we have come back to the initial structure M. Therefore, by Theorem 7.1,
the structure M belongs to qMS.

We may now give the finite set AxM
fin of Ld� -sentences as an axiomati-

zation of theory M. The first five axioms in the set AxM
fin are: (l1), (l2),

(d �), (do) and (d ℄). The extension of the language L� by the additional

9 This situation has occurred already in the proof of Theorem 7.2, where we
assumed that M ∈ qMS and the facts given in Section 2 on pp. 202–203 confirmed
that conditions (a)–(d) hold for the theorem currently being proven.

10 In the proof of Theorem 7.2 we have only made use of the fact that condition
(Σ1) holds in M.
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predicates “�”, “o” and “℄” allows for the straightforward formulation
of the next axioms from the set AxM

fin. Let us give below the first three
of them:

∀x∀y∃z∀u(z � u ≡ x � u ∧ y � u) (∃�)

∀x∀y(x o y → ∃z∀u(u � z ≡ u � x ∧ u � y)) (∃�)

∃z∀u u � z (∃1)

From (r�) and (antis�) it follows that in axioms (∃�), (∃�) and (∃1) the
quantifier “∃z” may be replaced with the singular quantifier “∃!z ”:

∀x∀y∃!z∀u(z � u ≡ x � u ∧ y � u) (∃!�)

∀x∀y(x o y → ∃!z∀u(u � z ≡ u � x ∧ u � y)) (∃!�)

∃!z∀u u � z (∃!1)

Therefore, one can define two new constants for our theory: the two-place
functional symbol “�” and the name constant “1”, the following being
their definitions:

∀x∀y∀u(x � y � u ≡ x � u ∧ y � u) (d �)

∀u u � 1 (d 1)

The constant “�” is obviously the symbol of a binary sum (corresponding
to the least upper bound) and the constant “1” is the symbol of the unity.
Let us note that from (d �) and (r�) we obtain the following theses:

x = x � x

x � y = y � x

x � x � y

(x � y) o (x � z)

We can also conditionally11 define a two-place constant function “�”,
which corresponds to the ‘partial’ product or the greatest lower bound:

∀x∀y(x o y → ∀u(u � x � y ≡ u � x ∧ u � y) (d �)

By applying these definitions we can more easily formulate the re-
maining axioms of the theory M. The first of them is the elementary

11 On the subject of conditional definitions, see, for example, [Grzegorczyk, 1974,
pp. 212–213].
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form of condition (Υ), and the two following axioms corresponding to
condition (∆1):

∀x(x ≠ 1 → ∃y(x � y = 1 ∧ x ℄ y)) (U)

y ℄ z → x = (x � y) � (x � z) (D1
1)

y o z → x � (y � z) = (x � y) � (x � z) (D2
1)

To formulate the final axiom, we will need the help of the three
one-place predicates “at”, “atc” and “atl” which are defined as follows:

at x ≡ ¬ ∃y y � x (d at)

atc x ≡ ∀y(y � x → ∃z(at z ∧ z � y)) (d atc)

atl x ≡ ¬ ∃z(at z ∧ z � x) (d atl)

Obviously, the predicate “at” may be read as “is an atom”; the predicate
“atc” as “is atomic”, and the predicate “atl” as “is atomless”. Definitions
(d at), (d atc) and (d atl) correspond to (df at), (df atc) and (df atl).

The final axiom from the set AxM
fin is the elementary counterpart of

condition (Σ1):

¬ ∃x at x ∨ ∀x∃y(at y ∧ y � x) ∨ ∃x∃y(atc x ∧ atl y ∧ 1 = x � y) (S1)

On the basis of Theorem 9.1, we can prove that

Theorem 9.2. The class qMS is finitely elementarily axiomatisable by
the set of axioms AxM

fin, i.e., we have qMS = Mod(AxM
fin).

Hence, by (2.1) and Gödel’s completeness theorem, we have:

Theorem 9.3. The theory M is finitely axiomatisable by the set of
axioms AxM

fin, i.e., we have M = CnAxM
fin.

Proof. For any formula ϕ in Ld� : ϕ ∈ CnAxM
fin iff ϕ ∈ Th(Mod(AxM

fin))
iff ϕ ∈ Th(qMS) iff ϕ ∈ M iff ϕ ∈ M.

10. A particular weakening of conditions (peL3) and (peL4)

In this section, we will answer the question: What sort of class of struc-
tures do we obtain when the universal quantifier in sentences (L3) and
(L4) is restricted to e-definable sets (without parameters)? This question
is equivalent to the following one: What theory do we obtain, when, in
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formulating axioms (l3k
ϕ) and (l4k

ϕ), we accept that the formula ϕ has
only one free variable, i.e., we restrict ourselves to (l30

ϕ) and (l40
ϕ), the

case where k = 0?
Let eP(M) be the family of all e-definable sets (without parameters)

in M and eP+(M) := eP(M)\{∅}. Let E be the class of all Ld� -structures
in which the relations ⊏, ⊑, � and N satisfy conditions: (L1), (L2), (df ⊑),
(df �) and (df N), and the following conditions holds in M:

∀S∈eP(M)∀x,y∈M (x Sum S ∧ y Sum S =⇒ x = y), (eL3)

∀S∈eP+(M)∃x∈M x Sum S . (eL4)

From the same definitions we have the inclusion qMS ⊆ E, but we
will prove that qMS ( E.

Proposition 10.1. Both conditions (peL3) and (WSP) do not follow
from the set {(L1), (L2), (eL3), (L4)}, so also it does not follow either
from {(L1), (L2), (eL3), (peL4)} or {(L1), (L2), (eL3), (eL4)}. Thus, we
obtain:

• qMS ( E.
• E * L12 + (WSP).

Proof. In model 15, the following conditions hold: (L1), (L2), (L4)
and (eL3). For (L4): x Sum {x}. Moreover, if S includes at least one
of the sets {1234}, {1, 2}, {3, 4}, {2, 3} and {1, 4}, then 1234 is the only
sum of S. To finish, 3 and 4 are, respectively, the only sums of the
sets {1, 3} and {2, 4}. For (eL3): the only subsets of the universe, for
which (L3) does not hold, are the singletons {1} and {2} (3 Sum {1}
and 4 Sum {2}). But these singletons are not e-definable in model 15.
In fact, with respect to the symmetry that holds, it is not possible in
the language Ld� to distinguish elements 1 and 2. Therefore, in model 15,
condition (eL3) holds, but (peL3) and (WSP) do not hold.

Moreover, we can obtain:

Proposition 10.2. Condition (peL4) does not follow from the set {(L1),
(L2), (L3), (eL4)}.

Proof. In model 16, for example, the set {2, 3} does not have a mereo-
logical sum, but all subsets of the universe which do not have one are not
e-definable. Therefore, in model 16, condition (eL4) holds, but (peL4)
does not hold.
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1234

3 4

1 2

Model 15. Conditions (L1), (L2), (eL3) and (L4) hold,
but conditions (peL3) and (WSP) do not hold

1234

12 34

1 2 3 4

Model 16. Conditions (L1), (L2), (L3) and (eL4) hold,
but (peL4) does not hold

123456

1234 56

3 4
5 6

1 2

Model 17. Conditions (L1), (L2), (eL3) and (eL4) hold,
but both conditions (peL3) and (peL4) do not hold

Proposition 10.3. Condition p(peL3) ∨ (peL4)q does not follow from
the set {(L1), (L2), (eL3), (eL4)}.

Proof. In model 17, conditions (L1), (L2), (eL3) and (eL4) hold, but
both conditions (peL3) and (peL4) do not hold. (Models 15 and 16 are
submodels of model 17.)

Proposition 10.4. Condition (∃ N) does not follow from the set {(L1),
(L2), (eL3), (eL4)}. Thus, we obtain:

• E * L12 + (∃ N).
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L12 + (∄0)

E

GMS

qMS

MS

Diagram 5. The class E in the lattice of certain superclasses of MS

Proof. Take a model whose universe is composed of rational non-pos-
itive numbers, and where ⊏ is the relation <. In this model, (L1) and
(L2) hold, but (∃ N) does not hold. Furthermore, the only e-definable
sets are: ∅, the whole universe, {0} (by the formula “¬ ∃y x � y”), and
the set of negative rational numbers. The only mereological sum of the
last three sets is 0. Therefore, in this model, (eL3) and (eL4) hold.

Proposition 10.5. Condition (∄0) follows from the set {(L1), (L2),
(eL3)}. Thus, we obtain:

• E ( L12 + (∄0).

Proof. if CardM = 1 them the only element of the universe is its own
ingrediens. Conversely, assume for a contradiction that (a) CardM > 1
and (b) for a certain x0 ∈ M we have ∀y∈M x0 ⊑ y. In virtue of
(antis⊑), the singleton {x0} is e-definable in M with the help of the
formula “∀y x � y”. We have x0 Sum {x0}. In virtue of (a) there exists a
y0 such that y0 6= x0. In virtue of (b) we have y0 Sum {x0}. Therefore,
we have obtained a contradiction from (eL3). Thus, E ⊆ L12 + (∄0).

Finally, since E * L12+ (∃ N) ( L12+ (∄0), then E ( L12+ (∄0).

Repeating the proof of Theorem 5.1, we obtain:

Proposition 10.6. GMS * E.

We can therefore supplement diagrams 2, 3 and 4 to diagram 5.

In the language Ld� we create the theory E using the following axioms:
(l1), (l2), (d �), (do), (d ℄), (l30

ϕ) and (l40
ϕ). That is, we omit from the

theory M all axioms (l3) and (l4) for Ld� -formulae that have more than
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one free variable (the case where k > 0). From the facts proved earlier,
it follows that the class E is elementarily axiomatisable, because it is a
class of models of theory E:

E = Mod(E) .

Assume that M belongs to E. Then it is easy to show that M is a
model of theory E, if we make use of Lemma 1.1 and rework the proof
of Theorem 2.3 for the case where k = 0. Conversely, if M is a model of
the set of axioms of theory E, then  using Lemma 1.1  we can rework
the proof of Theorem 2.4 for the case where k = 0.



Chapter VII

Mereological sets of distributive classes

We will present a first-order theory MDC (see Section 4) in which we
can speak of mereological sets (sums) composed of distributive classes.
Besides the concepts of being a distributive class and being a member of
a distributive set, it will involve the concepts of being a mereological set
(sum) of and being a mereological part of . We will interpret in MDC
Morse’s first-order class theory MT [1965] (see Section 3). We will show
that our theory MDC has a model only if Morse’s theory has one (see
Section 4).

This chapter derived from earlier work but has undergone significant
modification [see Pietruszczak, 1995, 1996].

1. Motivations

In von Neumann-Gödel type set theories (NG for short) we distinguish
between sets and classes. Every set is a class, yet not every class is a set.
Sets are those and only those classes which are members of at least one
class. Classes that are not sets are called proper classes; for instance: the
class of all sets, the class of all singleton sets, the class of all groups, etc.

Within set theory we cannot, however, deal with ‘objects’ (‘collec-
tions’, ‘complexes’, ‘multitudes’, ‘assemblies’) whose elements are proper
classes. Such ‘objects’, nevertheless, are quite handy in some cases. We
will mention three examples: from mathematics, from meta-mathemat-
ics, and from the philosophy of science.

1. A definition of category frequently begins somewhat like: “We say
that a category A is defined if the following are specified: [. . . ]”. Then,
three objects are mentioned, all of which can be proper classes: for
instance, when we deal with the category of all sets, all groups, or all
metric spaces [cf. Dold, 1972]. Sometimes it is straightforwardly said
that a category is a triplet, consisting of these objects. In such cases,
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obviously, the category A cannot be an object in an NG-type set theory.
This barrier can be bypassed in several ways, which are presented, for
instance, in [Cohn, 1969; Semadeni and Wiweger, 1978]. A ‘partial’
solution is to define categories in set theories tailored especially to suit
this purpose, e.g., in Grothendieck’s, or MacLane’s systems. A drawback
of this solution is that we are not able to consider ‘the whole’ category of
all sets, ‘the whole’ category of all groups, etc. A ‘full’ resolution of the
difficulties has been proposed by Lawvere, who, instead of construing
category theory within a set theory, has built up an axiomatic category
theory and construed his set theory within it.

2. To deal with models of Zermelo-Fraenkel set theory in Morse’s class
theory the following approach is often adopted: Take a class C and a
relation e ⊆ C × C, which is to be the interpretation of the predicate
“∈” [cf. Jech, 1971, p. 25; Guzicki and Zbierski, 1992, p. 21].1 Then,
introduce, inductively, the notion of a formula being true in the class C,
even though it is clear that this notion depends on the relation e as
well. Consequently, the class C alone is called a model of the theory,
despite the fact that, with different interpretations of the predicate “∈”
(e1 6= e2), the very notion of model becomes equivocal.2 Within Morse’s
class theory we cannot, obviously enough, define the model as a pair
〈C, e〉 [such as in Jech, 1971].3

3. In [Nowaczyk, 1985] theories are associated with “resources” or “sys-
tems” of their concepts. The author uses the term “resources” because
the concepts themselves are proper classes already. He writes:

This, of course, brings about certain difficulties in formulating theorems
and leads to employing, «unofficially», terms like ‘resources’, or ‘sys-
tems’ (but only in such a way that they could be eliminated altogether).

[Nowaczyk, 1985, p. 105]

1 The counterpart of “∈” in the metalanguage, i.e., the language of the paper,
will be the symbol “∈”.

2 Equivocality disappears only when the standard interpretation of “∈” is
adopted, under which e is the ‘natural’ membership relation in M , i.e., when
e = {〈x, y〉 ∈ C2 : x ∈ y}.

3 In Morse’s class theory, we could define a model of Zermelo-Fraenkel set theory
as a function from the class C×C into the set {0, 1} (such a function is a proper class
whenever C is). Thus, to define a model we would need only one object, unequivocally
determining both its universe (the class C) and the interpretation of the predicate
“∈” in it (the above function is the characteristic function of a binary relation).
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The above examples evidence the ‘natural’ need for a simple and
consistent way of construing objects composed of proper classes. Any
such construction must, of course, go beyond the framework of the theory
of distributive classes.

To discover a solution we will look into mereology. We will construct
mereological sums (or: collective sets, mereological sets, mereological
fusions) composed of distributive classes.4

2. Outline of a set-theoretic ontology

The ontology proposed below is, obviously, of a metaphorical character.
It is but the outline of a project to establish a set-theoretic ontology. Its
full formulation must be left to a formal and relatively consistent theory.

1. (a) Among other ontological assumptions of set theory, we could
adopt the principle that  apart from distributive classes  there exist
some objects, which (together with the empty class) are so-called ure-
lements of non-empty distributive classes. These have been named var-
iously: “non-classes” [cf. Mendelson, 1964, p. 160], “individuals” [cf.
Nowaczyk, 1985, p. 48] and “atoms” [cf. Jech, 1971, Sec. 26]. We will
adopt this latter term5 prefixed with the adjective “distributive”.6 No
urelement has distributive elements.

Distributive atoms can, however, be mereological sums (i.e., collec-
tive sets).7 Therefore, they can possess components, fragments, chunks,
pieces, proper mereological parts (collective parts), or mereological ele-
ments (collective elements), which are not dealt with in set theory.

4 Basic intuitions connected with the notion of collective set can be found, for
instance in [Kotarbiński, 1966; Quine, 1953; Słupecki and Borkowski, 1984]. It is
sometimes said that mereological sets (sums)  as opposed to distributive classes 
are so-called concrete objects. This standpoint precludes collective sets with abstract
elements. However, Leśniewski [1991c] allowed such objects. He considered a geomet-
rical interval as a collective set composed of other intervals (there seems to be no reason
to believe that geometrical intervals, which he analyzed in a paper on the ‘foundations
of mathematics’, were for Leśniewski concrete objects). The present author is of the
opinion that a mereological set is concrete if and only if all its elements are.

5 The first has to broad a meaning, the second is used in philosophy in a technical
sense; both are inappropriate for our purpose.

6 Apart from distributive atoms, we will be considering so-called mereological
atoms.

7 These can, for example, be forests, herds, solar systems, or the like; hence our
reluctance to call them “individuals”.
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We assume that the following principle is one of the ontological as-
sumptions of set theory:

Principle. No distributive class is a mereological part of any distributive
atom.8

Let us underline again that the principle above is never adopted
explicitly in set theory. And quite naturally so: in set theory we never
speak about mereological parts of anything. However, it seems that any
other solution would contradict the intuitive meaning of the notion of
urelement.

(b) The most frequently encountered version of set theory assumes
that its universe9 consists entirely of so-called pure classes. These com-
prise the empty class and the classes which have the former as their only
urelement.

(c) It can be assumed that the universe of mereology consists of
the above distributive atoms. If one’s adopted version of mereology
is atomic, then the objects under consideration are mereological sums
uniquely defined by their mereological atoms, i.e., objects that have no
proper mereological parts.

To expand our ontology ad infinitum:
2. The relation of is a mereological part of we extend onto distribu-

tive classes, assuming that each of these is a mereological atom.10

8 This principle is also  in some version  in [Lewis, 1991] as the Priority Thesis:
“No class is part of any individual” (p. 7) and the Second Thesis: “No class has any
part that is not a class” (p. 6). Note, however, that Lewis understands the word “part”
in a sense which allows for improper parts, i.e., ingredienses in our sense. Lewis’ thesis
therefore says, respectively: no class is ingrediens of any individual and no class has

any ingrediens that is not a class. Thus, in our terminology, we also have: no class is

part of any individual.
9 The universe of a theory is the ‘range’ of objects considered in the theory. The

universe itself cannot, obviously, be one of the objects investigated within the theory.
10 As Lewis [1991], we mean that not only urelements have mereological parts.

But the First Thesis of Lewis says (see footnote 8): “One class is [an ingrediens] of
another iff the first is a subclass of the second” (p. 4). “The conjunction of the First
and Second Thesis is our Main Thesis: The [ingredienses] of a class are all and only
its subclasses” (p. 6–7). Lewis adds:

To explain what the First Thesis means, I must hasten to tell you that my
usage is a little idiosyncratic. By ‘classes’ I mean things that have members.
By ‘individuals’ I mean things that are members, but do not themselves have
members. Therefore there is no such class as the null class. I don’t mind
calling some memberless thing  some individual  the null set. But that
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3. Then, we form mereological sums (sets) of all distributive atoms
and distributive classes. Thus, we assume that there exists mereological
sums that have at least two mereological parts, of which at least one is
a distributive class. The objects we have construed this way are neither
distributive classes (by 2), nor distributive atoms (by our Principle).

4. To the objects postulated in 3, we add distributive atoms and
distributive classes.

5. The ’formation’ of distributive classes from the urelements can
be metaphorically described as a certain construction. To find a precise
and metaphor-free formulation we turn to the formal set theory. Such
a ‘construction’, starting, as it does, from urelements (described in 1),
cannot lead outside the universe of distributive classes (also considered
in 1), since this is precisely how the latter has been formed.

Applying the ‘construction’ to the universe of 4, we obtain new dis-
tributive classes. These will have at least one (distributive) element that
is neither a distributive atom nor a ‘standard’ distributive class.

6. The universe of 4 we further extend by adding the non-standard
distributive classes described in 5.

7. We extend the relation is a mereological part into the universe
of 6, assuming that each distributive class (be it standard or not) is a
mereological atom.

8. We form mereological sums of all objects mentioned in 6. In other
words, we repeat step 3 for the objects of 6. We assume, thus, that there
exist mereological objects that have at least two mereological parts, of
which at least one is a ‘non-standard’ distributive class.

9. We extend the universe of 6 to include the objects postulated in 8.
And so on, ad infinitum.

The realization of the above project  embodied in a formal system 
we will postpone to another occasion. Here, we will focus on a small frag-
ment of it. Starting from pure classes (1b), we will extend the universe to
include the objects postulated in point 3 and stop at this stage. The ex-
tended universe will comprise solely distributive classes and mereological
sums of them. Other formal systems, which will be certain implementa-
tions of this project, will be presented in Chapter VIII.

doesn’t make it a memberless class. Rather, that makes it a ‘set’ that is not
a class. Standardly, all sets are classes and none are individuals.

[Lewis, 1991, p. 4]
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We will present a formal theory, suitable to deal with such a universe.
We will show that the set-theoretic universe will remain the same. We
will also show its relative consistency.

3. Morse’s first-order class theory

Morse’s first-order class theory MT will be expressed in a first-order
language with identity LMT. Its sole specific symbol is the two-place
predicate “∈” to be read as “is an element of” (or “belongs to”).

Axioms of the theory MT, as presented here, are modelled on [Guzicki
and Zbierski, 1992, pp. 9–11]. First comes the extensionality axiom:

∀x ,y(∀z(z ∈ x ≡ z ∈ y) → x = y) (MT1)

To give the next axioms it will be best to extend the language LMT

with some predicates, which will be definable in the theory MT by the
following definitions:

Null x ≡ ¬ ∃y y ∈ x (dNull)

Set x ≡ ∃y x ∈ y (dSet)

z Pair xy ≡ ∀u(u ∈ z ≡ u = x ∨ u = y) (dPair)

y Un x ≡ ∀z(z ∈ y ≡ ∃u(u ∈ x ∧ z ∈ u)) (dUn)

x ⊂ y ≡ ∀z(z ∈ x → z ∈ y) (d ⊂)

y Pow x ≡ ∀z(z ∈ y ≡ Set z ∧ z ⊂ x) (dPow)

z IS xy ≡ ∀u(u ∈ z ≡ u ∈ x ∧ u ∈ y) (d IS)

We will read these new defined subformulae as follows:
• Null x – x is a null class
• Set x – x is a set
• z Pair xy – z is the pair of x and y

• y Un x – y is the union (generalised sum) of x

• x ⊂ y – x is a subset of y

• y Pow x – y is the power class of x

• z IS xy – z is the intersection of x and y

Employing the above definitions, we formulate the following axioms
for sets:

∀x(Null x → Set x) (MT2)

∀x ,y ,z(Set x ∧ Set y ∧ z Pair xy → Set z) (MT3)
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∀x ,y(Set x ∧ y Un x → Set y) (MT4)

∀x ,y(Set x ∧ y Pow x → Set y) (MT5)

That is, any null class is a set; any pair of sets is a set; any union of a
set is a set; any power class of a set is a set.

We can also formulate the following axiom of foundation (regularity):

∀x(¬ Null x → ∃y(y ∈ x ∧ ∀z(z IS xy → Null z))) (MT6)

That is, for any non-empty class, some element of it has an empty inter-
section with it.

The next axiom says that there is an infinity class:

∃x(∀u(Null u → u ∈ x) ∧

∀y ,z(y ∈ x ∧ ∀u(u ∈ z ≡ u ∈ y ∨ u = y)) → z ∈ x)
(MT7)

In order to more ‘legibly’ to formulate the axiom of replacement, we
will need some more definitions. The first one introduces the predicate
“oPair” that can be read as “is an ordered pair of”:

z oPair xy ≡ ∀u(u ∈ z ≡ u Pair xy ∨ u Pair xx) (d oPair)

The second one introduces the predicate “Im”:

z Im xy ≡ ∀u(u ∈ z ≡ Set u ∧ ∃v(v ∈ y ∧ ∀w(w oPair vu → w ∈ x)))

(d Im)
The new defined subformula “z Im xy” can be read as “z is an image
of x , restricted to y”. The last definition employed will be:

Fun x ≡ ∀y(y ∈ x → ∃z ,u(Set z ∧ Set u ∧ y oPair zu)) ∧

∀y ,z ,u ,v ,w(y oPair uv ∧ y ∈ x ∧ z oPair uw ∧ z ∈ x → v = w)
(dFun)

i.e., “Fun x” can be read as “x is a function”. Employing the above
definitions we may now state the axiom of foundation:

∀x(Fun x → ∀y ,z(Set y ∧ z Im xy → Set z)) (MT8)

That is, any image of a function, restricted to a set, is a set.
We now extend the language LMT to the first-order languageLd

MT by
the predicates we have defined.
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Next we assume an infinite set of axioms of class existence, in the
form of the following schema for an arbitrary Ld

MT-formula ϕ(u) in which
the variable “u” is free but the variable “x” is not free:

∃x∀u(u ∈ x ≡ Set u ∧ ϕ(u)) (MT9)

From (MT1) and (MT9), for any LMT-formula ϕ, in which “u” is free,
but “x” is not free, we therefore obtain:

∃!x∀u(u ∈ x ≡ Set u ∧ ϕ(u)) (3.1)

Using (3.1) for the formula ϕ(u) := “u ≠ u” we have the following
thesis of MT:

∃!x∀u(u ∈ x ≡ Set u ∧ u ≠ u)

So we obtain:
∃!x Null x

We can therefore introduce the following definition of the individual
constant “ø” (“empty class”):

x = ø ≡ Null x

From (MT2) we obtain the thesis “Set ø”, i.e., the null class ø is a set.
Using (3.1) for the formula ϕ(u) := “u = y ∨ u = z” we have the

following theses of MT:

∀y ,z∃!x∀u(u ∈ x ≡ Set u ∧ (u = y ∨ u = z))

∀y ,z(Set y ∧ Set z → ∃!x x Pair yz)

The class x postulated in the above thesis we will call the pair of sets
y and z , and signify it by: {y , z}. Instead of “{y , y}” we write “{y}”.
From (MT3) we obtain: if y and z are sets then {y , z} is a set.

Moreover, for the predicate “oPair”, using (3.1) and (MT3), we have
the following theses of MT:

∀y ,z∃!x∀u(u ∈ x ≡ Set u ∧ (u Pair yz ∨ u Pair yy))

∀y ,z(Set y ∧ Set z → ∃!x∀u(u ∈ x ≡ u Pair yz ∨ u Pair yy))

∀y ,z(Set y ∧ Set z → ∃!x∀u(u ∈ x ≡ u = {y , z} ∨ u = {y}))

∀y ,z(Set y ∧ Set z → ∃!x x oPair yz)

The class x postulated in the above thesis we will call the ordered pair
of sets y and z , and signify it by: <y , z>. We see that for arbitrary sets
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y and z we have <y , z> = {{y}, {y , z}}. From (MT3) we obtain: if y

and z are sets then <y , z> is a set.
By (3.1), for arbitrary sets y and z there is exactly one class which

is a union (generalised sum) of the set {y , z} and which we denote by
“y ∪ z”. So we have: ∀u(u ∈ y ∪ z ≡ u ∈ y ∨ u ∈ z). Hence, by (MT4),
we obtain: if y and z are sets then y ∪ z is a set.

Using (3.1) and the observations above on the formula ϕ(u) := “u ∈ y

∧ u ∈ z” we have the following theses of MT:

∀y ,z∃!x∀u(u ∈ x ≡ Set u ∧ u ∈ y ∧ u ∈ z)

∀y(Set y → ∃!x x IS yz)

For any set y and any class z , the class x postulated in the above thesis
we will call the intersection of y and z , and signify it by: y ∩ z . Of
course, we have the theses: “y ∩ z = z ∩ z”, “y ∩ z ⊂ y” and “y ∩ z ⊂ z”.

Using (3.1) for the formula ϕ(u) := “∃v(v ∈ y ∧ u = <v , v>)” we
have the following theses of MT:

∀z∃!x∀u(u ∈ x ≡ Set u ∧ ∃v(v ∈ z ∧ u = <v , v>))

∀z∃!x∀u(u ∈ x ≡ ∃v(v ∈ z ∧ u = <v , v>))

For any set y , the class x postulated in the above thesis is a function.
Notice that for any set y and any class z we have: y ∩ z is an image
of x , restricted to y . Hence y ∩ z is a set, by (MT8).

By the above, if x is a set then x ∩ y is a set. Moreover, if y ⊂ x

then x ∩ y = y . So we obtain the following thesis:

∀x ,y(Set x ∧ y ⊂ x → Set y)

Finally, notice that by (MT6) we obtain that no class is its own
element, i.e.:

∀x ¬ x ∈ x

Assume for a contradiction that for some x we have x ∈ x . Then x

is a set and so we can consider the set {x}. Since {x} ≠ ø, then  by
(MT6)  for some z we have: z ∈ {x} and {x} ∩ z = ø. But z = x and
x ∈ {x}. Thus, we obtain a contradiction: {x} ∩ z = {x} ∩ x ≠ ø.

Apart from the above axioms, we can also assume the axiom of choice.
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4. Elementary mereology of distributive classes

4.1. The language and definitions

The first-order theory with identity MDC (elementary Mereology of Dis-
tributive Classes) will be expressed in the first-order language LMDC with
the identity predicate “=”. The primitive notions of LMDC are the (set-
membership) predicate “∈”, the two-place predicate “�” (to be read as
“is a part of”) and the one-place predicate “Cl” (to be read as “is a
distributive class”).11

In order to more easily formulate the theory MDC, we will extend
the language LMDC by the following symbols:

• All symbols defined in the theory MT in Section 3.
• All symbols defined in the theory M in sections 1 and 9 of Chapter VI.

The predicates “�”, “at”, “atc” and “atl” may be read as “is an ingrediens
of”, “is an mereological atom”, “is mereologically atomic” and “is mere-
ologically atomless”, respectively. The two-place functional symbols “�”
and “�” are the symbols for binary mereological sum and binary mereo-
logical product, respectively. Finally, the constant “1” is the symbol for
unity.

4.2. The first axioms from elementary mereology

We want to formulate an extension of M in the language LMDC. We can
therefore take any group of axioms of theory M as the first axioms of the
new theory. For example, it we might take the finite set AxM

fin composed
of the following Ld� -formulae:

• (l1), (l2), (d �), (do), (d ℄), (∃�), (∃�), (∃1), (d �), (d 1), (d �), (U),
(D1

1), (D2
1), (d at) (d atc), (d atl) and (S1).

We could also take the infinite group of axioms composed of the following
LMDC-sentences:

• (l1), (l2), (l3k
ϕ) and (l4k

ϕ), for arbitrary k ­ 0 and LMDC-formula ϕ
such that vf(ϕ) = {x1, . . . , xk+1}.

11 The predicate “Cl” was redundant in the theory MT, as all objects from its
universe were distributive classes (i.e., we would have had an axiom “∀x Cl x”).
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4.3. The syntactic interpretation the theory MT in the theory MDC.
Further axioms of MDC

Let ℑ be a syntactic interpretation [cf. e.g. Shoenfield, 1977, Section 4.7]
of the language LMT in the language LMDC such that:

• ℑ(“∈”) := “∈”,
• the universe of ℑ is the predicate “Cl”.

For any LMT-formula ϕ we define an LMDC-formula ϕℑ, which is to be
the ℑ-interpretation of ϕ. First, let ϕCl be an LMDC-formula produced
by the relativisation of ϕ to “Cl”, i.e., by replacing any sub-formula of
the form p∀xi

ψ(xi)q by p∀xi
(Cl xi → ψ(xi))q and any sub-formula of the

form p∃xi
ψ(xi) by p∃xi

(Cl xi ∧ ψ(xi))q. Second, if xi1
, . . . , xin

are all the
variables that occur free in ϕ (hence, in ϕCl), enumerated in alphabetic
order, then ϕℑ is pCl xi1

∧ · · · ∧ Cl xin
→ ϕClq.

The first axioms of theory MDC will be the interpretations, by ℑ, of
the definitions and axioms of the theory MT. That is, we accept:

• if δ is one of the definitions (dNull), (d Set), (dPair), (dUn), (d ⊂),
(dPow) and (d IS) in MT, then δℑ is an axiom of MDC;

• if α is one of the axioms (MT1)–(MT8) of MT then αℑ is an axiom
of MDC;

• for any Ld
MT-formula ϕ(u) in which the variable “u” is free but the

variable “x” is not free, the formula (MT9)
ℑ

is an axiom of MDC.

Hence, the following Ld
MT-sentences are theses of MDC:

∃x(Cl x ∧ ∀u(Cl u → (u ∈ x ≡ Set u ∧ u = u)))

∃x(Cl x ∧ ∀u(Cl u → (u ∈ x ≡ Set u)))

∃x Cl x (4.1)

From (4.1) we therefore obtain [cf. Shoenfield, 1977, Section 4.7]:

• ℑ is an interpretation of the language LMT in the theory MDC;
• ℑ is an interpretation of the theory MT in MDC.

Therefore  by virtue of the Interpretation Theorem [cf. Shoenfield, 1977,
Section 4.7]  we obtain:

• for any thesis ϕ of MT, the LMDC-formula ϕℑ is a thesis of MDC.

We proceed by construing MDC in such a way that will ensure the
validity of the converse as well (see Theorem 4.3).
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Remark 4.1. The sentence “∃x x = x” is a thesis of MT, as it is logically
valid. We have (∃x x = x)ℑ := “∃x(Cl x ∧ x = x)”. Of course, the last
sentence is logically equivalent to (4.1).

However, in order to apply the Interpretation Theorem, we first had
to prove thesis (4.1) in MDC which then allowed us to interpret the
language LMT in MDC. Otherwise, we would not have known whether
(∃x x = x)ℑ was a thesis of MDC.

4.4. The last two axioms of MDC. Relative consistency of MDC

The first of the additional axioms says that:
• any object that any element has is a distributive class,
• only distributive classes (sets) are elements.
Formally:12

∀x ,y(x ∈ y → Cl x ∧ Cl y) (MDC1)

The last axiom says that all distributive classes are mereological
atoms:

∀x(Cl x → at x) (MDC2)

From (r�), (MDC2), (d at) and (d �) we obtain:

∀x(Cl x → ¬ ∃y y � x) (4.2)

∀x(Cl x → ∀y(y � x ≡ y ≠ y)) (4.3)

∀x ,y(Cl x ∧ Cl y → (y � x ≡ y ≠ y)) (4.4)

∀x(Cl x → ∀y(y � x ≡ x = y)) (4.5)

∀x ,y(Cl x ∧ Cl y → (y � x ≡ x = y)) (4.6)

∀x ,y(Cl x ∧ Cl y → (y o x ≡ x = y)) (4.7)

∀x ,y(Cl x ∧ Cl y → (y ℄ x ≡ x ≠ y)) (4.8)

∀x(Cl x → (at x ≡ x = x)) (4.9)

∀x(Cl x → (atc x ≡ x = x)) (4.10)

∀x(Cl x → (atl x ≡ x ≠ x)) (4.11)

Due to the presence of (MDC1), we could in certain cases dispense
with restrictions on some of the quantifiers. For example, instead of
(MT1)

ℑ
, (dNull)

ℑ
, (dSet)

ℑ
and (MT2)

ℑ
we could take, respectively:

∀x ,y(Cl x ∧ Cl y ∧ ∀z(z ∈ x ≡ z ∈ y) → x = y) (4.12)

∀x(Cl x → (Null x ≡ ¬ ∃y y ∈ x)) (4.13)

12 We assume that the universe of class theory consists entirely of pure classes.
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∀x ,y(Cl x → (Set x ≡ ∃y x ∈ y)) (4.14)

∀x(Cl x → (¬ ∃y y ∈ x → ∃y x ∈ y)) (4.15)

Moreover, notice that from (MT9)
ℑ

and (4.3)–(4.11), for an arbitrary
LMDC-formula ϕ(u) with k + 1 (k ­ 0) free variables “u”, xi1

, . . . , xik

such that the variable “x” is not free in ϕ(u) and all quantifiers in ϕ(u)
are restricted by “Cl”13, we obtain the following thesis:

Cl xi1
∧ · · · ∧ Cl xik

→ ∃x(Cl x ∧ ∀u(u ∈ x ≡ Set u ∧ ϕ(u))) (4.16)

The following relative consistency theorem holds for MDC:

Theorem 4.1. Let m = 〈Cm, ∈m〉, where Cm is a non-empty set and
∈m ⊆ C2

m, be a normal14 model of MT. Let M = 〈M, �M, ∈M,ClM〉 be
an LMDC-structure in which M := P+(Cm) and:�M := {〈X, Y 〉 ∈ M2 : X ( Y },

∈M := {〈X, Y 〉 ∈ M2 : ∃x,y∈Cm
(X = {x} ∧ Y = {y} ∧ x ∈m y)},

ClM := {X ∈ M : ∃x∈Cm
X = {x}}.

Then M is a normal atomic model of MDC such that�M = {〈X, Y 〉 ∈ M2 : X ⊆ Y },

oM = {〈X, Y 〉 ∈ M2 : X ∩ Y 6= ∅}, ℄M = M2 \ oM,

atM = ClM, atcM = M, atlM = ∅ ,

∀S∈M∃X∈atM X �M S .

Proof. For any setX , the structure PX := 〈P(X),⊆, ∅, X〉 is an atomic
Boolean lattice. Thus, 〈P+(X),(〉 is an atomic mereological structure in
which atoms are singletons and for any non-empty family F the sum
⋃

F is the mereological sum of F . Hence, it is clear that (l1) and (l2)
hold in M. We will show that (l3k

ϕ) and (l4k
ϕ) also hold in M.

Suppose that for arbitrary k ­ 0 and LMDC-formula ϕ with k+1 free
variables “x”, xi1

, . . . , xik
we have M � ∃x ϕ(x) [S1/xi1

, . . . Sk/xik
], i.e.,

the valuation [S1/xi1
, ...Sk/xik

] in the family M satisfies the antecedent
of (l4k

ϕ). Hence the non-empty family M x

ϕ(S1, ..., Sk) := {X ∈ M :

13 That is, quantifiers occur only in its subformulae that have the forms
p∀xi

(Cl xi → ψ)q and p∃xi
(Cl xi ∧ ψ)q.

14 In the sense that the interpretation of the predicate “=” is ‘true’ identity.
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M � ϕ [X/x , S1/xi1
, ..., Sk/xik

] } is pe-definable in M with parameters
S1, . . . , Sk (see p. 195). Because 〈M,(〉 is a mereological structure,
⋃
M x

ϕ(S1, ..., Sk) is the mereological sum of M x

ϕ(S1, ..., Sk). So the val-
uation [S1/xi1

, ..., Sk/xik
] satisfies the consequent of (l4k

ϕ) (see p. 196).
For similar reasons as above (l3k

ϕ) holds in M.

It is also easy to show that structure M meets the finite set AxM
fin

which is composed of the following Ld� -formulae: (l1), (l2), (d �), (do),
(d ℄), (∃�), (∃�), (∃1), (d �), (d 1), (d �), (U), (D1

1), (D2
1), (d at) (d atc),

(d atl) and (S1) (because the formula “∀x∃y(at y ∧ y � x)” holds).
The axiom (MDC1) holds in M, as a consequence of the fact that,

if X ∈M Y , then by the interpretation of “∈’; in M’, the sets X and Y
are singleton sets, hence they belong to ClM. Of course, axiom (MDC2)
holds in M.

That the axioms ‘coming from’ MT are true as well follows from the
fact that in M they act only on singletons created from elements of the
set Cm.

Directly from Theorem 4.1 we obtain:

Theorem 4.2. If MT is consistent, then MDC is too.

We have also the ‘conservative interpretation theorem’ for MDC:15

Theorem 4.3. For any LMT-formula ϕ: ϕℑ is a thesis of MDC if and
only if ϕ is a thesis of MT.

Proof. ‘⇒’ Let ϕ be an arbitrary LMT-formula. In the proof we will
make use of a well-known fact [cf. e.g. van Dalen, 1994, p. 79], implying
that, for any structure A of LMDC: if ACl is a structure for LtMDC
with the universe ClM (ClM 6= ∅) and with relations from A restricted
to ClM, then A � ϕℑ iff ACl � ϕ.

Let us assume that ϕℑ is a thesis of MDC. Take any model m of MT.
With no loss of generality we can assume that m is a normal model. We
will show that m � ϕ. Thus, by Gödel’s completeness theorem (the
model was chosen arbitrarily), it will follow that ϕ is a thesis of MT.

In Theorem 4.1, starting from a model m, we have built a structure
M, such that the former is a model of MDC. Thus, by the assumption

15 The interpretation ℑ of MT in MDC can be termed “conservative”. Notice
that MDC is not a conservative extension of MT, as it is not even an extension of it
(for instance formula (MT1) is not a thesis of MDC).
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and the completeness theorem, we obtain M � ϕℑ. Hence, by the fact
mentioned above, we have MCl � ϕ.

By the construction of M, it follows that ∈M|ClM := ∈M ∩ (ClM ×
ClM) = ∈M. Since only the predicate “∈” from LMDC occurs in ϕ, we
have that 〈ClM, ∈M〉 � ϕ as well. This, by the definitions of ClM and
∈M in Theorem 4.1, implies that m � ϕ.

‘⇐’ It follows from the Interpretation Theorem [cf. Shoenfield, 1977,
Section 4.7].

Remark 4.2. It is easy to see that to meet the goals set out in the opening
“Motivations” section, we can adopt a weaker theory in which the axiom
(l4) takes the special case only for the formula ϕ(x) := “x = y ∨ x = z”,
i.e., we take:

∀y ,z∃u sx

x =y∨x =z

where vf(sx

x =y∨x =z
) = {y , z , u} andsx

x =y∨x =z
:= “y � u ∧ z � u ∧ ∀v(v ⊑ u → y o v ∨ z o v)”

In other words, for arbitrary objects we assume that their mereological
sum exists.

Remark 4.3. Assume that instead of (MDC2) we adopt as axiom the
formula:

∀x(Cl x → ∀y(y � x ≡ (Cl y ∧ y ≠ ø ∧ y ⊂ x ∧ y ≠ x)))

i.e., the parts of a class are all and only its non-empty proper sub-
classes.16 Then for the formula ϕ(x) := “(x = y ∨ x = z)” we get the
thesis:

∀y ,z(Cl y ∧ Cl z → (sx

x =y∨x =z
≡ Cl u ∧ ∀v (v ∈ u ↔ v ∈ y ∨ v ∈ z)

which says that the mereological sum of two distributive classes is the
distributive sum of them.

Informally: for two distributive classes c1 and c2, the mereological
sum [[c1, c2]] is equal to the class c1∪c2. Thus, we have no pair. Moreover,
if c1 ⊆ c2 then [[c1, c2]] = c2.

16 Cf. [Lewis, 1991, p. 6–7] and my footnote 10.



Chapter VIII

Unitary theories of individuals and sets

1. Introduction

In this chapter, we will be concerned with a certain first-order theory in
which we may talk of collective sets composed both of individuals and
distributive sets. Besides the concepts of being a distributive set and the
relation of belonging to (to a distributive set) it will contain the concepts:
of being a collective set, the relation of being a collective part of and of
being an individual .

A set theory built not for the aims of ‘pure mathematics’ but for ap-
plication elsewhere (e.g., in physics or philosophy) permits the existence
of objects other than distributive sets (classes). These objects have no
element because only distributive classes possess them. Objects distinct
from distributive sets (classes) are often called “individuals”. One may
indeed adopt the position that their whole is a (distributive) set and
that the class of all sets is built out of such individuals. This means 
to put it vividly  that the ‘ultimate elements’ from which all sets are
built are individuals or empty sets.1 If one does not apply the axiom of
foundation (regularity), a better name for these objects is “non-classes”,
as it carries no implications; this name is adopted by Mendelson [1964].
Nothing is assumed about such ‘non-sets’ in set theory.

On the other hand, mereology  that is, the theory of collective sets
and their parts  is often entitled “the calculus of individuals”. In mere-
ology, various relations between objects are studied, determined by the
relation is a part of (in a collective sense). We believe that one need
not assume that only individuals have (collective) parts. David Lewis in
[1991] does not assume they do (he, however, adopts a different approach
to the one developed below in Section 3).

1 In so-called ‘pure’ set theory, which suffices for mathematics, it is taken that
the ‘ultimate’ element of each set is just the empty set.
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The conceptual apparatus which are employing in this work allows
us to define the concept of being an individual. This will be an object
which has no distributive elements but which also does not possess any
distributive sets as its parts (in a collective sense).

In Chapter I and in [Pietruszczak, 1997], the distinctions between a
collective and distributive set, and between the relation of belonging to
a distributive set and being a part of a collective set, were drawn in an
intuitive way. In this chapter we will formally realise the project of the
set-theoretic ontology we set out in Chapter VII (as well in [Pietruszczak,
1995, 1996]), where we are considering a theory in which it is possible to
speak of collective sets composed of distributive proper classes without
contradiction.

2. First-order set theory

2.1. The theory ZF

In this subsection we will introduce a certain version of Zermelo-Fraenkel
first-order set theory (ZF). The language LZF of ZF is a first-order lan-
guage with identity “=”. Its specific constants (primitive in ZF) are the
two-place predicate “∈” and the one-place predicate “Set” to be read as
“is a distributive set”. Other constants will be definable with the help of
“∈” and “Set”, which will expand the language.

We model the set of axioms of ZF on [Grzegorczyk, 1974, pp. 172–176]
(with some small changes). Besides the logical axioms relating to the
aforementioned constants, we also have the following specific axioms.

The first is the axiom of extensionality:

∀x ,y(Set x ∧ Set y ∧ ∀z(z ∈ x ≡ z ∈ y) → x = y) (ZF1)

We also adopt the principle (not mentioned in [Grzegorczyk, 1974]),
that if an object has even one element, it is a set:

∀x ,y(x ∈ y → Set y) (ZF2)

The given set we call a family of sets when all its elements are sets.
We therefore extend the language by a one-place predicate “F” (“is a
family of sets”) by adopting the definition:

F x ≡ Set x ∧ ∀y(y ∈ x → Set y)
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The next axiom says that, for an arbitrary family of sets, there exists
a set such that to it belong all and only those objects which are elements
of some element of the family:

F x → ∃z(Set z ∧ ∀u(u ∈ z ≡ ∃y(z ∈ y ∧ y ∈ x))) (ZF3)

To give the next axiom it will be best to extend the language with a
two-place predicate “⊂”, read as “is a subset”:

x ⊂ y ≡ Set x ∧ Set y ∧ ∀z(z ∈ x → z ∈ y)

The power-set axiom states that, for an arbitrary set there exists a set
set to which belong all the subsets of the first set:

Set x → ∃y(Set y ∧ ∀z(z ∈ y ≡ z ⊂ x)) (ZF4)

The axiom of infinity says firstly that a set exists and secondly that
that set is a family of sets having at least one element each and such
that each of its elements is a subset of another of its elements:

∃x(F x ∧ ∃yy ∈ x ∧ ∀y(y ∈ x → ∃z(z ∈ x ∧ z ≠ y ∧ y ⊂ z))) (ZF5)

Let ϕ(xi, xj) be a formula with at least two free variables xi and xj

(i 6= j). We say that the formula ϕ(xi, xj) is univocal if for an arbitrary
xk, which does not occur in ϕ(xi, xj), we have the following thesis:

∀xi,xj ,xk
(ϕ(xi, xj) ∧ ϕ(xi, xk/xj) → xj = xk)

If in the arbitrarily-chosen univocal formula ϕ(x , y) with at least two
free variables “x” and “y” the variable “u” is not freer, then we adopt
the axiom of substitution according to the following schema:

Set z → ∃u(Set u ∧ ∀y(y ∈ u ≡ ∃x(x ∈ z ∧ ϕ(x , y)))) (ZF6)

This schema says that, with the help of the univocal formula ϕ(x , y), we
can turn an arbitrary set into a set (i.e., the ‘image of a set is a set, if
the transformation is carried out with the help of the univocal formula’).
From axioms of the form (ZF6) follow schemas distinguishing subsets.
For an arbitrary formula ψ with at least one free variable “y”, if the
variable “u” does not appear in the formula, we obtain:

Set z → ∃u(Set u ∧ ∀y(y ∈ u ≡ (y ∈ z ∧ ψ(y)))) (2.1)

In fact, it suffices to apply the axiom of substitution to the univocal
formula ϕ(x , y) = px = y ∧ ψ(y)q.
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Thesis (2.1) states that for an arbitrary set and arbitrary property
formulable in the language of ZF there exists a subset of that set to
which belong all and only those objects which also have that property.
That is, for an arbitrary set z there is a set such that to it belong all
and only those elements of z which satisfy the formula ψ(y). By virtue
of the axiom of extensionality (ZF1) there is exactly one such set. We
will signify it by: {y ∈ z | ψ(y)}.2

By virtue of the axiom of infinity (ZF5) there exists at most one
set; that is, we have the thesis “∃z Set z”. Therefore, by (2.1), we have
a thesis that says that there exists a set which we may signify by the
metalinguistic abbreviation “{y ∈ z | y ≠ y}”. From the axiom of
extensionality it follows that this set is independent of the set represented
by the variable “z”. Therefore we will signify it by “ø” and call it the
empty set. From this definition and axioms (ZF1) and (ZF2) we obtain
the following thesis:

∀x(Set x ≡ x = ø ∨ ∃y y ∈ x) (2.2)

That is, something is a set iff either it is the empty set or it has elements.
We will also adopt the axiom of regularity in a form taken from [Jech,

1971, sections 9 and 26]:

∃u u ∈ z → ∃x(x ∈ z ∧ x ∩ z = ø) (ZF7)

In this axiom the abbreviation “x ∩ z” signifies the set {y ∈ z | y ∈ x ∧

y ∈ z} (from the antecedent of (ZF7) and from (ZF2) it follows that the
object signified by “z” is a set, so this is meaningful). If x is not a set
(z is not a family of sets), then x ∩ z is equivalent to ø.3 Axiom (ZF7)
has significant meaning in the case where z is a family of sets. For then

2 This is a metalinguistic abbreviation. It would be somewhat tiresome to have
to present the theory with everything written as formulae in the object language (i.e.,
without any metalinguistic abbreviations, any commentaries, etc.) The metalanguage
itself will, however, include the language of the theory of classes. The theory of classes
will be used in analysing models of our theory. We do not want to mix abbreviations
for ZF with the corresponding fragment of the metalanguage (for example, in the
metalanguage, we will write the class of objects satisfying condition Φ(a) with the help
of the standard symbolism, i.e., as {x : Φ(x)}). In the metalanguage, we will use the
symbol “∈” for the predicate of membership (but note that in both the metalanguage
and object-language we will use the same symbol for the identity predicate).

3 Then axiom (ZF7) states that for an arbitrary non-empty set z which is not a
family of sets, it has an element x which has no common element with the set z . This
follows from the definition of a family of sets: since the set z is non-empty and is not
a family, it therefore has an element x which is not a set, i.e., x has no elements.
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its element x is a set and the set x ∩ z is the intersection of x and z .
In this case, the axiom says that to the family z belongs a set disjoint
from it.

As is well-known, it follows from (ZF7) that there does not exist an
infinite sequence of sets x0, x1, x2, . . . such that: . . . x2 ∈ x1 ∈ x0. There
does not also exist a set x such that x ∈ x [see Jech, 1971, sec. 26].
Hence from this and axiom (ZF2) it follows that

∀x ¬ x ∈ x

As is well-known, a thesis of ZF is a sentence asserting the existence
of an unordered pair:

∀x ,y∃z(Set z ∧ ∀u(u ∈ z ≡ u = x ∨ u = y))

The set z postulated in the above thesis we will call a pair of x and y , and
signify it by: {x , y}. Instead of “{x , x}” we write “{x}”. Furthermore,
we introduce a metalinguistic abbreviation for ordered pairs: <x , y>.
Standardly, this abbreviates “{{x}, {x , y}}”.

2.2. The theory ZFA

In [Jech, 1971, sec. 26] the theory ZFA’  “the set theory with atoms” 
was introduced and examined. This is, ZF with set-theoretic atoms
allowed, i.e., object different from sets and not having elements.4 The
theory ZFA is built in a first-order language with identity LZFA which
has three (primitive) specific constants: a two-place predicate “∈” and
two name constants: “ø” (a constant signifying the empty set, as in
Section 2.1) and “a” (a constant signifying a set of atoms).

Remark 2.1. These considerations already bring out the essential differ-
ences between ZFA and ZF, which also allows for “atoms”. In ZF, we
cannot prove the existence of a set to which belong all non-sets and only
them (non-sets are “atoms”  object satisfying the formula “¬Set x”).
Only with the addition of the axiom “∀x Set x”, in ZF can we prove that
such a set exists and is empty.

The first two axioms of ZFA may be presented as follows:

¬ ∃x x ∈ ø (ZFA1)

∀x(x ∈ a ≡ x ≠ ø ∧ ¬ ∃y y ∈ x) (ZFA2)

4 In [Jech, 1971], ZF is a ‘pure’ theory of sets, i.e., it does not feature the predicate
“Set”.
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Therefore, the empty set has no elements and an atom is an object which
has no elements but which is different from the empty set.

Below is the definition of the concept of being a set:

Set x ≡ ¬ x ∈ a

That is, sets are objects that do not have atoms. With this definition we
adopt axioms (ZF1), (ZF3)–(ZF7) as formulated in Section 2.1. Axiom
(ZF2) results from (ZFA2) because we have the following thesis:

∀x ,y(x ∈ y → ¬ y ∈ a)

Therefore theory ZFA is stronger than ZF.
If we add the following formula as an axiom to ZF:

∃x∀y(y ∈ x ≡ ¬Set y)

then both theories are definitionally equivalent. In fact, in ZF we can
define a name constant “ø” such that (ZFA1) becomes a thesis. Further-
more, the axiom allows us to define a name constant “a” for which we
have the thesis “∀x(x ∈ a ≡ ¬Set x)”. Hence and from (2.2) we obtain
(ZFA2).

3. The set theory with classical mereology

A unitary theory of individuals and sets will be the ‘joining together’ of
theory ZF from Section 2.1 with first-order classical mereology. We build
the first-order theory MZF in a first-order language LMZF with identity,
it being an extension of the languages LZF and L�. The language LMZF

therefore has three primitive constants. Two of them are the constants
introduced in Section 2.1: “Set” and ‘∈”. The third is a two-place pred-
icate “�” (which we will read as “is a mereological part of”).

All the axioms of ZF are also axioms of MZF. We apply the axiom-
schema (ZF6) also to arbitrary univocal formulae of the language LMZF.
We may therefore apply theses of the form (2.1) with arbitrary formulae
of this language.

A second group of axioms is comprised of Leśniewski’s axioms for
mereology written in the first-order forms (l1) and (l2) (see p. 72), from
which we obtain the following thesis:

∀x ¬ x � x (irr�)
which is the counterpart of condition (irr⊏).
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We extend the language LMZF by three auxiliary two-place predicates
“�” (“is an ingrediens of”), “o” (“overlaps with”), and ‘℄” (“is exterior
to”). These predicates we define, respectively (as on p. 86):

∀x∀y(x � y ≡ (x � y ∨ x = y)) (d �)

∀x∀y(x o y ≡ ∃z(z � z ∧ z � y)) (do)

∀x∀y(x ℄ y ≡ ¬ ∃z(z � z ∧ z � y)) (d ℄)

Using “�” and “o”, we can introduce another two-argument predicate
“Sum” (“is a mereological sum of”), which we define with the help of the
formula below:

x Sum z ≡ Set z ∧ ∀y(y ∈ z → y � x) ∧ ∀y(y � x → ∃u(u ∈ z ∧ u o y))

With the help of the so-defined predicate “Sum”, we adopt the two
following first-order axioms of Leśniewski’s mereology:

∀x ,y ,z(x Sum z ∧ y Sum z → x = y) (l3)

∀z(∃y y ∈ z → ∃x x Sum z) (l4)

The axioms above are obviously counterparts of conditions (L3) and (L4)
from the definition of mereological structures. In other words, we are
assuming that the predicate “Sum” is univocal with respect to its first
argument and that mereological sum exists for each non-empty subset.
The condition “∃yy ∈ z” in (l4)  by virtue of (ZF2)  is equivalent to
the condition “Set z ∧ z ≠ ø” (“z is a non-empty set”).

In MZF we assume that no distributive set has any mereological part:

∀z(Set z → ¬ ∃x x � z) (a)

In other words, distributive sets should be mereological atoms.
From axiom (a) and definition (d �) we have the following thesis:

∀z(Set z → ∀x(x � z ≡ x = z))

This differs from what David Lewis calls (see footnote 8 on p. 221):

First Thesis: One class is [an ingrediens] of another iff the first is a
subclass of the second. [Lewis, 1991, p. 4]

Moreover, Lewis writes:

By ‘classes’ I mean things that have members. By ‘individuals’ I mean
things that are members, but do not themselves have members. There-
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fore there is no such class as the null class. I don’t mind calling some
memberless thing — some individual  the null set.

[Lewis, 1991, p. 4]

Therefore  as a result of the considerations above  the “empty set” (or
the “null set”) counts as an individual in Lewis’ theory and is supposed
to be a mereological sum (fusion) of all individuals:

Redefinition: The null set is the fusion of all individuals.
[Lewis, 1991, p. 14].

Our approach as expressed in axiom (a) is ‘minimalist’ and it is in
accordance with Lewis’ second thesis (see footnote 8 on p. 221):

Second Thesis: No class has any [ingrediens] that is not a class.
[Lewis, 1991, p. 6]

In other words: every ingrediens of a class is a class. In fact, in line with
the definition of the predicate “�”, each class (as with other objects) is
its own ingrediens and  in virtue of (a)  has no other ingredienses.

The predicate “Ind” (“is an individual”) we define in the following
way:

Ind x ≡ ∀y(y � x → ¬Set y)

This says that a given object is an individual when no ingrediens of it is
a (distributive) set. Therefore, it is just what Lewis wants with his (see
footnote 8 on p. 221):

Priority Thesis: No class is [ingrediens] of any individual.
[Lewis, 1991, p. 7]

Thus, in our terminology, we also have: no class is part of any individual.
The following thesis follows directly from the definitions:

Ind x ≡ (¬Set x ∧ ∀y(y � x → ¬ Set y))

Therefore no individual is a set:

∀x(Ind x → ¬Set x)

Furthermore, individuals do not have elements:

∀x(Ind x → ¬ ∃y y ∈ x)

An individual is not a set and by (ZF2) only sets have elements.
We can therefore in our theory prove the following Lewis’ thesis:

Fusion Thesis: Any fusion of individuals is itself an individual.
[Lewis, 1991, p. 7]
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This may be written in the first-order language thus:

∀x ,z(x Sum z ∧ ∀y(y ∈ z → Ind y) → Ind x) (FT)

In fact, let x Sum z and all elements of the set z be individuals. We
assume indirectly that x is not an individual. From this assumption it
follows that a certain set y0 is an ingrediens of x , i.e., Set y0 ∧ y0 � x.
Hence, in virtue of the definition of “Sum”, for some u0 we have: u0 ∈ z ∧
y0 o u0. Since, by (a), the set y0 is a mereological atom, then y0 � u0

(see condition (II.2.5)). Hence u0 is not an individual, which contradicts
the assumption, that all elements of the set z are individuals.

The axioms we have adopted do not, however, allow us to state that
there exist any individuals. An axiom of existence of mereological sums
would not help us here. It is true that it could ‘generate’ new objects
that are not sets, but these objects would also not be individuals. For
example, take the set {ø, {ø}}. In virtue of (l3) and (l4) there exists
exactly one object which is a mereological sum of the elements of that
set. Let us signify it by “[[ø, {ø}]]”. In virtue of the definition of “Sum”,
the sets ø and {ø} are ingredienses of [[ø, {ø}]], i.e., we have ø � [[ø, {ø}]]
and {ø} � [[ø, {ø}]]. Because ø ≠ {ø}, then both ¬ ø = [[ø, {ø}]] and
¬ {ø} = [[ø, {ø}]]. Hence ø and {ø} are parts of [[ø, {ø}]], i.e., ø � [[ø, {ø}]]
and {ø} � [[ø, {ø}]].5 Therefore, [[ø, {ø}]] is not a set, as it has parts.
Furthermore, the object [[ø, {ø}]] is also not an individual, because indi-
viduals do not have parts that are sets.

We must assume the existence of at least one object which is an
individual:

∃x Ind x (i1)

It does not follow from the axioms we have accepted, however, that
there exist at least two individuals. Indeed, axiom (i1) says that there
exists a certain individual. Let us signify it by “i”. Then the formula
“∃y y ∈ {i}” is true. Therefore, on the basis of axioms (l3) and (l4),
there exists exactly mereological sum of the set {i}. Let us signify this
object by “[[i]]”. From the definitions of the predicates “�”, “o” and
“Sum” the thesis “[[i]] = i” follows, however.

Only the assumption that there exist at least two individuals allows
us to ‘generate’ a third individual. To this end, we note that, from axioms

5 It can be shown that they are the only parts of the object [[ø, {ø}]].
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(l1)–(l3) we can derive a thesis which is the counterpart of condition
(WSP) from Chapter II:

x � y → ∃z(z � y ∧ z ℄ x) (WSP)

Let us assume, therefore, that there exist at least two individuals i1 and
i2. If i1 is a part of i2 then a certain object o is a part of i2, which has
no common ingrediens with i1. Hence object o is a third individual. A
similar result obtains if i2 is a part of i1. In the third case, where neither
i1 is a part of i2 nor i2 a part of i1, then  by virtue of (l3) and (l4) 
for the two-element set {i1, i2} there exists exactly one mereological sum
of it. Let us signify this object by “[[i1, i2]]”. On the basis of (FT), the
object [[i1, i2]] is an individual. It is different from individuals i1 and i2,
by virtue of our assumption.

In section 2.2 we assumed that the ‘whole’ of all set-theoretic atoms
(“non-classes”’) creates a set. In the same way, in our theory let us
assume that the ‘whole’ of all individuals is a set:

∃z∀x(x ∈ z ≡ Ind x) (i2)

Without this assumption, we can only guarantee the existence of sets of
individuals included in some other sets (see schema (2.1)). Let us signify
the postulated set by “i”. Axiom (i1) guarantees us also the thesis “i ≠ ø”,
i.e., that the set of individuals is not empty.

Thesis (FT) may also be written in the following form:

∀x ,z(x Sum z ∧ z ⊂ i → x ∈ i) (FT′)

Without going into the technical details, we can prove that there
exists a set of all ordered pairs composed of individuals:

i2 = {<x , y> | x ∈ i ∧ y ∈ i}

That is, there exists the Cartesian product of the set i, of all individuals.
Using the set of individuals and applying (2.1) we can distinguish

subsets of ordered pairs with the predicates “�”, “�” and “Sum”, i.e.,
the relations parti, ingri and sumi can be defined by the equivalences
below:

<x , y> ∈ parti ≡ x ∈ i ∧ y ∈ i ∧ x � y

<x , y> ∈ ingri ≡ x ∈ i ∧ y ∈ i ∧ x � y

<x , z> ∈ sumi ≡ x ∈ i ∧ z ⊂ i ∧ x Sum z
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Therefore, parti (resp. ingri) is the set of all ordered pairs of individuals,
in which the first member of the pair is a part (resp. individual) of the
second member. Furthermore, sumi is the set of all ordered pairs in
which the first member is an individual which is the mereological sum
of some set of individuals.

From the observations made in this section, we also obtain the fol-
lowing result:

the pair < i,parti > is a mereological structure.

In other words:

1. The relation parti is irreflexive and transitive in the set i of all indi-
viduals.

This follows directly from axioms (l1) and (l2).

2. The relation sumi is a function of the second argument.

This follows directly from definitions and axiom (l3).
The final condition defining a mereological structure boils down to

the thesis:

3. z ⊂ i ∧ z ≠ ø → ∃x <x , z> ∈ sumi

This follows from the definitions along with (l4) and (FT′). From the
antecedent of the implication we have: Set z ∧ z ≠ ø. Hence, in virtue
of (l4), we have ∃x x Sum z . Therefore, applying (FT′), we obtain the
consequent.

4. Other unitary theories of individuals and sets

By creating other unitary theories of individuals and sets, we can use
weaker axioms than (l3) and (l4). In other words, we can create weaker
mereological theories.

For example, we can build a unitary theory of individuals and sets
related to the theory of the class L12+ (SSP), i.e., to Neutral Existential
Mereology (see Section 2 of Chapter V). Thus  instead of axioms (l3)
and (l4)  we use the following axiom

¬ x � y → ∃z(z � x ∧ z ℄ y) (SSP)

which is the counterpart of condition (SSP). Clearly, (l3) is a thesis of
this theory.
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The third unitary theory of individuals and sets is related to the
theory of the class ML12; that is, to the class of mereological strictly
partially ordered sets (see Section 4 of Chapter V). To provide the first-
order counterpart of condition (Sum-sup

⊑
) we introduce the following

auxiliary binary predicate “sup”:

x sup z ≡ Set z ∧ ∀u(u ∈ z → u � x) ∧ ∀y(∀u(u ∈ z → u � y) → x ⊑ y)

Of course, the formula “x supz” says that the object x is the supremum of
the set z . We obtain this third theory by using the following mereological
axiom:

∀z(Set z → ∀x (x Sum z ≡ z ≠ ø ∧ x sup z)) (Sum-sup)

instead of axioms (l3) and (l4). Clearly, (l3) and (SSP) are theses of
this theory.

The fourth unitary theory of individuals and sets will be a combina-
tion of set theory with Grzegorczyk’s mereological theory (see Section 7
in Chapter V). Thus  instead of axioms (l3) and (l4)  we use the
following two axioms

∃u u sup {x , y} (∃pairsup)

¬ x � y → ∃z(z � x ∧ z ℄ y ∧ ∀u(u � x ∧ u ℄ y → u � z)) (SSP+)

which are the counterparts of conditions (∃pairsup) and (SSP+), respec-
tively. Clearly, (l3), (SSP) and (Sum-sup) are theses of this theory.

5. Relative consistency of unitary theories of individuals and sets

If the theory ZF is consistent then it has a model of the form 〈Mm,
∈m, Setm〉, where Mm is a non-empty set, ∈m ⊆ M2

m and Setm ⊆ Mm.
Then the theory ZFA should also be consistent and, in addition, ZFA
should have some model of the form 〈Mm, ∈m, øm, am〉, where Mm is a
non-empty set, ∈m ⊆ M2

m, øm, am ∈ Mm and am 6= øm, i.e., {x ∈ Mm :
x ∈m am} 6= ∅.6

Otherwise, if ZFA had only models, in which am = øm, then ZFA
would not differ from ‘pure’ set theory with the thesis “∀x Set x”, i.e.,
we would have Setm := Mm \ {x ∈ Mm : x ∈m am} = Mm \ ∅ = Mm.

6 Notice that if ZFA has a model then it has a normal model, in the sense that
the interpretation of the predicate “=” is ‘true’ identity.
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It is easy to show that if ZFA has a model in which am 6= øm then
ZFA also has a model in which there is exactly one a ∈ Mm such that
a ∈m am (i.e., there is exactly one atom and the formulae “∃!x x ∈ a”
and “∃x a = {x}” hold in m).

The following relative consistency theorem holds for MZF:

Theorem 5.1. Let m = 〈Mm, ∈m, øm, am〉 be a normal model of ZFA in
which there is exactly one a ∈ Mm such that a ∈m am. Let M = 〈M,�M , ∈M, SetM〉 be an LMZF-structure in which M := P+(Mm) and:�M := {〈X, Y 〉 ∈ M2 : X ( Y },

∈M := {〈X, Y 〉 ∈ M2 : ∃x,y∈Mm
(X = {x} ∧ Y = {y} ∧ x ∈m y)},

SetM := {S ∈ M : ∃s∈Mm\{a} S = {s}}.

Then M is a normal atomic model of MZF such that�M = {〈X, Y 〉 ∈ M2 : X ⊆ Y },

oM = {〈X, Y 〉 ∈ M2 : X ∩ Y 6= ∅}, ℄M = M2 \ oM,

atM = SetM ∪ {a}, atcM = M, atlM = ∅ ,

IndM = {{a}}, iM = {am},

and also for any X,S ∈ M we have

X SumM S ⇐⇒ S ∈ SetM ∧ X = {y ∈ Mm : {y} ∈M S}. (%)

Proof. It is clear that atM = SetM ∪ {a}, atcM = M, IndM = {{a}},
and axioms (l1), (l2), (a) and (i1) hold in M.

Ad (i2): For any X ∈ M we have: X ∈M {am} iff there is an x ∈ Mm

such that X = {x} and x ∈m am iff X = {a} iff X ∈ IndM. Thus,
iM = {am}.

Ad (%): ‘⇒’ Suppose that X SumM S, i.e., the following three
conditions hold:

1. S ∈ SetM,
2. for any Y ∈ M, if Y ∈M S then Y �M X ,
3. for any Y ∈ M, if Y �M X then for some U ∈ M we have U ∈M S

and U oM Y .

Thus, for some s ∈ Mm \ {i} we have S = {s} and:

2′. for any y ∈ Mm, if {y} ∈M S then y ∈ X ,
3′. for any Y ∈ M, if Y ⊆ X then for some u ∈ Mm we have {u} ∈M S

and {u} ⊆ Y .
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By 2′ we have {y ∈ Mm : {y} ∈M S} ⊆ X . Moreover, by 3′, for any
y ∈ Mm, if {y} ⊆ X then for some u ∈ Mm we have {u} ∈M S and
{u} ⊆ {y}. Therefore for any y ∈ Mm, if y ∈ X then for some u ∈ Mm

we have {u} ∈M S and u = y. Thus, X ⊆ {y ∈ Mm : {y} ∈M S}.
‘⇐’ It is obvious.7

Ad (l3) and (l4): Directly from (%) we obtain that axiom (l3) holds
in M. Moreover, for any S ∈ M, if M � ∃y y ∈ z [S/z ], then S ∈ Setm

and {y ∈ Mm : {y} ∈M S} 6= ∅; and so {y ∈ Mm : {y} ∈M S} belongs
to M. Thus, in virtue of (%), axiom (l4) holds in M.

That the axioms ‘coming from’ ZF are true as well follows from the
fact that in M they act only on singletons created from elements of the
set Mm.

Directly from Theorem 5.1 we obtain:

Theorem 5.2. If ZFA is consistent, then MZF is too.

Because the second, third and fourth of the mereological theories
which we propose are weaker than MZF, they are also consistent, if ZFA
is consistent. However, the second and third of these theories can be
given a model with a very simple construction.

Theorem 5.3. Let m = 〈Mm, ∈m, øm, am〉 be a model of ZFA such that
am 6= øm. Let M = 〈Mm, �M, ∈M, SetM〉 be an LMZF-structure in which�M = ∅, ∈M = ∈m and SetM = Mm \ {a : a ∈m am}. Then M is a atomic
model of the second and third theories such that: �M = idMm

= oM,
atM = Mm, IndM = {a : a ∈m am}, iM = {am}, and for any x, y ∈ Mm:

y SumM x iff y is the only member of Mm such that y ∈m x.8

Proof. It is clear that the formulae (l1), (l2), (l3),(a), (i1), (i2), (SSP)
and (Sum-sup) hold in M.

7 Notice that: X SumM iM iff X SumM {am} iff X = {y ∈ Mm : y ∈m am} iff
X = {a}. It may be informally expressed with the help of the formulae “a Sum {a}”
and “[[a]] = a”.

8 Informally speaking, the mereological sum only exists for singletons of the form
{x} and it is equal to x, where x ∈ Mm.
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Both appendices are fundamentally algebraic. Only in sections 1–4
of Appendix II do we take a look at some concepts of first-order (elemen-
tary) theories and their models. The reader familiar with lattice theory
may wish to take no more than a glance at Appendix I in order simply
to familiarise themselves with the terminology used in this book.

In Appendix II we will be concerned with the ‘elementary aspects’ of
Boolean lattices. We will be examining a first-order (elementary) theory
with identity connected with Boolean lattices. To begin, we shall remind
ourselves of some key concepts of elementary theories with identity.



Appendix I

Essential set theory and algebra

1. Sets, operation on sets, family of sets

Let X be any (distributive) set. If an object x is a member of X then
we write: x ∈ X . In such case we also say that x belongs to X or that X
contains x. If an object x is not a member of X then we write: x /∈ X .
In such case we also say that x does not belong to X or that X does not
contain x. A set Y is a subset of X (we write: Y ⊆ X iff every member
of Y is a member of X . In such case we also say Y is included in X or
X includes Y . Formally:

Y ⊆ X :⇐⇒ ∀x(x ∈ Y ⇒ x ∈ X).

If a set Y is not a subset of X then we write: Y * X . Of course:

Y * X ⇐⇒ ∃x(x ∈ Y ∧ x /∈ X).

Note that for a given sets X and Y we have:

X = Y ⇐⇒ ∀x(x ∈ X ⇔ x ∈ Y ),

⇐⇒ X ⊆ Y ∧ Y ⊆ X.

We have exactly one set that has no element. It is called the empty
set and is denoted by “∅”. Of course, ∅ is a subset of any set.

A set Y is a proper subset of X (we write Y ( X) iff Y ⊆ X , but
X 6= Y . Of course, the empty set ∅ does not have any proper subsets.
So ∅ is a proper subset of all non-empty sets and only of non-empty sets.

A set all of whose members are sets is called a family of sets. The
empty family of set is just the empty set ∅. Examples of families of sets
are, for a set X , the family of all subsets of X , P(X), so-called the power
set of X , and the family P+(X) of all non-empty subsets of X .
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The set {x, y} is called the unordered pair of objects x and y. Its
only elements are x and y, i.e.,

{x, y} := {z : z = x ∨ z = y}.

So if x = y then we get the so-called singleton

{x} := {x, x} = {z : z = x}.

So P(∅) = {∅} and P+(∅) = ∅.
Furthermore, for any objects x1, . . . xn (n > 0) we have the following

finite set:
{x1, . . . xn} := {z : z = x1 ∨ · · · ∨ z = xn}.

The family 〈x, y〉 of sets {x} and {x, y} is called the ordered pair of
objects x and y. An ordered pair can be defined in term of unordered
pairs in the following way:

〈x, y〉 := {{x}, {x, y}}.

For any objects x, y, z and u we have: 〈x, y〉 = 〈z, u〉 iff x = z and y = u.
The set-theoretic sum of a given sets X and Y is the set X ∪Y of all

members X and Y , that is, all objects which belong either X or Y , i.e.:

X ∪ Y := {x : x ∈ X ∨ x ∈ Y }.

Both X and Y are subsets of X ∪ Y , i.e., X ⊆ X ∪ Y and Y ⊆ X ∪ Y .
Of course, X ∪X = X . Moreover, Y ⊆ X iff X ∪ Y = X .

The set-theoretic product of a given sets X and Y is the set X ∩ Y
of all common members X and Y , that is, all objects which belong both
X and Y , i.e.:

X ∩ Y := {x : x ∈ X ∧ x ∈ Y }.

The set X ∩ Y is a subset of both X and Y , i.e., X ∩ Y ⊆ X and
X ∩ Y ⊆ Y . Of course, X ∩X = X . Moreover, Y ⊆ X iff X ∩ Y = Y .

The set-theoretic difference of a given sets X and Y (or the relative
set-theoretic complement of Y with respect to X) is the set X \ Y of all
members of X which are not members of X , i.e.,

X \ Y := {x : x ∈ X ∧ x /∈ Y }.

We have: X \ Y ⊆ X , (X \ Y ) ∩ Y = ∅, X \ X = ∅, and: Y ⊆ X iff
Y \X = ∅. Moreover: Z ⊆ X \ Y iff Z ⊆ X and Z ∩ Y = ∅.
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Let F be any family of sets. The set-theoretic sum of family F is the
set

⋃
F of objects that belong to at least one set from F , i.e.,

⋃
F := {x : ∃S∈F x ∈ S}.

In particular, for the family {X, Y } of sets X and Y we have
⋃

{X, Y } =
X ∪ Y . Of course,

⋃
∅ = ∅.

The set-theoretic product of non-empty family F is the set
⋂

F of
objects that belong to all sets from F , i.e.,

⋂
F := {x : ∀S∈F x ∈ S}.

In particular, for the family {X, Y } of sets X and Y we have
⋂

{X, Y } =
X ∩ Y .

If we consider a family F of sets included in a given set X , we have
⋂

F = {x ∈ X : ∀S∈F x ∈ S}.

In this case we have
⋂

F ⊆ X . We can, moreover, also consider the
product of the empty family of sets. It will be just the set X , since
⋂

∅ = {x ∈ X : ∀S(S ∈ ∅ ⇒ x ∈ S)} = X .
A non-empty family F is a field of sets iff F satisfies the following

three conditions:
•

⋃
F \X ∈ F , for any X ∈ F ;

• X ∩ Y ∈ F , for all X, Y ∈ F ;
• X ∪ Y ∈ F , for all X, Y ∈ F .
Of course, then we also have
• ∅ ∈ F and

⋃
F ∈ F ;

Since for some set S0 we have S0 ∈ F , then also
⋃

F \ S0 ∈ F and
∅ = S0 ∩ (

⋃
F \ S0) ∈ F . Hence

⋃
F =

⋃
F \ ∅ ∈ F .

If all members of a field F are subsets of a set X and X ∈ F , then
F is called a field of sets over X or an algebra of sets over X . In such
case we have X =

⋃
F , since X ∈ F .

Example 1.1. The power set P(X) is an algebra of sets over a set X .

Example 1.2. Let FC(X) be the family of all finite subsets of a set X and
all co-finite subsets of X , i.e., those subsets of X whose complements are
finite. That is, for any S ∈ P(X):

S ∈ FC(X) :⇐⇒ S is finite ∨ X \ S is finite.

(i) FC(X) is an algebra of sets over X .
(ii) FC(X) = P(X) iff X is finite.
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An algebra of sets A overX is called complete iff for each its subfamily
F we have

⋃
F ∈ A (then also

⋂
F ∈ A).

Example 1.3. P(X) is a complete algebra of sets over X .

Example 1.4. Let be IN be the set of all natural numbers. Then FC(IN) is
not a complete algebra of sets (see Example 1.2). For example, the sum
of the family of all finite subsets made up of even numbers is equal to
the set of all even numbers, but this set does not belong to FC(IN).

2. Binary relations

For arbitrary sets X and Y , the Cartesian product X × Y is the set of
all ordered pairs 〈x, y〉, where x ∈ X and y ∈ Y , i.e.,

X × Y := {〈x, y〉 : x ∈ X ∧ y ∈ Y }.

Of course, for X = Y we have:

X ×X = {〈x, y〉 : x, y ∈ X }.

Any subset of the Cartesian product X×Y is called a binary relation
in X × Y . In other words, R is a binary relation in X × Y iff R belongs
to P(X × Y ). So ∅ is also a binary relation in X × Y .

Next, we will look at binary relations in the Cartesian product X×X .
Such relations will simply be called binary relations in X . So a binary
relation in X is any subset of the Cartesian product X ×X . Let B(X)
be the family of all binary relations in X , i.e.,

B(X) := P(X ×X).

In B(X) we distinguish the set-theoretic relation idX of identity
on X , i.e.,

idX := {〈x, y〉 : x, y ∈ X ∧ x = y} = {〈x, x〉 : x ∈ X}.

Since the elements of the family B(X) are sets, the ‘usual’ two-place
set-theoretic operations are defined in it: sum ∪, product ∩, and relative
complement \, i.e., for arbitrary R1, R2 ∈ B(X) we have:

R1 ∪R2 := {〈x, y〉 : 〈x, y〉 ∈ R1 ∨ 〈x, y〉 ∈ R2},

R1 ∪R2 := {〈x, y〉 : 〈x, y〉 ∈ R1 ∧ 〈x, y〉 ∈ R2},

R1 \R2 := {〈x, y〉 : 〈x, y〉 ∈ R1 ∧ 〈x, y〉 /∈ R2}.
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In addition, we have two operations on binary relations. The converse
relation to a relation R is the following binary relation

R̆ := {〈x, y〉 : 〈y, x〉 ∈ R}.

Obviously, R =
˘̆
R and (R ∪ idX )̆ = R̆ ∪ idX . Moreover, for arbitrary

relations R1, R2 ∈ B(X) their relative product is the following binary
relation

R1 ◦ R2 := {〈x, y〉 : ∃z∈X(〈x, z〉 ∈ R1 ∧ 〈z, y〉 ∈ R2)}.

Of course, for all R,R1, R2 ∈ B(X) we have: R = R◦idX ; R◦(R1∪R2) =
(R ◦R1) ∪ (R ◦R2); and (R1 ∪R2) ◦R = (R1 ◦ R) ∪ (R2 ◦R).

A relation R ∈ B(X) is reflexive iff idX ⊆ R, i.e.:

∀x∈X 〈x, x〉 ∈ R . (rR)

A relation R ∈ B(X) is irreflexive iff idX ∩R = ∅ , i.e.:

∀x∈X 〈x, x〉 /∈ R . (irrR)

A relation R ∈ B(X) is symmetric iff R ⊆ R̆ (iff R = R̆), i.e.:

∀x,y∈X(〈x, y〉 ∈ R ⇐⇒ 〈y, x〉 ∈ R). (sR)

A relation R ∈ B(X) is asymmetric iff R ∩ R̆ = ∅ , i.e.:

∀x,y∈X ¬(〈x, y〉 ∈ R ∧ 〈y, x〉 ∈ R). (asR)

A relation R ∈ B(X) is antisymmetric iff R ∩ R̆ ⊆ idX , i.e.,

∀x,y∈X(〈x, y〉 ∈ R ∧ 〈y, x〉 ∈ R =⇒ x = y) . (antisR)

A relation R ∈ B(X) is transitive iff R ◦ R ⊆ R , i.e.,

∀x,y,z∈X(〈x, y〉 ∈ R ∧ 〈y, z〉 ∈ R =⇒ 〈x, z〉 ∈ R), or

∀x,y∈X

(
∃z∈X(〈x, y〉 ∈ R ∧ 〈y, z〉 ∈ R) =⇒ 〈x, z〉 ∈ R

)
.

(tR)

Obviously, for any R ∈ B(X), the reflexivity (resp. irreflexivity,
symmetry, asymmetry, antisymmetry, transitivity) of R is equivalent to
the reflexivity (resp. irreflexivity, symmetry, asymmetry, antisymmetry,
transitivity) of the converse relation R̆.
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For ease of expression, instead of “〈x, y〉 ∈ R” we will write for short
“xRy” (we will do likewise for other combinations of variables “x”, “y”,
“z” etc., and also for other variables referring to binary relations).1

We will give below several facts about binary relations which will
come in handy in both parts of the book and in both appendices.

Lemma 2.1. For any R ∈ B(X):

(i) R is reflexive and antisymmetric iff idX = R ∩ R̆.
(ii) R is reflexive and transitive iff for arbitrary x, y ∈ X we have

x R y ⇐⇒ ∀z∈X(z R x ⇒ z R y).

Proof. Ad (i): R is reflexive and antisymmetric iff idX ⊆ R, idX ⊆ R̆
and R ∩ R̆ ⊆ idX iff idX ⊆ R ∩ R̆ ⊆ idX .

Ad (ii): Suppose that R is reflexive and transitive and x R y. Then,
by (tR), for any z ∈ X : if z R x then z R y. We now assume that
∀z∈X(z R x ⇒ z R y). Then, by (rR), we have x R x. Therefore, by
our assumption, x R y. Conversely, assume that the given condition
holds. Then condition (tR) is the only other way of writing the simple
implication in the assumed condition. Furthermore, by substituting “x”
for “y” we obtain: xRx ⇐⇒ ∀z∈X(zRx ⇒ zRx). Since the right-hand
side is tautologous, we get x R x.

Lemma 2.2. For any relation R ∈ B(X):

(i) If R is asymmetric then R is irreflexive.
(ii) If R is irreflexive and transitive, then R is asymmetric.

(iii) R is asymmetric iff R is irreflexive and antisymmetric.

Proof. Ad (i): If for some x ∈ X we have x R x, then we get a contra-
diction with the assumption, by (asR).

Ad (ii): By (tR), for arbitrary x, y ∈ X : xR y and y Rx entail xRx.
Hence and from (irrR) we have (asR).

Ad (iii): If R is asymmetric, then R is irreflexive, by (i), and R ∩
R̆ = ∅ ⊆ idX , so R is antisymmetric. Conversely, if R irreflexive and
antisymmetric, then R ∩ R̆ ⊆ R ∩ idX = ∅, so R is asymmetric.

1 From a formal point of view, the expression “x R y” is not correct. From a
grammatical point of view, it has to be a sentential type of expression, but it is
composed of three variables each of which is a name type of expression (for these
variables occur either in place of the name of some object from X or in place of the
name of some relation from B(X)). We will, however, treat the form “xR y” as short
for the sentential form “〈x, y〉 ∈ R”. We may also take it to be an abbreviation of the
sentential form “object x is in a relation R with object y”.
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Lemma 2.3. For any relation R ∈ B(X):

(i) The relation R ∪ idX is reflexive.
(ii) R is irreflexive iff R = (R ∪ idX) \ idX .

(iii) R is asymmetric iff R is irreflexive and the relation R ∪ idX is
antisymmetric. In both cases, we have : R = (R∪ idX) \ (R∪ idX )̆.

(iv) If R is antisymmetric then R ∪ idX also is antisymmetric.
(v) If R is transitive, then R ◦ (R ∪ idX) ⊆ R, (R ∪ idX) ◦ R ⊆ R and

so the relations R ∪ idX also is transitive.

Proof. Ad (i): We have idX ⊆ R ∪ idX ; so R ∪ idX is reflexive.
Ad (ii): If R is irreflexive, then R ∩ idX = ∅. Therefore R = (R ∪

idX) \ idX . Conversely, if R = (R ∪ idX) \ idX then R ∩ idX = ((R ∪
idX) \ idX) ∩ idX = ∅.

Ad (iii): If R is asymmetric, then both R and R̆ are irreflexive, by
Lemma 2.2(i). Therefore we have R∩ R̆ = ∅ and R∩ idX = ∅ = R̆∩ idX .
Hence (R∪idX)∩(R∪idX )̆ = (R∪idX)∩(R̆∪idX) = (R∩R̆)∪(R∩idX)∪
(R̆ ∩ idX) ∪ idX = ∅ ∪ ∅ ∪ ∅ ∪ idX = idX . So R ∪ idX is antisymmetric.

Conversely, if R is irreflexive and R∪ idX is antisymmetric, then  in
the light of (ii)  we have R∩ R̆ = ((R∪ idX)\ idX)∩ ((R∪ idX)\ idX )̆ =
((R∪idX)∩(R̆∪idX))\idX = idX \idX = ∅, since (R∪idX)∩(R̆∪idX) ⊆
idX . So R is asymmetric.

Moreover, firstly, (R ∪ idX) \ (R̆ ∪ idX) ⊆ (R ∪ idX) \ idX = (R \
idX) ∪ (idX \ idX) = R \ idX ⊆ R. Secondly, if R is asymmetric, then
R is irreflexive and R ∩ (R̆ ∪ idX) = (R ∩ R̆) ∪ (R ∩ idX) = ∅. Hence
R ⊆ (R ∪ idX) \ (R̆ ∪ idX).

Ad (iv): If R is antisymmetric then (R∪ idX)∩(R̆∪ idX) = (R∩R̆)∪
(R ∩ idX) ∪ (R̆ ∩ idX) ∪ idX ⊆ idX . So R ∪ idX is also antisymmetric.

Ad (v): Assume that R is transitive, i.e., R ◦ R ⊆ R. Then R ◦
(R ∪ idX) = (R ◦ R) ∪ (R ◦ idX) = (R ◦ R) ∪ R ⊆ R. Similarly we
obtain: (R ∪ idX) ◦ R ⊆ R. Furthermore, (R ∪ idX) ◦ (R ∪ idX) =
(R◦R)∪(R◦idX)∪(idX ◦idX) ⊆ R∪idX . Hence R∪idX is transitive.

Lemma 2.4. For any relation R ∈ B(X):

(i) R \ idX is irreflexive.
(ii) R is reflexive iff R = (R \ idX) ∪ idX .

(iii) R is antisymmetric iff R \ idX is asymmetric.
(iv) If R is antisymmetric and transitive, then R ◦ (R \ idX) ⊆ R \ idX ,

(R \ idX) ◦R ⊆ R \ idX , so R \ idX is transitive.
(v) If R is antisymmetric then R \ idX = R \ R̆.
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Proof. Ad (i): Obviously, idX ∩ (R\ idX) = ∅. So R\ idX is irreflexive.
Ad (ii): We have (R\ idX)∪ idX = (R∪ idX)∩ (idX \ idX) = R∪ idX .

Therefore, R is reflexive idX ⊆ R iff R = R ∪ idX = (R \ idX) ∪ idX .
Ad (iii): Observe that (R\ idX) ∩ (R\ idX )̆ = (R\ idX) ∩ (R̆\ idX) =

(R∩ R̆) \ idX . Thus, R \ idX is asymmetric iff (R \ idX) ∩ (R \ idX )̆ = ∅
iff (R ∩ R̆) \ idX = ∅ iff R ∩ R̆ ⊆ idX iff R is antisymmetric.

Ad (iv): Suppose that R is antisymmetric and transitive, i.e., R∩R̆ ⊆
idX and R ◦R ⊆ R. Then if 〈x, y〉 ∈ (R \ idX) ◦R then for some z ∈ X
we have (A) xRz, (B) x 6= z and (C) zRy. Therefore, from (A), (C) and
(tR) we get x R y. It is therefore necessary to show that x 6= y. Briefly,
if x = y, then z R x, by (C). Now, since x R z, we get a contradiction
with (B), by the antisymmetry of R. We prove the second condition in a
similar way. From each of these conditions the transitivity of R follows.

Ad (v): First, note that R\R̆ ⊆ R\ idX . Essentially, for all x, y ∈ X :
if xRy and ¬ yRx, then x 6= y. Second, assume that R is antisymmetric,
i.e., R∩ R̆ ⊆ idX ; so (R∩ R̆) \ idX = (R \ idX) ∩ R̆ = ∅. Then R \ idX ⊆
(X ×X) \ R̆; and so R \ idX ⊆ R \ R̆.

From the above lemmas the following well-known fact follows:

Fact 2.5. For all R1, R2 ∈ B(X) the following conditions are equivalent:

(a) R1 is irreflexive and transitive, and R2 = R1 ∪ idX .
(b) R1 is asymmetric and transitive, and R2 = R1 ∪ idX .
(c) R2 is reflexive, antisymmetric and transitive, and R1 = R2 \ idX .
(d) R2 is reflexive, antisymmetric and transitive, and R1 = R2 \ R̆2.

Proof. “(a) ⇔ (b)” By Lemma 2.2(i,ii). “(b) ⇒ (c)” By Lemma 2.3.
“(c) ⇒ (b)” By Lemma 2.4(i–iv). “(c) ⇔ (d)” By Lemma 2.4(v).

We say that R ∈ B(X) is a preorder (or quasiorder) in X iff R is
reflexive and transitive. Any ordered pair 〈X,R〉, where R ∈ B(X) and
R is a preorder in X , is called a preordered set (or proset).

We say that R ∈ B(X) partially orders X iff R is reflexive, transitive,
and antisymmetric. If R partially orders X then we also say that R is
a partial order in X , and the pair 〈X,R〉 we call a partially ordered set
(or poset). Of course, R is a partial order in X iff R is a antisymmetric
preorder in X .

We say that R ∈ B(X) is an equivalence relation in X iff R is re-
flexive, symmetric, and transitive. For example, idX is an equivalence
relation in X . Of course, R is an equivalence relation in X iff R is a
symmetric preorder in X .
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We say that R strictly partially orders X iff R satisfies one of the
following equivalent conditions (see Lemma 2.2(i,ii)):

(irr-t) R is irreflexive and transitive,
(as-t) R is asymmetric and transitive.

So if R strictly partially orders X , then R is both irreflexive, asymmetric,
and transitive. In such case we also say that R is a strict partial order
in X , and the pair 〈X,R〉 we call a strictly partially ordered set.

3. Strict partial orders

Let SPOS be the class of all strictly partially ordered sets.
Let X be any non empty set and R ∈ B(X). For ease of expression,

we shall symbolise that R is a strict partial order in X with the sym-
bol “≺” and we shall subscript any relation with this symbol to signify
that it is a relation which imposes a strict partial order on a set. The
set-theoretic complement of the relation ≺, i.e., (X × X) \ ≺, we shall
symbolise by “⊀”.2

Remark 3.1. On this way of expressing things, the symbol “≺” is a
variable ranging over strict partial orders.

With this in mind, for arbitrary x, y, z ∈ W we have :

x ⊀ x , (irr≺)

x ≺ y =⇒ y ⊀ x , (as≺)

x ≺ y ∧ y ≺ z =⇒ x ≺ z . (t≺)

Let � be the sum of the relations ≺ and idX :

� := ≺ ∪ idX . (df �)

Therefore, for arbitrary x, y ∈ X we have:

x � y ⇐⇒ x ≺ y ∨ x = y .

Applying Lemma 2.3 for arbitrary x, y, z ∈ X we get:

x � x ,

x ≺ y ⇐⇒ x � y ∧ x 6= y ,

2 The struck-through version of a symbol for a given relation signifies the
set-theoretic complement of that relation.
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x � y ∧ y � x =⇒ x = y ,

x ≺ y ⇐⇒ x � y ∧ y 9 x ,

x ≺ y ∧ y � z =⇒ x ≺ z ,

x � y ∧ y ≺ z =⇒ x ≺ z ,

x � y ∧ y � z =⇒ x � z .

4. Partial orders

Let POS be a class of partially ordered sets.
Let X be any non empty set and R ∈ B(X). For ease of expression,

we shall symbolise that R is a partial order in X with the symbol “≤”
and we shall subscript any relation with this symbol to signify that it is
a relation which imposes a partial order on a set.

Remark 4.1. (i) On this way of expressing things, the symbol “≤” is a
variable ranging over partial orders.

(ii) We have not used the symbol � although the relation ≤ \ idX is
a strict partial order in X and ≤ = (≤\ idX) ∪ idX (cf. Lemma 2.4(i–iv).
In X may exist two binary relations ≺ and ≤ such that ≤ 6= �.

(iii) We do not have to think that the symbol “≤” ‘says’ that the
relation ≤ is the sum of the relations idX and some relation <. We
may also well accept that the symbol “≤” ‘says’ that the relation idX is
identical to the product of the relations ≤ and its converse, i.e., idX =
≤ ∩ ≥, where ≥:= ≤̆ (cf. Lemma 2.1(i)).

(iv) All these results concerning the relation ≤ apply also to the rela-
tion � defined with the help of (df �), since � is reflexive, antisymmetric,
and transitive (cf. Lemma 2.3(i,iii,v) along with the corresponding for-
mulae in Section 3).

With this in mind, for arbitrary x, y, z ∈ X we have:

x ≤ x , (r≤)

x ≤ y ∧ y ≤ x =⇒ x = y , (antis≤)

x ≤ y ∧ y ≤ z =⇒ x ≤ z . (t≤)

By Lemma 2.1(ii), for arbitrary x, y ∈ X we have:

x ≤ y ⇐⇒ ∀z∈X(z ≤ x ⇒ z ≤ y). (4.1)

From this and the antisymmetry of the relation follows:

x = y ⇐⇒ ∀z∈X(z ≤ x ⇔ z ≤ y).
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Let � be the difference between relations ≤ and idX :

� := ≤ \ idX . (df �)

Therefore, for arbitrary x, y ∈ X we have:

x � y ⇐⇒ x ≤ y ∧ x 6= y .

Applying Lemma 2.4 for arbitrary x, y, z ∈ X we get:

¬x � x , (irr�)

x ≤ y ⇐⇒ x � y ∨ x = y ,

x � y =⇒ ¬ y � x , (as�)

x � y ∧ y ≤ z =⇒ x � z ,

x ≤ y ∧ y � z =⇒ x � z ,

x � y ∧ y � z =⇒ x � z , (t�)

x � y ⇐⇒ x ≤ y ∧ y � x . (def ′ �)

Obviously, formula (def ′ �) could be taken as a definition of � (cf.
Lemma 2.4(v)).

It follows from the conditions above that the relation � is a strict
partial order inX and that for the relations � and ≤ hold counterparts of
those conditions given for the relations ≺ and � in the previous section.

Example 4.1. For any non-empty family F of sets the pair 〈F ,⊆〉 is a
partially ordered set. We will use this writing instead of 〈F ,≤〉, where
≤ := {〈X, Y 〉 ∈ F × F : X ⊆ Y }.3

Lemma 4.1. For any x ∈ X we put

X ↾ x := {y ∈ X : y ≤ x}.

Then X ↾ x := 〈X ↾ x,≤ |X↾x〉 is a partially ordered set, where ≤ |X↾x is
the restriction of ≤ to the set X ↾ x.

Let X1 = 〈X1,≤1〉 and X2 = 〈X2,≤2〉 be any partially ordered sets.
We say that a function f from X1 into X2 is a homomorphism from X1

to X2 iff for all x, y ∈ X1 we have:

x ≤1 y ⇐⇒ f(x) ≤2 f(y).

3 Formally, “⊆” is a set-theoretic predicate and not a relation in F .
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A monomorphism from X1 to X2 is any injective homomorphism. A iso-
morphism from X1 onto X2 is any injective and surjective (i.e., bijective)
homomorphism. We say the X1 and X2 are isomorphic iff there is an
isomorphism from X1 onto X2.

Let X = 〈X,≤〉 be a partially ordered set. Take arbitrary x ∈ X and
S ∈ P(X). We say that x is an upper (resp. lower) bound of S in X iff
for each z ∈ S we have z ≤ x (resp. x ≤ z). Let UB(S) (resp. LB(S)) be
the set of all upper (resp. lower) bounds of a set S in X. Moreover, we
say that x is a greatest (resp. least) element of S in X iff x ∈ S ∩ UB(S)
(resp. x ∈ S ∩ LB(S)). There can at most be one greatest (resp. least)
element of S in X. Briefly, if x and y are greatest (resp. least) elements
of S, then x ≤ y and y ≤ x. Therefore, x = y, by (antis≤). If S = X
then we will shortly say that x is a greatest (resp. least) element of X.

We say that x is a supremum of a set S in X (we write: x sup
≤
S)

iff x is the least upper bound of S. In other words, x sup
≤
S iff x is the

least element in the set UB(S). This may be put symbolically as follows
for all x ∈ X and S ∈ P(X):

x sup
≤
S ⇐⇒ ∀z∈S z ≤ x ∧ ∀y∈X(∀z∈S z ≤ y =⇒ x ≤ y). (df sup

≤
)

It follows from the fact that in the set UB(S) there can be at most
one least element that if S has a supremum then it is unique, i.e.:

∀x,y∈X (x sup
≤
S ∧ y sup

≤
S =⇒ x = y). (Usup)

Moreover, by definitions, we obtain:

∀S∈P(X)∀x∈X(x is a greatest element of S =⇒ x sup
≤
S). (4.2)

Suppose that x is a greatest element in S, i.e., x ∈ S and ∀z∈S z ≤ x.
Take an arbitrary y ∈ X such that ∀z∈S z ≤ y. Since x ∈ S, so x ≤ y.
Therefore, by (df sup

≤
), we have x sup

≤
S.4

Of course, for S = X from condition (4.2) we obtain:

∀x∈X(x is a greatest element in X ⇐⇒ x sup
≤
X). (4.3)

Furthermore, note that only by (df sup
≤

) the relation sup
≤

is mono-
tonic, i.e.:

∀S,Z∈P(X)∀x,y∈M (x sup
≤
S ∧ y sup

≤
Z ∧ Y ⊆ Z) =⇒ x ⊑ y. (Msup)

4 Note that a given set may have a supremum that does not belong to the set,
and then it will not be a greatest element of this set.
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From (r≤) it follows that:

∀x∈X x sup
≤

{x} , (4.4)

∀x∈X x sup
≤

{z ∈ X : z ≤ x}.

From (r≤) and (antis≤) it follows that:

∀x,y∈X(y sup
≤

{x} =⇒ x = y). (Ssup)

By (r≤) and (t≤) we have:

x sup
≤
S ⇐⇒ ∀y∈X(x ≤ y ⇔ ∀z∈S z ≤ y). (4.5)

‘⇒’ Suppose that x sup
≤
S. Then if x ≤ y then ∀z∈S z ≤ y, by (t≤),

since ∀z∈S z ≤ x. Conversely, if ∀z∈S z ≤ y then x ≤ y, by (df sup
≤

).
‘⇐’ If ∀y∈P (x ≤ y ⇔ ∀z∈S z ≤ y) then ∀z∈S z ≤ x, by (r≤). Therefore,
x sup

≤
S.

For finite sets, the relation sup
≤

has an interesting property, namely
that, for arbitrary y1, . . . , yn ∈ X (n > 0) the following holds:

x sup
≤

{y1, . . . , yn} ⇐⇒ x sup
≤

{z ∈ X : ∃i∈{1,...,n} z ≤ yi}. (4.6)

Let x sup
≤

{y1, . . . , yn}, i.e., we have (a) ∀i∈{1,...,n} yi ≤ x and (b)
∀y∈X(∀i∈{1,...,n} yi ≤ y ⇒ x ≤ y). Then, by (4.1), (a) is equivalent to
(c): ∀z∈X,i∈{1,...,n}(z ≤ yi ⇒ z ≤ x); and (b) gives:

∀y∈X(∀i∈{1,...,n},z∈X(z ≤ yi ⇒ z ≤ y)) =⇒ x ≤ y). (d)

Furthermore, (c) is equivalent to (e): ∀z∈X(∃i∈{1,...,n} z ≤ yi ⇒ z ≤ x).
Condition (d) is equivalent to (f): ∀y∈X(∀z∈X(∃i∈{1,...,n} z ≤ yi ⇒ z ≤
y) =⇒ x ≤ y). The conjunction of (e) and (f), in virtue of (df sup

≤
),

is equivalent to x sup
≤

{z ∈ X : ∃i∈{1,...,n} z ≤ yi}.

Example 4.2. For a non-empty family of sets F let sup
⊆

be the supremum
relation in the partially ordered set 〈F ,⊆〉 (see Example 4.1), which is
included in F × P(F) and for any subset Y of F and any subfamily S
of F we have:

Y sup
⊆

S ⇐⇒ ∀Z∈S Z ⊆ Y ∧ ∀S∈F(∀Z∈S Z ⊆ S =⇒ Y ⊆ S).

Of course, a subfamily S of F may not have a supremum in 〈F ,⊆〉. But
if S has a supremum in 〈F ,⊆〉, then we obtain:

• For any Y ∈ F : if Y sup
⊆

S then
⋃

S ⊆ Y .
In fact, if Y sup

⊆
S then ∀Z∈S Z ⊆ Y ; so

⋃
S ⊆ Y .
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• If
⋃

S /∈ F and Y sup
⊆

S, then
⋃

S ( Y .
• If

⋃
S ∈ F then

⋃
S sup

⊆
S.

Indeed, firstly, ∀Z∈S Z ⊆
⋃

S. Secondly, for any S ∈ S: if ∀Z∈S Z ⊆
S then

⋃
S ⊆ S.

Example 4.3. For any subfamily S of the power set P(X) we have:
•

⋃
S sup

⊆
S in 〈P(X),⊆〉.

We say that x is a infimum of S in X (we write: x inf≤ S) iff x is the
greatest lower bound of S. In other words, x inf≤ S iff x is the greatest
element in the set LB(S). This may be put symbolically as follows for
all x ∈ X and S ∈ P(X):

x inf≤ S ⇐⇒ ∀z∈S x ≤ z ∧ ∀y∈X(∀z∈S y ≤ z =⇒ y ≤ x). (df inf≤)

It follows from the fact that in the set LB(S) there can be at most
one greatest element that if S has a infimum then it is unique, i.e.:

∀x,y∈X(x inf≤ S ∧ y inf≤ S =⇒ x = y). (Uinf)

Moreover, from our definitions, we obtain:

∀S∈P(X)∀x∈X(x is a least element of S =⇒ x inf≤ S). (4.7)

Suppose that x is a least element in S, i.e., x ∈ S and ∀z∈S x ≤ z.
Take an arbitrary y ∈ X such that ∀z∈S z ≤ y. Since x ∈ S, so y ≤ x.
Therefore, by (df inf≤), we have x sup

≤
S.5

Of course, for S = X from condition (4.7) we obtain:

∀x∈X(x is a least element in X ⇐⇒ x inf≤ X). (4.8)

Furthermore, only by (df inf≤) the relation inf≤ is monotonic, i.e.:

∀S1,S2∈P(M)∀x,y∈M (x inf≤ S1 ∧ y inf≤ S2 ∧ S1 ⊆ S2) =⇒ y ⊑ x.
(Minf)

From (t≤) it follows that:

∀x∈M x inf≤ {x} . (4.9)

Example 4.4. For a non-empty family of sets F let inf⊆ be the infimum
relation in the partially ordered set 〈F ,⊆〉 (see Example 4.1), which is
included in F × P(F) and for any subset Y of F and any subfamily S
of F we have:

5 Note that a given set may have a infimum that does not belong to the set, and
then it will not be a least element of this set.



4. Partial orders 263

Y inf⊆ S ⇐⇒ ∀Z∈S Y ⊆ Z ∧ ∀S∈F (∀Z∈S S ⊆ Z =⇒ S ⊆ Y ).

Of course, a subfamily S of F may not have a infimum in 〈F ,⊆〉. But
if S has a infimum in 〈F ,⊆〉, then we obtain:

• For any Y ∈ F : if Y inf⊆ S then Y ⊆
⋂

S.
Indeed, if Y inf⊆ S then ∀Z∈S Y ⊆ Z; so Y ⊆

⋂
S.

• If
⋂

S /∈ F and Y inf⊆ S, then Y (
⋂

S.
• If

⋂
S ∈ F then

⋂
S inf⊆ S.

Indeed, firstly, ∀Z∈S
⋂

S ⊆ Z. Secondly, for any S ∈ S: if ∀Z∈S S ⊆
Z then S ⊆

⋂
S.

Example 4.5. For any subfamily S of the power set P(X) we have:
•

⋂
S inf⊆ S in 〈P(X),⊆〉.

The relations inf≤ and sup
≤

are interdefinable, i.e., for all S ∈ P(X)
and x ∈ X the following conditions hold:

x inf≤ S ⇐⇒ x sup
≤

LB(S), (4.10)

x sup
≤
S ⇐⇒ x inf≤ UB(S). (4.11)

For (4.10): Assume that x inf≤ S, i.e., that x is the greatest in the set
LB(S). Then, x sup

≤
LB(S), by (4.2). Conversely, let x sup

≤
LB(S).

Then, by (df sup
≤

), we have ∀y∈LB(S) y ≤ x, i.e., (a) ∀y∈X(∀z∈S y ≤ z
⇒ y ≤ x), and (b) ∀y∈X(∀u∈LB(S) u ≤ y ⇒ x ≤ y). Moreover, for any
z ∈ S we have ∀u∈LB(S) u ≤ z. Hence x ≤ z, by (b). From this and from
(a) and (df inf≤) we obtain x inf≤ S. We prove (4.11) in a similar way
(but we use (4.7) instead of (4.2)).

From (4.10) and (4.11) we obtain respectively:

x inf≤ ∅ ⇐⇒ x sup
≤
X , (4.12)

x inf≤ {y1, . . . , yn} ⇐⇒ x sup
≤

{z ∈ X : ∀i∈{1,...,n} z ≤ yi}, (4.13)

x sup
≤

∅ ⇐⇒ x inf≤ X . (4.14)

Moreover, in a similar way as (4.5) we can show that:

x inf≤ S ⇐⇒ ∀y∈X(y ≤ x ⇔ ∀z∈S y ≤ z). (4.15)

For any S ∈ P(X) we put:

max≤(S) := {x ∈ S : ¬∃z∈S x � z} = {x ∈ S : ∀z∈S(x ≤ z ⇒ z = x},
(df max≤)

min≤(S) := {x ∈ S : ¬∃z∈S z � x} = {x ∈ S : ∀z∈S(z ≤ x ⇒ z = x}.
(df min≤)
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The members of the set max≤(S) (resp. min≤(S) we call maximal (resp.
minimal) elements in the set S. It is easy to see that if x is the greatest
element in a set S, then max≤(S) = {x}. Similarly, if x is the least
element than min≤(S) = {x}.

5. Bounded partial orders

Let Let X = 〈X,≤〉 be a partially ordered set. By (4.3) and (4.12), for an
arbitrary x ∈ X the following equivalence holds: x is a greatest element
in X iff x sup

≤
X iff x inf≤ ∅. The greatest element in X (if exists) we

call the unity of X and we signify it by “1”. Obviously, there can only
exist at most one such greatest element in X. If in X there exists a unity
then we write 〈X,≤, 1〉. It follows from the previous section that if in X

there exists a unity, then max≤(X) = {1}.
Note that in the light of Lemma 4.1 we obtain:

Lemma 5.1. For any x ∈ X the partially ordered set X↾x has the unity x.

By (4.8) and (4.14), for an arbitrary x ∈ X the following equivalence
holds: x is a least element in X iff x inf≤ X iff x sup

≤
∅. The least

element in X (if exists) we call the zero of X and we signify it by “0”.
Obviously, there can only exist at most one such least element in X. If in
X there exists a zero then we write 〈X,≤, 0〉. It follows from the previous
section that if in X there exists a zero, then min≤(X) = {0}.

We say that a partially ordered set X is bounded iff X has a zero and
a unity. We will then write 〈X,≤, 0, 1〉. Obviously, if the structure X is
trivial, i.e., X has one element, then 0 = 1.

Let X1 = 〈X1,≤1, 01, 11〉 and X2 = 〈X2,≤2, 02, 12〉 be any bounded
partially ordered sets. A homomorphism from X1 to X2 is any order-
homomorphism (see p. 259) such that f(01) = 02 and f(11) = 12.

6. Lattices

Lattices may be considered to be a certain kind of algebra, i.e., like sets
with certain (primitive) operations of sum and product. They may also
be treated as a kind of order, in which we can define those operations
[cf. Grätzer, 1971, pp. 4–7]. It will be more convenient for us, as regards
their application to mereology, to take the second approach.
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A partial order 〈L,≤〉 we call a lattice iff for arbitrary x, y ∈ L the
set {x, y} has a supremum and an infimum, i.e.:

∀x,y∈L∃z,u∈L(z sup
≤

{x, y} ∧ u inf≤ {x, y}). (L)

Remark 6.1. (i) With respect to (4.4) and (4.9), condition (L) suffices
only for the case where x 6= y.

(ii) To define a lattice, it is not essential that the relations sup
≤

and
inf≤ are interdefinable (cf. (4.10)) and (4.11)). Indeed, for a set {x, y} at
least one of the sets {z ∈ L : z ≤ x ∧ z ≤ y} and {z ∈ L : x ≤ z ∧ y ≤ z}
might not be a one- or two-element set, and only in such cases do suprema
and infima definitely exist (these sets may even be infinite).

With respect to Usup) and (Uinf there exists only one supremum and
only one infimum for the set {x, y}. We may therefore define on the
Cartesian product L × L the binary operations sum + and product ·
which take values in L. For arbitrary x, y ∈ L we put:

x+ y := (i z) z sup
≤

{x, y}, (df +)

x · y := (i z) z inf≤ {x, y}. (df ·)

We obtain directly from (4.6) and (4.13) the following for all x, y, z ∈ L:

z = x+ y ⇐⇒ z sup
≤

{u ∈ P : u ≤ x ∨ u ≤ y},

z = x · y ⇐⇒ z sup
≤

{u ∈ P : u ≤ x ∧ u ≤ y}.

For arbitrary x, y, z ∈ L the operations + and · satisfy the following
well-known conditions [cf. Grätzer, 1971; Traczyk, 1970]:

x+ y = y + x x · y = y · x (6.1)

x+ (y + z) = (x+ y) + z x · (y · z) = (x · y) · z (6.2)

x+ x = x x · x = x (6.3)

x+ (x · y) = x x · (x+ y) = x (6.4)

Therefore, the operations + and · are commutative, associative and idem-
potent. Furthermore, we may prove that for arbitrary x, y, z ∈ L:

x+ (y · z) ≤ (x+ y) · (x+ z), (6.5)

(x · y) + (x · z) ≤ x · (y + z) , (6.6)

x+ y = y ⇐⇒ x ≤ y ⇐⇒ x · y = x , (6.7)
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x ≤ x+ y, x · y ≤ x , (6.8)

x ≤ y =⇒ x+ z ≤ y + z , (6.9)

x ≤ y =⇒ x · z ≤ y · z , (6.10)

x ≤ z ∧ y ≤ z =⇒ x+ y ≤ z . (6.11)

It may be proven by induction [cf. Grätzer, 1971, p. 4] that the
partially ordered set 〈L,≤〉 is a lattice iff each non-empty finite subset
of the set L has a supremum and an infimum, i.e.,:

∀S∈P(L)

(
0 < CardS < ℵ0 =⇒ ∃z,u∈L(z sup

≤
S ∧ u inf≤ S)

)
. (L′)

To prove this it suffices to show that for each n > 0 and arbitrary
z, x1, . . . , xn ∈ L the following hold:

z sup
≤

{x1, . . . , xn} ⇐⇒ z = x1 + · · · + xn,

z inf≤ {x1, . . . , xn} ⇐⇒ z = x1 · · · · · xn.

In the light of (6.8), (6.11) and lemmas 4.1 and 5.1, for any lattice
L = 〈L,≤〉 we obtain:

Lemma 6.1. For any x ∈ L the partially ordered set L ↾ x is a lattice
with the unity x. Moreover, the operations in L ↾x are the restriction of
operations in L.

If there exists a unity for the lattice L = 〈L,≤〉 then for each x ∈ L
the following hold:

x+ 1 = 1 , x · 1 = x . (6.12)

Furthermore, for any x ∈ L we have:

∀z∈L z + x = x ⇐⇒ x = 1 ⇐⇒ ∀z∈L z · x = z .

If there exists a zero for L, then for each x ∈ L the following hold:

x+ 0 = x, x · 0 = 0 . (6.13)

Furthermore, for any x ∈ L we have:

∀z∈L z + x = z ⇐⇒ x = 0 ⇐⇒ ∀z∈L z · x = x .

In any lattice 〈L,≤, 0〉 with zero, for arbitrary x, y ∈ L we have:

x · y = 0 ⇐⇒ ∀z∈L(z ≤ x ∧ z ≤ y ⇒ z = 0). (6.14)
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From the fact that x · y = 0 and that for some z 6= 0 we have z ≤ x and
z ≤ y, a contradiction follows: 0 6= z = z·z = z·x·z·y = z·x·y = z·0 = 0.
Conversely, if x · y 6= 0 then  by virtue of (6.1) and (6.8)  x and y do
not satisfy the right-hand side of the equality.

Moreover, the following holds:

∀x,y∈L

(
x ≤ y =⇒ ∀u∈L(u ≤ x ∧ u · y = 0 ⇒ u = 0)

)
. (6.15)

Assume that x ≤ y, u ≤ x, and u · y = 0. Then, by (t≤), we have u ≤ y.
Hence u = u · y = 0.

We say that a lattice L is bounded iff L has a zero and a unity. We
will then write 〈L,≤, 0, 1〉.

For any bounded lattices L1 = 〈L1,≤1, 01, 1〉 and L2 = 〈L2,≤2, 02,
12〉 we put ≤ := ≤1 × ≤2, i.e.: for arbitrary x1, y1 ∈ L1 and x2, y2 ∈ L2:

〈x1, x2〉 ≤ 〈y1, y2〉 :⇐⇒ x1 ≤1 y1 ∧ x2 ≤2 y2.

Lemma 6.2. The pair L1 × L2 := 〈L1 × L2,≤, 〈01, 02〉, 〈11, 12〉〉 is a
bounded lattice, where we carry out the operations over the coordinates,
which we call the product of lattices L1 and L2.

Let L1 = 〈L1,≤1, 01, 11〉 and L2 = 〈L2,≤2, 02, 12〉 be any bounded
lattices and h : L1 → L2 be any any order-homomorphism for bounded
partially ordered sets (see p. 264). Then for all x, y ∈ B1 we have:
h(−1x) = −2h(x), h(x+1 y) = h(x) +2 h(y), and h(x ·1 y) = h(x) ·2 h(y).

At the end of this section we will deal with so-called separative lat-
tices. For these lattices we will prove two facts that we will use in
Section 11.

We say that a lattice L = 〈L,≤, 0〉 is separative iff L satisfies the
converse implication to (6.15), i.e., the following condition:

∀x,y∈L

(
∀u∈L(u ≤ x ∧ u · y = 0 ⇒ u = 0) =⇒ x ≤ y

)
. (sep)

Thus, in virtue of (6.15), we obtain:

Lemma 6.3. In any separative lattice 〈L,≤, 0〉 the following two (logi-
cally equivalent) conditions hold:

∀x,y∈L

(
x ≤ y ⇐⇒ ∀u∈L(u ≤ x ∧ u · y = 0 ⇒ u = 0)

)
, (6.16)

∀x,y∈L

(
x � y ⇐⇒ ∃u∈L(u 6= 0 ∧ u ≤ x ∧ u · y = 0)

)
. (6.17)

The first condition states that separative lattices have an interesting
property which we will make use of in Section 11.
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Lemma 6.4. In any separative lattice 〈L,≤, 0〉, for arbitrary x, y ∈ L
the following condition holds:

∃S∈P(L)

(
∀z∈S z ≤ y ∧ ∀u∈L((u ≤ x ∧ ∀z∈S z · u = 0) ⇒ u = 0)

)

=⇒ x ≤ y .

Proof. Let 〈L,≤, 0〉 be a separation lattice and x, y ∈ L. Assume that
a set S0 satisfies two conditions: (a) ∀z∈S0

z ≤ y and (b) ∀u∈L(u ≤ x ∧
∀z∈S0

z · u = 0) ⇒ u = 0. To take advantage of condition (sep), let us
take any u ∈ L such that (c) u ≤ x and (d) u · y = 0. Then, by (a), (d),
(6.1), and (6.10) we obtain: ∀z∈S0

z · u ≤ y · u = 0. Therefore, u = 0,
by (b) and (c). So we obtain: ∀u∈L(u ≤ x ∧ u · y = 0 ⇒ u = 0). Hence
x ≤ y, by (sep).

The second condition gives a sufficient condition for being a separa-
tive structure.

Lemma 6.5. Let L = 〈L,≤, 0〉 be any lattice with zero in which the
relation ≤ satisfies the following condition:

for any S ∈ P(L) there is exaxtly one x ∈ L such that
(a) ∀z∈S z ≤ x and
(b) ∀u∈L

(
u ≤ x ∧ ∀z∈S u · z = 0 =⇒ u = 0

)
.

(⋆)

Then L is a separative lattice.

Proof. Assume for a contradiction that condition (⋆) holds in L and
(sep) does not. Therefore, for some x0, y0 ∈ L we have: (A) x0 � y0 and
(B) ∀z∈L(z ≤ x0 ∧ z · y0 = 0 ⇒ z = 0).

We put S0 := {z ∈ L : z ≤ y0}. Since x0 ·y0 ≤ y0, then (i) x0 ·y0 ∈ S0.
To start, observe that y0 satisfies conditions (a) and (b) from (⋆) for

the set S0. Condition (a) is a logical tautology. Ad (b): for any u ∈ L,
if u ≤ y0 and ∀z∈S0

u · z = 0, then both u ∈ S0 and so u = u · u = 0.
We can find a y1 such that y1 6= y0 and y1 satisfies conditions (a)

and (b) from (⋆) for the set S0. And that contradicts (⋆).
Now note that, by (⋆), for the set S1 := S0 ∪ {x0} there is exactly

one y1 ∈ L such that (ii) ∀z∈S0
z ≤ y1, (iii) x0 ≤ y1, and (iv) for any

u ∈ L, if u ≤ y1 and ∀z(z ∈ S0 ∨ z = x0 ⇒ u · z = 0), then u = 0.
From (A) and (iii) it follows that y0 6= y1.
Finally, we show that the set S0 satisfies conditions (a) and (b)

from (⋆). In fact, condition (a) we obtain by (ii). Ad (b): We take
an arbitrary u ∈ L such u ≤ y1 and ∀z∈S0

u · z = 0. From this and (i)
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we have (v) u · x0 · y0 = 0. Since u · x0 ≤ x0, then by (B) and (v) we
have u · x0 = 0. Therefore, we may apply (iv) and obtain: u = 0.

7. Distributive lattices

We say that a lattice L = 〈L,≤〉 is distributive iff we may reverse in-
equalities (6.5) and (6.6). Therefore, by virtue of the antisymmetry of
the relation ≤, the lattice L is distributive iff the following conditions
(equivalent in L) are satisfied:

∀x,y,z∈L

(
x+ (y · z) = (x+ y) · (x+ z)

)
, (7.1)

∀x,y,z∈L

(
x · (y + z) = (x · y) + (x · z)

)
. (7.2)

Furthermore, in any distributive lattice L the following are true:

∀S∈P(L)∀x,y∈L

(
y inf≤ S =⇒ (x+ y) inf≤ {x+ z : z ∈ S}

)
, (7.3)

∀S∈P(L)∀x,y∈L

(
y sup

≤
S =⇒ (x · y) sup

≤
{x · z : z ∈ S}

)
. (7.4)

In each lattice each of conditions (7.1)–(7.4) entails the other three.
Thus, in any distributive lattice 〈L,≤, 0〉 with zero we obtain:

∀S∈P(L)∀x,y∈L(y sup
≤
S ∧ x ≤ y ∧ ∀z∈S x · z = 0 =⇒ x = 0). (7.5)

Suppose that x ≤ y sup
≤
S and for any z ∈ S we have z ·x = 0. Then, by

(6.7) and (7.4), we have: x = x · y and x sup
≤

{x · z : z ∈ S}. Therefore,
x sup

≤
{0}, and so x = 0.

8. Complements in bounded distributive lattices

Let 〈L,≤, 0, 1〉 be a bounded lattice and x, y ∈ L. Then we say that y is
a complement of x iff both x · y = 0 and x+ y = 1.

A complemented lattice is any bounded lattice L = 〈L,≤, 0, 1〉 in
which every member has a complement, i.e., L satisfies the following
condition:

∀x∈L∃y∈L

(
x · y = 0 ∧ x+ y = 1

)
. (c)

In general, there are bounded lattices in which some elements may
have more than one complement. However, in any bounded distributive
lattice every member has at most one complement. Indeed, we have:
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Lemma 8.1. In any bounded distributive lattice L = 〈L,≤, 0, 1〉.

(i) For arbitrary x, y, z ∈ L, if y is a complement of x and x · z = 0,
then z ≤ y.

(ii) Every member of L has at most one complement.

Proof. Ad (i): Suppose that y is a complement of x and x · z = 0.
Then z = z · 1 = z · (x+ y) = (z · x) + (z · y) = 0+ (z · y) = z · y. Hence
z ≤ y, by (6.7).

Ad (ii): Suppose that y and z are complements of x. Then x·y = 0 =
x · z. Hence, by (i), we have z ≤ y and y ≤ z. So y = z, by (antis≤).

A uniquely complemented lattice L is any bounded lattice in which
every member has exactly one complement, i.e., L satisfies the following
condition:

∀x∈L∃!y∈L

(
x · y = 0 ∧ x+ y = 1

)
. (c!)

Thus, in any uniquely complemented lattice we can define on the set L
a unary complement operation − : L → L. For any x ∈ L we put:

− x := (i y) (x · y = 0 ∧ x+ y = 1). (df −)

Notice that, in the light of Lemma 8.1, all distributive complemented
lattices (i.e., Boolean lattices; see Section 9) are uniquely complemented
lattices.

At the end of this section, we prove two lemmas that will be needed
in sections 9 and 11.

Lemma 8.2. If L = 〈L,≤, 0, 1〉 a bounded distributive lattice and y is a
complement of x, then the following equivalent conditions hold:

(a) y is the greatest element of {z ∈ L : x · z = 0},
(b) x · y = 0 and y sup

≤
{z ∈ L : x · z = 0}.

Proof. If y is a complement of x, then x · y = 0 and  in the light
of Lemma 8.1(i)  for arbitrary z ∈ L: if x · z = 0 then z ≤ y. The
equivalence of (a) and (b) we will get using (4.2).

Lemma 8.3. Let L = 〈L,≤, 0, 1〉 be any bounded distributive and sepa-
rative lattice. Then for arbitrary x, y ∈ L we have:

y is a complement of x ⇐⇒ y sup
≤

{z ∈ L : x · z = 0}.
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Proof. ‘⇒’ By virtue of Lemma 8.2.
‘⇐’ Let y sup

≤
{z ∈ L : x · z = 0}. Since L is distributive, then 

by (7.4)  we have: (x · y) sup
≤

{x · z ∈ L : x · z = 0}. Therefore,
(x · y) sup

≤
{0}. That is, x · y = 0. Now take an arbitrary z such that

z·(x+y) = 0. Since L is distributive, then z·(x+y) = (z·x)+(z·y) = 0, by
(7.2). Hence, by (6.8), we have (A) z ·x = 0 and (B) z ·y = 0. From (A) 
since y sup

≤
{z ∈ L : x · z = 0}  we have z ≤ y. Hence z = z · y = 0, by

virtue of (B). Applying condition (sep) to 1 and x+y, we get: 1 ≤ x+y.
Therefore, x+ y = 1.

9. Boolean lattices (Boolean algebras)

As we mentioned earlier, any complemented distributive lattice is called a
Boolean lattice. We also remember that all Boolean lattices are uniquely
complemented lattices. Let BL be a class of all Boolean lattices.

Let 〈B,≤, 0, 1〉 be a Boolean lattice and x ∈ B. Since there is a y ∈ L
such that y is a complement of x, then  in virtue of Lemma 8.3  there
is a unique least upper bound of the set {z ∈ L : x · z = 0} and

−x = sup
≤

{z ∈ B : x · z = 0}.

In any Boolean lattice 〈B,≤, 0, 1〉 the following conditions are well-
known. For arbitrary x, y ∈ B we have:

−(x+ y) = (−x) · (−y) −(x · y) = (−x) + (−y) (9.1)

x+ (−x) = 1 x · (−x) = 0 (9.2)

−1 = 0 x · (−x) = 0 (9.3)

−−x = x (9.4)

x ≤ y ⇐⇒ −y ≤ −x (9.5)

(−x) + y = 1 ⇐⇒ x ≤ y ⇐⇒ x · (−y) = 0 , (9.6)

Furthermore, we obtain:

Lemma 9.1. All Boolean lattices are separative. So all Boolean lattices
satisfy both (6.16) and (6.17).

Proof. Assume the antecedent of (sep). For u := x · −y we have both
x · −y ≤ x and x · −y · y = x · 0 = 0. Hence x · −y = 0. Therefore
x ≤ y, by (9.6). (The quantifier “∃” in (6.17) can refer, for example, to
u := x · −y.)
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For any x, y ∈ M we also put:

x− y := x · −y .

Of course, if x ≤ y then x − y = 0. The object x − y can be treated as
the difference of x and y, or the relative complement of y with respect
to x. For any elements x, y ∈ B, the symmetric difference of x and y is

x△ y = (x− y) + (y − x).

Remark 9.1. (i) Let A be a non-empty set, + and ∗ be binary operations
in A, – be a unary operation in A, and 0 and 1 be elements of A.
Then an algebraic structure 〈A,+,∗, –, 0, 1〉 is a Boolean algebra iff its
components satisfy the equalities (6.1), (6.2), (6.12), (6.13), (9.2) and
(7.1) (resp. (7.2)), if the symbols “+”, “·”, “−”, “0”, and “1” are replaced
by the symbols “+”, “∗”, “–”, “0”, and “1”, respectively. It is enough
to have all equalities listed in sections 6–9 fulfilled.

(ii) In this appendix we show that if 〈B,≤, 0, 1〉 is a Boolean lattice
then the algebraic structure 〈B,+, ·,−, 0, 1〉 is a Boolean algebra.

(iii) If 〈A,+,∗, –, 0, 1〉 is a Boolean algebra and a binary relation ≤
is defined in A by: x ≤ y ⇐⇒ x+ y = y, then the structure 〈A,≤, 0, 1〉
is a Boolean lattice. Indeed, the relation ≤ partially orders the set A
and satisfies conditions sup

≤
{x, y} = x + y and inf≤{x, y} = x · y [see,

e.g., Frankiewicz and Zbierski, 1992, pp. 10–11].

Example 9.1. For any field of sets F ,

• the structure BF := 〈F ,⊆, ∅,
⋃

F〉 is a Boolean lattice;
• for all S, Z ∈ F we have: S + Z = S ∪ Z, S · Z = S ∩ Z, and

−S =
⋃

F \ S.
• the algebraic structure 〈F ,∪,∩,−, ∅,

⋃
F〉 is a Boolean algebra, where

for arbitrary S, Z ∈ F : S ⊆ Z iff S ∪ Z = Z iff S ∩ Z = S.

Thus, for any algebra of sets A over a set X ,

• the structure BA := 〈A,⊆, ∅, X〉 is a Boolean lattice;
• the algebraic structure 〈A,∪,∩,−, ∅, X〉 is a Boolean algebra, where

for arbitrary S, Z ∈ A: S ⊆ Z iff S ∪ Z = Z iff S ∩ Z = S.

So also for any set X ,

• the structures PX := 〈P(X),⊆, ∅, X〉 and FCX := 〈FC(X),⊆, ∅, X〉
are Boolean lattices.
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Example 9.2 (Frankiewicz and Zbierski, 1992, p. 27). Let A be an algebra
of sets over a set X such that all singletons of X belong to A. Then for
any subfamily S of A and any Y ∈ A :

• if Y sup
⊆

S in the Boolean lattice BA, then Y =
⋃

S.

Remark 9.2. There is a family F of subsets of a set X such that 〈F ,⊆,
∅, X〉 is a Boolean lattice, but F is not an algebra of set over X .

(i) For example, let F be the family of sets composed of: ∅, {0, 1},
{1, 2}, X := {0, 1, 2, 3}. Then 〈F ,⊆, ∅, X〉 is a Boolean lattice, but it
is not an algebra of set over X . Clearly, we have {0, 1} + {1, 2} = X ,
{0, 1} · {1, 2} = ∅, and {0, 1} = −{1, 2}.

(ii) We will also give another, more interesting example. Let T =
〈X,O〉 a topological space, where X is a non-empty set and O is a family
of all open subsets of X in T. A subset U of X is a regular open set of
T iff U = Int ClU , where Int and Cl are standard interior and closure
operations of T.

Let rO be the family of regular open sets of T . Of course,
⋃

rO = X ,
since X ∈ rO. It is known that the structure 〈rO,⊆, ∅, X〉 is a Boolean
lattice such that for any U, V ∈ rO we have: U + V = Int Cl(U ∪ V ),
U · V = U ∩ V , −U = Int(X \ U), and U ⊆ V iff Cl(U) ⊆ Cl(V )
[see, e.g., Koppelberg, 1998a, p. 26, and Frankiewicz and Zbierski, 1992,
pp. 13–14].

Notice that the family rO may not be an algebra of sets over X ,
since there may be U ∈ rO such that X \ U /∈ rO. For example, let X
be the set IR of real numbers and OIR be the ‘natural’ topology in IR
determined by the metric ρ(t1, t2) := |t1 − t2|, for all t1, t2 ∈ IR. Then
the open interval (0, 1) belongs to the family rOIR of all regular open
subset of OIR, but IR \ (0, 1) do not belong to OIR.

The universe of a finite Boolean lattice has 2n elements, for n ∈ IN
(see p. 282). For n = 0, 1, 2, 3 we have only four (up to isomorphism)
lattices. These are represented by the diagrams in Model 18.6

In the light of Lemma 6.2, for arbitrary Boolean lattices B1 =
〈B1,≤1, 01, 1〉 and B2 = 〈B2,≤2, 02, 12〉 we have:

Lemma 9.2. The product B1 ×B2 is Boolean lattice, in which for arbi-
trary x ∈ L1 and y ∈ L2, −〈x, y〉 = 〈−x,−y〉.

6 In these diagrams “•” says that a given element is in the relation ≤ with itself
(the relation ≤ is reflexive). An upwards line leading from x to y says that x � y (the
relation ≤ is transitive and antisymmetric). Otherwise, x � y.
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1
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1
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1
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1
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Model 18. Examples of finite Boolean lattices

In the light of Lemma 6.1, for any Boolean lattice 〈B,≤, 0, 1〉 we
obtain [cf. Koppelberg, 1998b, p. 39, or Frankiewicz and Zbierski, 1992,
pp. 16 and 30]:

Lemma 9.3. For any x ∈ B:

(i) The lattice B↾x is a Boolean lattice with the zero 0 and the unity x.
(ii) Each y ∈ B in B ↾ x has x− y as a complement.

(iii) The “projection” map px : B → B↾x, defined by condition px(y) :=
y · x, is a homomorphism from B onto the lattice B ↾ x.

(iv) The function y 7→ 〈y ·x, y · −x〉 is an isomorphism from B onto the
product B ↾ x× B ↾ −x.

The Boolean lattice B↾x is called the relative lattice or factor lattice
of B with respect to x.

10. Complete lattices

We say that a partially ordered set X = 〈X,≤〉 is complete iff each subset
of the set X has a supremum, i.e., X satisfies the following condition:

∀S∈P(X)∃x∈X x sup
≤
S . (cL)

By (4.10) and (4.11), condition (cL) is equivalent to the following:

∀S∈P(X)∃x∈X x inf≤ S . (cL′)

Each of conditions (cL) and (cL′) entails both conditions (L) and (L′).
Therefore, every complete partially ordered set is a lattice. So all com-
plete partially ordered sets we will call complete lattices. Of course,
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a lattice L is complete iff L is complete as a partially ordered set. Note
that, in the light of (L′), each finite lattice is complete.

Every complete lattice L = 〈L,≤〉 is bounded; we put:

0 := (ix) x inf≤ L ,

1 := (ix) x sup
≤
L .

With respect to (cL), (cL′), (Usup) and (Uinf) in any complete lattice
〈L,≤〉 we may define on the set P(L) the supremum function and the
infimum function which take values in the set L:

supS := (ix) x sup
≤
S , (df sup)

inf S := (ix) x inf≤ S . (df inf)

In any complete lattice L conditions (6.5) and (6.6) may be gener-
alised. For arbitrary x ∈ L and S ∈ P(L) we have:

x+ inf S ≤ inf{x+ z : z ∈ S}, (10.1)

sup{x · z : z ∈ S} ≤ x · supS . (10.2)

Let us prove (10.2). From the definition of a supremum we have ∀z∈S z ≤
supS. Hence, by virtue of (6.10), we have ∀z∈S(x · z ≤ x · supS).
Therefore, x · supS is an upper bound of the set {x · z : z ∈ S}. From
this and the definition of a supremum we obtain the desired inequality.
By making use of the definition of an infimum and (6.9) we may similarly
prove inequality (10.1).

In a complete lattice L distributivity conditions (7.3) and (7.4) may
be written as equalities having the following form:

∀S∈P(L)∀x∈L x+ inf S = inf{x+ z : z ∈ S}, (10.3)

∀S∈P(L)∀x∈L x · supS = sup{x · z : z ∈ S}. (10.4)

It is well known that in any complete lattice, any of conditions (7.1),
(7.2), (10.3) and (10.4) entails the other three.

Lemma 10.1. Let L1 = 〈B1,≤1〉 and L2 = 〈L2,≤2, 02, 12〉 be lattices.
Then the product L1 × L2 (see Lemma 6.2) is complete iff both lattices
L1 and L2 are complete.

Proof. ‘⇒’ For any S1 ∈ P(L1) we put S∗ := S1 × {02}, where 02 :=
inf≤2

L2. By virtue of our assumption, there are x1 ∈ L1 and x2 ∈ L2

such that 〈x1, x2〉 = sup
≤
S∗. Obviously, x2 = 02 and x1 = sup≤1

S1.
We proceed similarly for any S2 ∈ P(L2).
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‘⇐’ For any S ∈ P(L1 × L2) let S∗
1 := {z1 ∈ L1 : ∃z2∈L2

〈z1, z2〉 ∈ S}
and S∗

2 := {z2 ∈ L2 : ∃z1∈L1
〈z1, z2〉 ∈ S}. By virtue of our assumption,

there are x1 ∈ L1 and x2 ∈ L2 such that x1 = sup
≤1
S1 and x2 =

sup
≤2
S2. It is easy to see that 〈x1, x2〉 = sup

≤
S.

11. Complete Boolean lattices

Let CBL be the class of all complete Boolean lattices. Since each finite
lattice is complete, so ∅ 6= CBL ⊆ BL.

Example 11.1. (i) For any complete field F , the Boolean lattice BF

is complete (see Example 9.1) and for any subfamily S of F we have:
sup

⊆
S =

⋃
S and inf⊆ S =

⋂
S (see also examples 4.1, 4.2, and 4.4).

(ii) For any set X , the Boolean lattice PX is complete (see examples
1.3, 4.3, and 4.5).

Example 11.2. For any topological space T = 〈X,O〉, the Boolean lattice
〈rO,⊆, ∅, X〉 is complete (see Remark 9.2) such that for any subfam-
ily U of rO we have sup

⊆
U = Int Cl

⋃
U and inf⊆ U = Int Cl

⋂
U

[see, e.g., Koppelberg, 1998a, p. 26, and Frankiewicz and Zbierski, 1992,
pp. 13–14].

However, we have CBL ( BL, because we have the following exam-
ples of Boolean lattices which are incomplete.

Example 11.3. Let A be any algebra of sets over X such that all single-
tons of X belong to A. Then in the Boolean lattice BA (cf. Example 9.1),
for any subfamily S of F , in the light of Example 9.2, we have:

• if
⋃

S /∈ A, then S does not have a supremum in BA.

Indeed, in virtue of Example 9.2, if
⋃

S /∈ A, i.e., there is no Y ∈ A such
that Y 6=

⋃
S, then there is no Y ∈ A such that Y sup

⊆
S.

Thus, if A is incomplete (as an algebra of sets), then the Boolean
latice BA is incomplete.

Example 11.4. (i) In Example 1.4 we show that the algebra of sets FC(IN)
over the set IN is not complete (as an algebra of sets). Since FC(IN)
contains all singletons of IN, so  in the light of examples 9.1 and 11.3 
the Boolean lattice FCIN is not complete.

(ii) Also incomplete is the Boolean lattice which we obtain from the
field of Borel subsets of the topological space of real numbers (see Re-
mark 9.2) [cf., e.g., Traczyk, 1970, p. 55].
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From lemmas 9.2 and 10.1 we obtain:

Lemma 11.1. Let B1 = 〈B1,≤1, 01, 1〉 and B2 = 〈B2,≤2, 02, 12〉 be
Boolean lattices. Then the Boolean lattice B1 ×B2 is complete iff both
lattices B1 and B2 are complete.

In [1935], Tarski studied the equivalence of various axiomatisations of
complete Boolean algebras (complete Boolean lattices; cf. Remark 9.1).
We will present Tarski’s conclusion in the next section (as Theorem 12.1).
Theorem 11.2 is also associated with Tarski, which we will present and
prove in a moment. It gives a necessary and sufficient condition for lat-
tices with zero to be complete Boolean lattices. To prove Theorem 11.2
we will not need to use Theorem 12.1. We need only draw upon the
results we have established already.

Theorem 11.2. Let L = 〈L,≤, 0〉 be a lattice with zero. Then for L

to be a complete Boolean lattice, it is both necessary and sufficient that
the relation ≤ satisfies condition (⋆) from Lemma 6.5.

Proof. ‘⇒’ Let L be a complete Boolean lattice. Take an arbitrary
S ∈ P(L) and put x := sup

≤
S. From the definition of supremum and

by (7.5), x satisfies conditions (a) and (b) from (⋆) for the set S.
Finally, we will show that x is the only element from L satisfying

conditions (a) and (b) from (⋆) for the set S. Assume that x′ ∈ L
also satisfies conditions (a) and (b) from (⋆) for the set S. Since L is
a Boolean lattice, the sentence (sep) holds in it (cf. (6.16)). Therefore,
from Lemma 6.4 we get x ≤ x′ and x′ ≤ x. Hence x = x′.

‘⇐’ Let L be a lattice with zero, in which (⋆) holds. By Lemma 6.5,
L is separative, i.e., the condition (sep) holds in L.

First, we prove that L is a complete lattice. Take any S ∈ P(L). Since
(⋆) holds in L, then there exists exactly one x0 that satisfies conditions
(a) and (b) from (⋆) for the set S. So, by (a), x0 is an upper bound of S.
Moreover, if y ∈ L is an upper bound of S, then  by (b) for x0 and S
and Lemma 6.4  we have x0 ≤ y. This shows that x0 is the least upper
bound of S, i.e., that x0 = sup

≤
S. Moreover, it follows from this that

supS is the only element in L which satisfies condition (b) from (⋆):

∀y∈L

(
y ≤ sup

≤
S ∧ ∀z∈S y · z = 0 =⇒ y = 0

)
. (b′)

It follows from the arbitrary choice of S that lattice L is complete. There-
fore L is also bounded: 1 = sup

≤
L.
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We prove now the distributivity condition (10.4). Let x ∈ L and
S ∈ P(L). By (10.2) we have sup

≤
{x · z : z ∈ S} ≤ x · sup

≤
S. It

therefore suffices to show the inverse inequality.
We put xS := sup

≤
{x · z : z ∈ S}. It follows directly from the

definition of a supremum that (A) ∀u∈S x · u ≤ xS.
Assume for a contradiction that x · supS � xS. Hence, by virtue of

(sep), there exists a v such that (B) v 6= 0, (C) v ≤ x · sup
≤
S, and (D)

v · xS = 0.
From (A), by virtue of (6.10), we get (i) ∀u∈S v · x · u ≤ v · xS. From

this and (D) we get (ii) ∀u∈S v · x · u = 0. From (C) it follows that
v = v · x · supS. Hence, x · v = x · v · x · supS = x · v · supS. Hence
we have (iii) x · v ≤ sup

≤
S. By applying (b′), (ii), (iii) and (C) we get

0 = x · v = v. And this contradicts (B).

12. Tarski’s theorem

The result Tarski obtained in [1935] concerns the equivalence of different
systems of axioms of complete Boolean algebras and may be presented 
in the terminology we have been using in this appendix  in the following
form:

Theorem 12.1 (Tarski, 1935, theorems 1 and 2). Let X be any non-
empty set and < be any transitive binary relation in X . Then for the
relation < to be reflexive and antisymmetric, and the partially ordered
set 〈X,<〉 to be a complete Boolean lattice, it is both necessary and
sufficient that the relation < satisfies the following condition:

for any S ∈ P(X) there exists exactly one x ∈ X such that
(a) ∀z∈S z < x and
(b) ∀y∈X

(
y < x ∧ ∀z∈S∀u∈X(u < y ∧ u < z ⇒ ∀v∈X u < v)

=⇒ ∀v∈X y < v
)
.

(⋆)

Remark 12.1. Condition (⋆) has a rather complicated form. This is
caused by the fact that it has been formulated just with the relation <
(whose transitivity we established earlier). Were we to put the lattice
〈L,≤, 0〉 with zero in place of the pair 〈X,<〉, then condition (⋆) would
reduce to condition (⋆) from Theorem 11.2.7 To start, observe that, in

7 Theorem 12.1 says indeed that the pair 〈X,<〉, in which the relation < is
transitive and in which condition (⋆) holds, is a bounded lattice.
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the modified version(⋆), point (a) is simply point (a) from (⋆). Observe
next that the subformulae “∀u∈L u ≤ v” and “∀v∈L y ≤ v” are the
only definitions of a zero in the lattice 〈L,≤, 0〉 and so therefore say
respectively no more than the formulae “u = 0” and “y = 0”. Thanks
to this, the subformula “∀u∈L(u ≤ y ∧ u ≤ z ⇒ ∀v∈L u ≤ v)” takes
the form “∀u∈L(u ≤ y ∧ u ≤ z ⇒ u = 0)”. This may be simplified to
“y · z = 0” thanks to condition (6.14) which holds in every lattice with
zero [cf. Tarski, 1956c, p. 324]. Therefore point (b) from (⋆) for lattices
with zero reduces to point (b) from (⋆).

From the above remark and Theorem 12.1 follows Theorem 11.2 in
an obvious way.

13. Atoms and atomic elements in lattices with zero

Let L = 〈L,≤, 0〉 be any lattice with zero. For convenience, if y ≤ x,
then either we say that y is contained in x or we say that x includes y.
If y � x then we say that y is less than x.

All minimal elements of the set L \ {0} we call atoms in B. That is,
x is an atom in L iff x ∈ min≤(L \ {0}) By, (df min≤), for any x ∈ L:

x is an atom in L :⇐⇒ x 6= 0 ∧ ¬∃z∈L\{0} z � x

⇐⇒ x 6= 0 ∧ ∀z∈L\{0}(z ≤ x ⇒ z = x)

⇐⇒ x 6= 0 ∧ ∀z∈L(z � x ⇒ z = 0).

(df At(L))

In other words, x is an atom in L iff x is not the zero and 0 is the only
element in L less than x. Let At(L) be the set of all atoms in L.

Atoms in L have the following properties:

x ∈ At(L) ⇐⇒ x 6= 0 ∧ ∀y∈L(x ≤ y ∨ x · y = 0), (13.1)

x ∈ At(L) =⇒ ∀y,z∈L(x ≤ y + z ⇔ x ≤ y ∨ x ≤ z). (13.2)

For (13.1): By (df At(L)), if x ∈ At(L), then both x 6= 0 and, since
x · y ≤ x, so if x · y 6= 0 then x · y = x. Conversely, let x satisfy the
right-hand side and take an arbitrary z ∈ L such that z � x. Then x � z.
Hence x · z = 0. Therefore, z = x · z = 0. For (13.2): Let x ∈ At(L).
Then x 6= 0. Suppose that x ≤ y+ z. Then 0 6= x = x · (y+ z). Assume
for a contradiction that x � y and x � z. Then x ·y = 0 and x ·z = 0, by
(13.1). Hence 0 = (x · y) + (x · z) = x · (y+ z). Conversely, suppose that
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either x ≤ y or x ≤ z. Then x = x ·y = x ·z. Assume for a contradiction
that x � y+z. Then, by (13.1), 0 = x·(y+z) = (x·y)+(x·z) = x+x = x.

For an arbitrary x ∈ L we put:

Atx(L) := {a ∈ At(L) : a ≤ x}.

Lemma 13.1. For any x ∈ L the following conditions are equivalent:

(a) x sup
≤

Atx(L),
(b) ∀y∈L(Atx(L) ⊆ Aty(L) =⇒ x ≤ y),
(c) ∀y∈L(x ≤ y ⇐⇒ Atx(L) ⊆ Aty(L)).

Proof. ‘(a) ⇒ (b)’ If x = 0, then 0 ≤ y, for any y ∈ L. Thus, suppose
that x 6= 0 and Atx(L) ⊆ Aty(L). Then ∀a∈Atx(L) a ≤ y. Hence x ≤ y,
since x sup

≤
Atx(L).

‘(b) ⇒ (a)’ Clearly, we have ∀a∈Atx(L) a ≤ x. Moreover, assume that
∀a∈Atx(L) a ≤ y. Then Atx(L) ⊆ Aty(L). Hence x ≤ y, by (b). Thus,
x sup

≤
Atx(L).

‘(b) ⇔ (c)’ By (t⊑).

For any L = 〈L,≤, 0〉 we say that a given element x from L is atomic
in L iff each non-zero element contained in x includes some atom, i.e.,

x is atomic in L :⇐⇒ ∀y∈L\{0}(y ≤ x =⇒ ∃a∈At(L) a ≤ y).
(df Atc(L))

Let Atc(L) be the set of all atomic elements in L. All atoms are atomic,
but not vice versa, i.e., formally:

At(L) ( Atc(L).

Firstly, if a ∈ At(L), y 6= 0, and y ≤ a, then y = a, by (df At(L)).
Secondly, 0 ∈ Atc(L) and 0 /∈ At(L).

Atomic elements have the following property:

x ∈ Atc(L) ∧ y ∈ Atc(L) ⇐⇒ x+ y ∈ Atc(L) . (13.3)

Let x, y ∈ Atc(L) and take an arbitrary z 6= 0 such that z ≤ x + y. If
x · z = 0 then z ≤ y, and therefore we make use of our assumption. So,
let x · z 6= 0. Since x · z ≤ x, then there is a ∈ At(L) such that a ≤ x · z.
Hence a ≤ z. The converse implication follows from (t≤) and the fact
that x ≤ x+ y and y ≤ x+ y.

Lemma 13.2. If L is separative, then for any x ∈ L such that x ∈ Atc(L)
we have x sup

≤
Atx(L).
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Proof. Let x ∈ Atc(L). Clearly, we have ∀a∈Atx(L) a ≤ x. Moreover,
assume for a contradiction that ∀a∈Atx(L) a ≤ y and x � y. Then x 6= 0
and Atx(L) 6= ∅, by (df Atc(L)) and (r⊑). Therefore y 6= 0. Moreover,
by (sep), for some u0 ∈ L we have 0 6= u0 ≤ x and u0 · y = 0. Hence, by
(df Atc(L)), for some a0 ∈ At(L) we have a0 ≤ u0; and so a0 · y = 0. We
obtain therefore a contradiction: 0 = a0 · y = y 6= 0.

Finally, we will consider the case where L is a Boolean lattice.

Lemma 13.3. If L = 〈L,≤, 0, 1〉 is a Boolean lattice, then for any x ∈ L
such that x sup

≤
At(L) we have x ∈ Atc(L).

Proof. Suppose that x sup
≤

At(L). If At(L) = ∅ then x = 0, and so
x ∈ Atc(L). Suppose therefore that At(L) 6= ∅. Then x 6= 0. Assume
for a contradiction that x /∈ Atc(L). Then for some y0 ∈ L we have:
(a) 0 6= y0 ≤ x and (b) there is no a ∈ At(L) such that a ≤ y0. From
(a) we have x � −y0. Hence x · −y0 � x. Furthermore, by (a) we have
x = x+ y0 = (x+ y0) · 1 = (x+ y0) · (−y0 + y0) = (x · −y0) + y0. From
this, (b) and (13.2), for any a ∈ At(L): a ≤ x iff a ≤ x · −y0. So x · −y0

is an upper bound of At(L). And this contradicts the claim that x is the
least upper bound of At(L).

14. Atomic and atomistic lattices

Let L = 〈L,≤, 0〉 be any lattice with zero. We call L atomic iff each its
non-zero element includes some atom, i.e.,

L is atomic :⇐⇒ ∀x∈L\{0}∃a∈At(L) a ≤ x .

From (r≤) we have: L is atomic iff each of its elements is atomic, i.e.:

L is atomic ⇐⇒ Atc(L) = L . (14.1)

If L has also the greatest element 1, then by (t≤) we obtain:

L is atomic iff 1 ∈ Atc(L).

From the above, in the light of Lemma 6.1we obtain:

Lemma 14.1. For any x ∈ L: the lattice B ↾ x is atomic iff x ∈ Atc(B).

A lattice L = 〈L,≤, 0〉 with zero is called atomistic iff each of ele-
ments is the least upper bound of a set of atoms, i.e.,

L is atomistic :⇐⇒ ∀x∈L∃A⊆At(L) x sup
≤
A .
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We obtain:

L is atomistic ⇐⇒ ∀x∈L x sup
≤

Atx(L). (14.2)

‘⇒’ Let L be atomistic and x ∈ L. Then for some A0 ⊆ At(L) we have
x sup

≤
A0. Hence (a) A0 ⊆ Atx(L) and (b) for any y ∈ L, if ∀a∈A0

a ≤ y,
then x ≤ y. Clearly ∀a∈Atx(L) a ≤ x. Assume for a contradiction that for
some y0 ∈ L we have (c) ∀a∈Atx(L) a ≤ y and (d) x � y0. From (a)–(c)
we obtain x ≤ y0. But this contradicts (d). ‘⇐’ It is obvious.

Now note that every atomistic lattice is also atomic:

Lemma 14.2. Suppose that L = 〈L,≤, 0〉 is atomistic. Then L is atomic.

Proof. Suppose that L = 〈L,≤, 0〉 is atomistic and x ∈ L \ {0}. Then
for some A0 ⊆ At(L) we have x sup

≤
A0. Hence A0 6= ∅; and so for some

a0 ∈ A0 we have a0 ≤ x.

Finally, by (14.1) and Lemma 13.2 we obtain:

Lemma 14.3. Suppose that L = 〈L,≤, 0〉 is atomic and satisfies (sep).
Then L is also atomistic.

15. Atomic Boolean lattices

Note that Lemma 14.3 we can use for all all Boolean latices, because
they satisfy the condition (sep) (see condition (6.16)). Thus, a given
Boolean lattice is atomic iff it is atomistic (see also Lemma 14.2).

It is known that for any Boolean lattice B [see, e.g., Frankiewicz and
Zbierski, 1992, pp. 26–27 and Traczyk, 1970, pp. 53 and 55]:
• If B is finite then it is atomic.
• If B is atomic and has n ∈ IN atoms, then B has 2n members.
• If B is complete and atomic, then B is isomorphic with 〈P(At(B)),

⊆, ∅,At(B)〉.

Example 15.1. (i) For any set X , the Boolean lattices PX and FCX are
atomic, where all singletons of X are atoms (see Example 9.1).

(ii) The Boolean lattice which we obtain from the field of Borel sub-
sets of the topological space of real numbers is also atomic, where all
singletons of IR are atoms [cf., eg., Traczyk, 1970, p. 55].

Remark 15.1. For some set X and some family F of subsets of X such
that 〈F ,⊆, ∅, X〉 is an atomic complete Boolean lattice, but none of its
atoms is a singleton of X . See, e.g., the first example in Remark 9.2.
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16. Atomless elements. Atomless lattices

Let L = 〈L,≤, 0〉 be any lattice with zero. We say that a given element
of L is atomless in L iff it does not include any atoms, i.e.:

x is atomless in L :⇐⇒ ¬∃a∈At(L) a ≤ x . (df Atl(L))

Let Atl(L) be the set of all atomless elements in L. We have:

Atl(L) ∩ At(L) = ∅ , (16.1)

Atl(L) ∩ Atc(L) = {0}.

For (16.1): We use (r≤). For the second one: First, 0 ∈ Atc(L) ∩ Atl(L).
Second, assume for a contradiction that x ∈ Atc(L) ∩ Atl(L) and x 6= 0.
Since x ≤ x, we therefore have: ∃a∈At(L) a ≤ x and ¬∃a∈At(L) a ≤ x.

Analogously to (13.3), for arbitrary x, y ∈ L we obtain:

x ∈ Atl(L) ∧ y ∈ Atl(L) ⇐⇒ x+ y ∈ Atl(L) . (16.2)

Using the definition of being atomless and (13.2) we have: x+y /∈ Atl(L)
iff for some a ∈ At(L) we have a ≤ x + y iff for some a ∈ At(L) either
a ≤ x or a ≤ y iff either for some a ∈ At(L) we have a ≤ x or for some
a ∈ At(L) we have a ≤ y iff x /∈ Atl(L) or y /∈ Atl(L).

We call L atomless iff each element of L is atomless, i.e.:

L is atomless :⇐⇒ Atl(L) = L .

If L also has the greatest element 1, then by (t≤) we obtain:

L is atomless iff 1 ∈ Atl(L).

From the above, in the light of Lemma 6.1we obtain:

Lemma 16.1. For any x ∈ L: the lattice L ↾ x is atomless iff x ∈ Atl(L).

Moreover, from definitions and (16.1) we have: L is atomless iff it
has no atoms; formally:

L is atomless ⇐⇒ At(L) = ∅ .

Lemma 16.2. L is atomic and atomless iff L is trivial (i.e., L = {0}).

Proof. Assume that L s non-trivial and atomic. Then 1 6= 0 and there
is a ∈ At(L) such that a ≤ 1. Therefore, L is not atomless. The converse
implication is obvious.
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Since every finite Boolean lattice is atomic, every non-trivial atomless
Boolean lattice has infinitely many elements.

Example 16.1. The complete Boolean lattice RO(IR) := 〈rOIR,⊆, ∅, IR〉
is atomless (see examples see examples 9.2 and 11.2) [cf. Frankiewicz and
Zbierski, 1992, p. 26].

17. Ideals in Boolean lattices

Let B = 〈B,≤, 0, 1〉 be any Boolean lattice. We say that a subset I of B
is an ideal of B iff I satisfies the following condition:

1. 0 ∈ I,
2. for any x, y ∈ B: if x, y ∈ I then x+ y ∈ I,
3. for any x, y ∈ B: if x ∈ I and y ≤ x, then y ∈ I.

Obviously, both the singleton {0} and the universe B are ideals of B.
If B1 = 〈B1,≤1, 01, 11〉 and B2 = 〈B2,≤2, 02, 12〉 are Boolean lat-

tices, h : B1 → B2 is a homomorphism, and I is an ideal of B2, then the
set h−1[I] := {x ∈ B1 : h(x) ∈ I} is an ideal of B1 (cf. p. 267).

Let E(B) be the set of these and only those elements that are sums
of atomic elements and atomless elements, i.e., we put:

E(B) := {x ∈ B : ∃y∈Atc(B)∃z∈Atl(L) x = y + z}.

Lemma 17.1 (Koppelberg, 1998b, p. 288).

(i) The set E(B) is an ideal of B.
(ii) 1 ∈ E(B) iff E(B) = B.

Proof. Ad (i): First, 0 = 0+ 0 and 0 ∈ Atc(B) ∩ Atl(B).
Second, let x1, x2 ∈ E(B), i.e., x1 = y1+z1 and x2 = y2+z2, for some

y1, y2 ∈ Atc(B) and z1, z2 ∈ Atl(B). Then x1 +x2 = (y1+y2)+(z1 +z2).
By (13.3), y1 + y2 ∈ Atc(B) and, by (16.2), z1 + z2 ∈ Atl(B).

Let x1 ≤ x2 and x2 ∈ E(B), i.e., x1 = x1 · x2 and x2 = y2 + z2,
for some y2 ∈ Atc(B) and z2 ∈ Atl(B). Then x1 = x1 · (y2 + z2) =
(x1 · y2) + (x1 · z2), x1 · y2 ∈ Atc(B), and x1 · z2 ∈ Atl(B).

Ad (ii): If 1 ∈ E(B) then E(B) = B, since E(B) is an ideal and
y ≤ 1, for any y ∈ B.

Lemma 17.2. 1 ∈ E(B) iff there is x ∈ Atc(B) such that −x ∈ Atl(B).
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Proof. ‘⇒’ Let 1 ∈ E(B), i.e., 1 = x + y, for some x ∈ Atc(B) and
y ∈ Atl(B). Assume for a contradiction that x · y 6= 0. Then there is
a ∈ At(B) such that a ≤ x · y ≤ x. Hence also a ≤ y. A contradiction.
So y = −x. ‘⇐’ Suppose that x ∈ Atc(B) and −x ∈ Atl(B). Since
1 = x+ −x, so 1 ∈ E(B).

Lemma 17.3. (i) Atc(B) ∪ Atl(B) ⊆ E(B).
(ii) If B is atomic or atomless, then E(B) = B.

Proof. Ad (i): Since 0 ∈ Atc(B) ∩ Atl(B) and for any x ∈ B we
x+ 0 = x = 0+ x, so have Atc(B) ∪ Atl(B) ⊆ E(B).

Ad (ii): If B is atomic or atomless, then either B = Atc(B) ⊆
E(B) ⊆ B or B = Atl(B) ⊆ E(B) ⊆ B.

Lemma 17.4. (i) If At(B) has a supremum, then E(B) = B.
(ii) If B is complete then E(B) = B.

Proof. Ad (i): Suppose that x sup
≤

At(B). Then −x ∈ Atl(B). If
At(B) = ∅, then B is atomless and so E(B) = B, by Lemma 17.3(ii).
Assume therefore that At(B) 6= ∅. Then x 6= 0, x ∈ Atc(B), and
1 ∈ E(B), by lemmas 13.3 and 17.2, respectively. Hence E(B) = B, by
Lemma 17.1(ii).

Ad (ii): By (i), since if B ∈ CBL then At(B) has a supremum.

18. Quotient Boolean lattices

Let B = 〈B,≤, 0, 1〉 be a Boolean lattice and I be an ideal of B. Then
the following binary relation in B

x ∼=I y :⇐⇒ x△ y ∈ I

is congruence relation on B, i.e., it is an equivalence relation on B such
that, for all x1, x2, y1, y2 in B, x1

∼=I x2, y1
∼=I y2, and x1 ≤ y1 imply

x2 ≤ y2. Hence we obtain: x1
∼=I x2, y1

∼=I y2 imply −x1
∼=I −x2,

x1 + y1
∼=I x2 + y2, and x1 · y1

∼=I x2 · y2.
For any x ∈ B let [x]I be the equivalence class of x with respect to

∼=I , i.e., [x]I := {y ∈ B : x ∼=I y}, and let B/I be the set of equivalence
classes of ∼=I , i.e.,

B/I := {[x]I : x ∈ B}.

Note that
∼={0} = idB and ∼=B = B ×B .
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Hence for any x ∈ B we have:

[x]{0} = {x} and [x]B = B .

Therefore,

B/{0} = {{x} : x ∈ B}, (18.1)

B/B = {B}. (18.2)

Moreover, in the set B/I we can define the following partial order:

[x]I ≤I [y]I :⇐⇒ x ≤ y .

Then we obtain the quotient Boolean lattice B/I := 〈B/I,≤I , 0I , 1I〉
with respect to ∼=I , in which 0I = [0]I and 1I = [1]I . In this lattice for
any x, y ∈ B we have: [x]I +I [y]I = [x + y]I , [x]I ·I [y]I = [x · y]I , and
−I [x]I = [−x]I .

By definition, the mapping pI : x 7→ [x]I is a homomorphism from B
onto B/I. The homomorphism pI is called a canonical map.

Lemma 18.1. (i) If B/I is trivial, then I = B and B/I = {B}.
(ii) If I = B then B/I is trivial.

Proof. Ad (i): Assume that B/I is trivial. Then B/I = {0I} = {[0]I}.
So for any x ∈ B we have x ∈ I, since x△ 0 ∈ I and x = x△ 0. Hence
I = B and B/I = {B}, by (18.2).

Ad (ii): Suppose that I = B. Then B/B = {B} = {[0]B}, by (18.2).
Thus, B/Ei

is trivial.

As in [Koppelberg, 1998b, pp. 288–289], by induction, we define for
any n ∈ IN an ideal En of B and then let

B(n) := B/En,

E0 := {0}, En+1 := p−1
En

[E(B/En)].

Thus, E0 is an ideal of B and therefore: B/E0 is a Boolean lattice;
E(B/E0) is an ideal of B/E0; E1 is an ideal of B; B/E1 is a Boolean
lattice; E(B/E1) is an ideal of B/E1; E2 is an ideal of B; B/E2 is a
Boolean lattice; and so on for any n ∈ IN.

In the light of (18.1) we have:

Lemma 18.2. The canonical map p{0} is an isomorphism from B onto
the lattice B/{0}.
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Thus, by the above lemma,

E(B/{0}) = { {x} : x ∈ E(B) },

E1 = E(B). (18.3)

Moreover, we obtain:

Lemma 18.3. For any n ∈ IN:

(i) If En = B then for any m > n also Em = B.
(ii) If B/En is trivial then for any m > n also B/Em

is trivial.

Proof. Ad (i): By Lemma 18.1, if En = B, then B/En is trivial and
B/En = {B}. Hence En+1 := p−1

En
[B/En] = B. So also Em = B, for

any m > n.
Ad (ii): Directly from (i) and Lemma 18.1.



Appendix II

Elementarily complete Boolean lattices

1. Basic concepts of elementary theories and their models

Throughout the book we have been using first-order (elementary) lan-
guages with the identity predicate “=” that are built from the following
symbols:1

• a countable number of variables “x1”, “x2”, “x3”, . . . ; the set of
variables we denote by “Var”; the first six initial variables will be
replaced below by the six following letters: “x”, “y”, “z”, “u”, “v”,
and “w”;

• logical constants, these being the truth-connectives “¬”, “∨”, “∧”,
“→”, and “≡”; the quantifiers “∀” and “∃”; and the identity predicate
“=”;

• left and right brackets: “(” and “)”.
A given first-order language with the identity predicate “=” will

have a (finite and non-empty) set of specific (non-logical) constants,
which may be predicate constants, function constants, and individual
constants. With the help of the function and individual constants we
construct in a standard way the set of terms of a given language (if we
only have predicates then the set of terms is equal to Var). From these
terms, the identity predicate, and specific predicates (if there are any),
we build in a standard way the atomic formulae of the language.

For a given first-order language L with the identity predicate “=”, the
set of L-formulae is the smallest set including the set of atomic formulae
of L and to which belong the formulae p¬ϕq, p(ϕ § ψ)q and pQxiϕq,
where ϕ and ψ are L-formulae, § ∈ {∨, ∧, →, ≡}, Q ∈ {∀, ∃}, and xi ∈ Var;

1 The introduction of elementary languages and, later, elementarily definable sets
and relations with or without parameters in relational structures, reveals that various
results we have discovered within the framework of set theory could also have been
made within the structure of various first-order theories, and so without the need to
use the concepts of being a set and of being a relation from set theory.
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we will use pxi ≠ xjq as an abbreviation for p¬ xi = xjq. (We will omit
brackets where there is no risk of ambiguity in the usual way.) Let v(ϕ)
and vf(ϕ) be respectively the set of all variables and the set of all free
variables of an L-formula ϕ. The sentences of L are the L-formulae
without any free variables.

Let L be an arbitrary first-order language with the identity predi-
cate “=”. An L-structure is an ordered pair A = 〈A,ℑ〉, where A is a
non-empty set (the universe of A) and ℑ is a set-theoretic interpretation
of non-logical constants of L. Interpretations of the predicates, function
and individual constants of the language L (where only some of these
may occur in L) are certain subsets of A, relations in A, operators in A,
and distinguished elements in A, respectively. If L has a finite sequence
s1, . . . , sk (k > 0) of non-logical constants, then for L-structures we
will write this in the form 〈A,ℑ(s1), . . . ,ℑ(sk)〉. We take the identity
relation idA to be the interpretation of the identity predicate “=”.

For any L-structure A = 〈A,ℑ〉, an arbitrary function V : Var → A is
a valuation of the variables. By induction we extend V to the set of terms
of the language L and similarly define the satisfaction of L-formulae in
the structure A by the valuation V . Then we write: A � ϕ[V ]. For
atomic L-formulae with an n-place predicate π and terms τ1, . . . , τn

we have: A � π(τ1, ..., τn) [V ] iff 〈V (τ1), ..., V (τn)〉 ∈ ℑ(π), where the
relation ℑ(π) interprets the predicate π and V (τ1), . . . , V (τn) are values
of terms τ1, . . . , τn in A. Moreover, we have always: A � pτ1 = τ2q [V ] iff
V (τ1) = V (τ2). We interpret the connectives and quantifiers classically.

A given L-formula is true in an L-structure A iff it is satisfied in A

by all valuations. Notice that for the L-sentences to be true  taking
into account the interpretation of the quantifiers  it suffices that they
satisfy at least one valuation (which is in any case not essential, because
the sentences have no free variables).

We say that an L-structure A is a model of a set of L-formulae Φ iff in
A all formulae in Φ are true. Let Mod(Φ) be the class of all L-structures
which are models of Φ. If Φ ⊆ Ψ then Mod(Ψ) ⊆ Mod(Φ).

The set of all true L-sentences in an L-structure A is signified by
Th(A). We say that L-structures A and B are elementarily equivalent
iff Th(A) = Th(B).

For any class composed exclusively of L-structures K , let Th(K) be
the set of all L-sentences which are true in all structures of K . Formally,
Th(K) :=

⋂
{ Th(A) : A ∈ K }. Note that, if K ⊆ K

′ then Th(K ′) ⊆
Th(K).
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A class K composed of L-structures is elementarily axiomatisable (or
elementary in the wider sense) iff there exists a set Σ of L-sentences
such that K = Mod(Σ). If additionally the set Σ is finite, then we
say that K is finitely elementarily axiomatisable (or elementary in the
narrow sense).

Directly from our definitions we obtain:

Proposition 1.1. Every elementarily (resp. finite elementary) axioma-
tisable class of L-structures is closed under elementary equivalence. In
other words, for any elementarily (resp. finite elementary) axiomatizable
class K of L-structures and arbitrary L-structures A and B: if A ∈ K

and Th(A) = Th(B), then B ∈ K .

Moreover, we prove:

Proposition 1.2. Let K be a class of L-structures and let Σ be a set
of L-sentences:

(i) K ⊆ Mod(Σ) iff Σ ⊆ Th(K).
(ii) K ⊆ Mod(Th(K)).

(iii) The class K is elementarily axiomatisable iff K = Mod(Th(K)).

Proof. Ad (i): Directly from definitions we obtain: K ⊆ Mod(Σ) iff
∀A∈K A ∈ Mod(Σ) iff ∀A∈K Σ ⊆ Th(A) iff Σ ⊆

⋂
{Th(A) : A ∈ K}.

Ad (ii): Directly from (i) for Σ := Th(K).
Ad (iii): Assume that K is elementarily axiomatisable, i.e., for some

set Σ0 of L-sentences we have K = Mod(Σ0). Then Σ0 ⊆ Th(K),
by (i). Hence Mod(Th(K)) ⊆ Mod(Σ0) = K . Furthermore, we use (ii).
Conversely, If K = Mod(Th(K)) then K is elementarily axiomatisable
(by the set Th(K) of L-sentences).

Let L be a first-order language with the identity predicate “=” and
CnL be the standard operation of consequence of first-order logic with
identity for L. An arbitrary set T of L-formulae such that T = CnL(T )
we call a first-order (or elementary) theory with identity built in a lan-
guage L. Let T be the set of L-sentences in T . If for an arbitrary
L-formula ϕ we take it that ϕ is an L-sentence which is the closure of the
formula ϕ,2 then: ϕ ∈ T iff ϕ ∈ T . For an arbitrary set Φ of L-formulae
then set CnL(Φ) is a theory, because CnL(Φ) = CnL(CnL(Φ)). An arbi-

2 If the formula ϕ is a sentence, then ϕ = ϕ. Otherwise, ϕ arises by placing in
front of the formula ϕ universal quantifiers binding all free variables in ϕ in numerical
order.
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trary set Φ of L-formulae such that T = CnL(Φ) we call an axiomsatisa-
tion of theory T . Note that, if Φ is an axiomsatisation of theory T then
Mod(T ) = Mod(Φ), because Φ ⊆ T and, moreover, every formula from
T is true in all models of Φ.

Gödel’s Completeness Theorem states that the last statement can be
reversed, i.e., also every formula that is true in all models of Φ belongs
to CnL(Φ).

Gödel’s Completeness Theorem. For any set Φ of L-formulae and
any L-formula ϕ: ϕ ∈ CnL(Φ) iff ϕ is true in all models of Φ. Formally,

ϕ ∈ CnL(Φ) ⇐⇒ ϕ ∈ Th(Mod(Φ)).

Let T be an elementary theory in a language L. We say T is complete
iff for any L-sentence σ either σ ∈ T or p¬σq ∈ T .

Proposition 1.3. For any complete elementary theory T in L:

(i) If A is a model of T then T = Th(A).
(ii) All models of T are elementarily equivalent.

Proof. Ad (i): First, by definitions, T ⊆ Th(A). Second, for any
L-sentence: if σ /∈ T then p¬σq ∈ T . Hence p¬σq ∈ Th(A); and so
σ /∈ Th(A). Thus, also Th(A) ⊆ T .

Ad (ii): By (i), if A and B are models of T then Th(A) = T =
Th(B).

2. Elementary definability with or without parameters

Let L be any first-order language with identity predicate “=” and A =
〈A,ℑ〉 be any L-structure. We say that a subset S ofA is elementarily de-
finable (or shortly: e-definable) in A iff there is an L-formula ϕ such that
vf(ϕ) = {x1} and for any x ∈ A: x ∈ S iff A � ϕ [x/x1]. Then we also
say that S is e-definable in A with the help of ϕ(x1). Let eP(A) be the
family of sets which are e-definable in A and let eP+(A) := eP(A) \ {∅}.

Obviously, all sets occurring as components of A are elementarily
definable with the help of appropriate atomic L-formulae. Furthermore,
the sets ∅ and A are elementarily definable in A with the help of the
L-formulae “x1 ≠ x1” and “x1 = x1”, respectively.

Let k > 0 and y1, . . . , yk ∈ A. We say that a subset S of A is
elementarily definable in A with parameters y1, . . . , yk iff there is an
L-formula ϕ such that vf(ϕ) = {x1, . . . , xk+1} and for any x ∈ A: x ∈ S
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iff A � ϕ [x/x1, y1/x2, ..., yk/xk+1]. Moreover, we say that a subset of
A is elementarily definable in A with parameters iff it is elementarily
definable in A with the help of some non-empty finite set of parameters
from A.

All non-empty finite subsets of A are elementarily definable with
parameters. In fact, for any k > 0 and y1, . . . , yk ∈ A, the set {y1, . . . yk}
is elementarily definable with parameters y1, . . . , yk. We use the formula
“x1 = x2 ∨ · · · ∨ x1 = xk”, since {y1, . . . , yk} = {x ∈ A : x = y1 ∨ · · · ∨
x = yk}.

Notice that all e-definable in A sets are also elementary definable
with parameters. In fact, if a set is e-definable by a formula ϕ(x), then
it is elementarily definable with parameters by the formula pϕ(x) ∧ (x =

y ∨ ¬ x = y)q. Thus, all sets which are elementarily definable in A

with or without parameters will be called parametrically elementarily
definable (or shortly: pe-definable). Let peP(A) be the family of sets
which are parametrically elementarily definable (pe-definable) in A and
let peP+(A) := peP(A) \ {∅}. We have eP(A) ⊆ peP(A) and eP+(A) ⊆
peP+(A).

For any a ∈ A we say that a is e-definable in A (without parameters)
iff the singleton {a} is e-definable in A, i.e., there is an L-formula ϕ such
that vf(ϕ) = {x1} and for any x ∈ A: x = a iff A � ϕ [x/x1].

Now let R be any relation on A, i.e., R ⊆ An, for some n > 1. Then
we say that R is e-definable in A (without parameters) iff there is an
L-formula ϕ such that vf(ϕ) = {x1, . . . , xn} and for all x1, . . . , xn ∈ A:
〈x1, . . . , xn〉 ∈ R iff A � ϕ [x1/x1, . . . , xn/xn]. Note that the relation idA

is e-definable in A with the help of the L-formula “x1 = x2”.
We say that f : An → A (n > 0) is e-definable in A iff for some L-

formula ϕ we have vf(ϕ) = {x1, . . . , xn+1} and for all x1, . . . , xn, y ∈ A:
y = f(x1, ..., xn) iff A � ϕ [x1/x1, ..., xn/xn, y/xn+1].

Clearly, for all specific constants of L their interpretations in any
L-structure A are e-definable with the help of appropriate atomic L-
formulae. For any individual constant ν, the element ℑ(ν) is e-definable
in A with the help of the L-formula px1 = νq. For any n-ary predicate
constant π (n > 0), the relation ℑ(π) ⊆ An is e-definable in A with the
help of the L-formula pπ(x1, ..., xn)q. For any n-ary function constant
θ, the function ℑ(θ) : An → A is e-definable in A with the help of the
L-formula pxn+1 = θ(x1, ..., xn)q.

Finally, a relation R ⊆ An is elementarily definable in A with param-
eters y1, . . . , yk from A (k > 0) iff there is an L-formula ϕ such that
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vf(ϕ) = {x1, . . . , xn+k} and for any x1, . . . , xn ∈ A: 〈x1, . . . , xn〉 ∈ R
iff A � ϕ [x1/x1, ..., xn/xn, y1/xn+1, ..., yk/xn+k]. Moreover, we say that
a relation in A is elementarily definable in A with parameters iff it is
elementarily definable in A with the help of some non-empty finite set
of parameters from A.

Notice that all e-definable in A relations are also elementarily defin-
able with parameters. In fact, if a relation is e-definable by a formula
ϕ(x1, ..., xn), then it is elementarily definable with parameters by the for-
mula by pϕ(x1, ..., xn) ∧ (x1 = xn+1 ∨ ¬ x1 = xn+1)q. Thus, all relations
which are elementarily definable in A with or without parameters will be
called parametrically elementarily definable (or shortly: pe-definable).

3. Elementary theory of Boolean lattices

To the class POS of partially ordered sets of the form 〈X,≤〉 we may join
the first-order language L≤ with the identity predicate “=” and a single
specific constant, the two-place predicate “≤”. Thus, the class POS is
included in the class of all L≤-structures.

We may also join the language L≤ with the class BL of all Boolean
lattices. In this language we can formulate the elementary theory B of
Boolean lattices by adopting, inter alia, the following specific axioms:

∀x x ≤ x (b1)

∀x∀y∀z(x ≤ y ∧ y ≤ x → x = y) (b2)

∀x∀y∀z(x ≤ y ∧ x ≤ z → x ≤ z) (b3)

∀x∀y∃z∀u(z ≤ u ≡ x ≤ u ∧ y ≤ u) (b4)

∀x∀y∃z∀u(u ≤ z ≡ u ≤ x ∧ u ≤ y) (b5)

∃z∀u u ≤ z (b6)

∃z∀u z ≤ u (b7)

If the axioms above are true in a L≤-structure X = 〈X,≤〉, then the first
three say that X is a partially ordered set.3 The following two axioms
say that an arbitrarily chosen pair of elements from X have a supremum
and a infimum with respect to the relation ≤.4 The final two axioms say

3 Cf. conditions (r≤), (antis≤), and (t≤).
4 Cf. conditions (df sup

≤
), (4.5) and (L) from Appendix I.
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that X is bounded, i.e., that it has a unity and a zero. Therefore, the
structure X is a bounded lattice.

Conversely, if 〈X,≤, 0, 1〉 is a bounded lattice and we interpret the
predicate “≤” as the relation ≤ then this lattice is an L≤-structure which
is a model of the first seven axioms of theory B.

Applying axioms (b1)–(b3), conditions (Usup) and (Uinf), and Gödel’s
Completeness Theorem, it is easy to see that in axioms (b4)–(b7) we
may replace the existential quantifier “∃” with the uniqueness existential
quantifier “∃!”. Therefore, we may extend the language L≤ by adding two
binary function constants “+” and “⋅”, and two individual constants “0”
and “1”. In this extended language we definitionally extend the theory
B by adding the following definitions (axioms):

∀x∀y∀u(x + y ≤ u ≡ x ≤ u ∧ y ≤ u) (d+)
∀x∀y∀u(u ≤ x ⋅ y ≡ u ≤ x ∧ u ≤ y) (d⋅)

∀u u ≤ 1 (d1)
∀u 0 ≤ u (d0)

Since the presence of function constants and individual constants con-
siderably streamlines the presentation of certain results, we will freely
make use of the above definitional extension of the theory B, which we
will also call B in a harmless violation of terminological convention.

With the above definitions in hand, it is now easier for us to formulate
the last two axioms of theory B:

∀x∀y∀z(x + (y ⋅ z) = (x + y) ⋅ (x + z)) (b8)

∀x∃y(x + y = 1 ∧ x ⋅ y = 0) (b9)

We stated above that if the axioms of theory B are true in the
L≤-structure X = 〈X,≤〉 then X is a bounded lattice. If the function
constants “+” and “⋅”, and the individual constants “0” and “1” are
interpreted by the functions +, · : X × X → X and by the elements 0
and 1 of X , respectively, and the last two axioms of theory B are true in
X, then axiom (b8) says that X is a distributive lattice and axiom (b9)
says that X is a complemented lattice (so also a uniquely complemented
lattices). Therefore, X is a Boolean lattice.

Conversely, if B = 〈B,≤, 0, 1〉 is a Boolean lattice, then  as we saw
above  it is a model of axioms (b1)–(b7) of theory B. If the function
constants “+” and “⋅”, and the individual constants “0” and “1” are
interpreted as the functions + and ·, and the elements 0 and 1 of B,
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respectively, then the definitions of theory B are true in B. Therefore,
axioms (b8) and (b9) of the theory B are also true in B, i.e., B is a
model of theory B.

By making use of Lemma 8.1 from Appendix I and Gödel’s Com-
pleteness Theorem, we may replace the existential quantifier “∃y” in the
last axiom with the uniqueness existential quantifier “∃!y”. Therefore, we
may definitionally expand theory B by adding to it a one-place function
constant “−” defined thus:

∀x(x + − x = 1 ∧ x ⋅ − x = 0) (d−)
Let Ld

≤
be the extension of language L≤ by defined constants: “0”,

“1”, “+”, ⋅”, and “−”. Henceforth in this appendix all Boolean lattices
will be treated as Ld

≤
-structures.

Now let AxB be the set of specific axioms (including definitions) of
the theory B, i.e., B := CnLd

≤

(AxB). To recapitulate, a given Ld
≤
-structure

is a model of the set AxB (of the theory B) iff it is a Boolean lattice
(with respect to which the defined constants “+”, “⋅”, “−”, “0” and “1”
are interpreted in the lattice by the operations +, ·, −, and elements 0
and 1, respectively). We therefore have:

BL = Mod(AxB) , (3.1)

and from Gödel’s Completeness Theorem we get:

Th(BL) = B .

Thus, we see that the class BL of all Boolean lattices is finitely el-
ementarily axiomatisable (which is no surprise at all). Below we prove
that the class CBL of all complete Boolean lattices is not elementarily
axiomatisable (see Theorem 5.2). For this purpose we use the elementary
invariants (see the next section).

At the end of this section we prove two lemmas.

Lemma 3.1. For any Boolean lattice B = 〈B,≤, 0, 1〉 the sets ∅, B,
At(B), Atc(B), and Atl(B) belong to eP(B).

Proof. Ad (3.1): For the sets ∅ and B we use the Ld
≤
-formulae “¬ x = x”

and “x = x”, respectively. Moreover, for At(B), Atc(B), and Atl(B)
we write the definitions (df At(L)), (df Atc(L)), and (df Atl(L)) in the
language Ld

≤
. We obtain the following Ld

≤
-formulae, respectively:

at x := ¬ x = 0 ∧ ¬ ∃u(¬ u = 0 ∧ ¬ u = x ∧ u ≤ x)
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atc x := ∀v((¬ v = 0 ∧ v ≤ x) → ∃u(at u ∧ u ≤ v))

atl x := ¬ ∃u(at u ∧ u ≤ x)

Lemma 3.2. (i) If S belongs to peP(X) (resp. eP(X)) for a partially
ordered set X = 〈X,≤〉, then both sets UB(S) and LB(S) belong
to peP(X) (resp. eP(X)).

(ii) If S belongs to peP(L) (resp. eP(L)) for a lattice L, then also both
sets UB(S) and LB(S) belong to peP(L) (resp. eP(L)).

(iii) If S belongs to peP(B) (resp. eP(B)) for a Boolean lattice B, then
also both sets UB(S) and LB(S) belong to peP(B) (resp. eP(B)).

Proof. Ad (i): Suppose that S is elementarily definable in X with
parameters y1, . . . , yk from X , where either k = 0 or k > 0, i.e., there
is formula ϕ of L≤ such that vf(ϕ) = {x1, . . . , xk+1} and for any x ∈ X :
x ∈ S iff B � ϕ [x/x1, y1/x2, ..., yk/xk+1]. Then: y ∈ UB(S) iff ∀x∈X(x ∈
S ⇒ x ≤ y) iff B � ∀x1

(ϕ → x1 ≤ x2) [y1/x2, ..., yk/xk+1, y/xk+2]. So
UB(S) ∈ peP(X). The result for LB(S) is derived in a similar way. The
result for k = 0 we obtain also in a similar way

Ad (ii) and (iii): As for (i), but with using a suitable first-order
language.

4. The elementary invariants

We will present the theory of elementary invariants based on [Ershov,
1980] and [Koppelberg, 1998b, Section 18.1]. For Boolean lattices we de-
fine the set of elementary invariants consisting of certain ordered triples
〈k, l,m〉 such that k,m ∈ IN ∪ {w} and l ∈ {0, 1}, where w is the cardi-
nality of IN.

For any Boolean lattice B = 〈B,≤, 0, 1〉 we define the triple inv(B) =
〈inv1(B), inv2(B), inv3(B)〉 of elementary invariants of B. In Section 18
of Appendix I it was defined as a sequence B(0), B(1), . . . of Boolean
lattices composed of quotient Boolean lattices: B/E0, B/E1, . . . .

If B is trivial then we put inv(B) := 〈0, 0, 0〉. By Lemma 18.3 from
Appendix I, if B is trivial then all lattices in the sequence B(0), B(1),
. . . are trivial, too.

Remark 4.1. Koppelberg [1998b, pp. 289–290] adopted the invariants
〈−1, 0, 0〉 for a trivial lattice B. In [Koppelberg, 1998b], however, no
lattice has the invariants 〈0, 0, 0〉. Therefore, our definition is equivalent
to the one given there.



4. The elementary invariants 297

Now we consider those cases when B is non-trivial. In such cases,
also B(0) is non-trivial, by Lemma 18.2 from Appendix I.

In the first of such cases, when for any n ∈ IN the lattice B(n) is
non-trivial, we put inv(B) := 〈w, 0, 0〉.

In the second of such cases, when for some n ∈ IN \ {0} the lattice
B(n) is trivial, let:

1. inv1(B) := the only number i ∈ IN such that B(0), . . . , B(i) are
not-trivial and for any j > i: B(j) is trivial (cf. Lemma 18.3 from
Appendix I);

2. inv2(B) = 0 if B(inv1(B)) is atomic; and inv2(B) = 1, otherwise;
3. inv3(B) := min(w,Card At(B(inv1(B))).

Note that if inv1(B) = 0 then both inv2(B) and inv3(B) relate to
B, since B and B(0) are isomorphic (cf. Lemma 18.2 from Appendix I).
Moreover, inv3(B) indicates the number of atoms in a quotient lattice
distinguished by inv1(B). If the lattice B has infinitely many atoms,
then we let inv3(B) = w.

All trivial lattices are atomic and atomless. Therefore, the acceptance
for them inv(B) = 〈0, 0, 0〉 is also consistent with the definition of the
invariants inv2(B) and inv3(B).

Proposition 4.1. (i) If B is non-trivial and inv1(B) 6= w, then either
inv2(B) 6= 0 or inv3(B) 6= 0.

(ii) inv(B) = 〈0, 0, 0〉 iff B is trivial.
(iii) If 0 6= inv1(B) 6= w then inv2(B) + inv3(B) > 0.
(iv) If inv2(B) = 0 = inv3(B) then either inv1(B) = w or inv1(B) = 0.
(v) inv(B) = 〈w, 0, 0〉 iff all lattices B, B(0), B(1), . . . are non-trivial.

Proof. Ad (i): Let B be non-trivial and inv1(B) ∈ IN. Then lattices
B, . . . , B(inv1(B)) are non-trivial. So if inv2(B) = 0 and inv3(B) = 0,
then we obtain a contradiction: B(inv1(B)) is non-trivial and atomic, but
it has no atoms.

Ad (ii)–(iv): Directly from (i) and definitions.
Ad (v): By definition. Note that if there is n ∈ IN such that B, B(n)

is trivial trivial, then inv1(B) ∈ IN.

Lemma 4.2. (i) inv1(B) = 0 iff E(B) = B.
(ii) If B is atomic or atomless, then inv1(B) = 0.

(iii) If B is complete them inv1(B) = 0.
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Proof. Ad (i): ‘⇒’ If inv1(B) = 0 then either B is trivial or only two
lattices B and B(0) are not trivial. In both cases B(1) is trivial. Hence
E1 = E(B) = B, by (18.3) and Lemma 18.1 from Appendix I.

‘⇐’ Suppose that E(B) = B. Then E1 = B, by (18.3) from Ap-
pendix I. Hence B(1) is trivial, by Lemma 18.1 from Appendix I. There-
fore either B is trivial or only two lattices B and B(0) are not trivial,
by lemmas 18.2 and 18.3 from Appendix I. Hence inv1(B) = 0.

Ad (ii): In the light of Lemma 17.3(ii) from Appendix I, if B is
atomic or atomless, then E(B) = B. So we use (i).

Ad (iii): By (i) and Lemma 17.4(ii) from Appendix I.

Lemma 4.3. B is atomic iff inv1(B) = 0 = inv2(B).

Proof. ‘⇒’ If B is atomic then inv1(B) = 0, by Lemma 4.2. Moreover,
inv2(B) = 0, since only B and B(0) are non-trivial and B(0) is atomic.

‘⇐’ Let inv1(B) = 0 = inv2(B). Then only B and B(0) are non-
trivial and B(0) is atomic. Hence also B is atomic.

Lemma 4.4. inv(B) = 〈0, 1, 0〉 iff B is non-trivial and atomless.

Proof. ‘⇒’ If inv(B) = 〈0, 1, 0〉, then B is non-trivial and only B

and B(0) are non-trivial. Therefore B(0) and B are not atomic. So
B(0) and B are atomless. ‘⇐’ If B is atomless, then inv1(B) = 0, by
Lemma 4.2(ii). Hence, if B is also non-trivial then only B and B(0) are
non-trivial and B(0) is atomless. Hence inv(B) = 〈0, 1, 0〉.

Proposition 4.5. If B is atomic with infinitely many atoms then
inv(B) = 〈0, 0,w〉.

Proof. If B is atomic then inv1(B) = 0 = inv2(B), by Lemma 4.3.
Hence only B and B(0) are non-trivial and also B(0) has infinitely many
atoms. So inv3(B) = w.

In [Koppelberg, 1998b, sections 18.1 and 18.2] the following is proven:

Theorem 4.6. For all A,B ∈ BL: inv(A) = inv(B) iff Th(A) = Th(B).
That is, any two Boolean lattices are elementarily equivalent iff they have
the same elementary invariants.

5. The class CBL is not elementarily axiomatisable

For all Boolean lattices we will use the first-order language Ld
≤

with the
identity predicate “=”. Let us begin with the following lemma:
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Lemma 5.1. Boolean lattices PIN and FCIN have the same elementary
invariants 〈0, 0,w〉. So they are elementarily equivalent.

Proof. The lattices PIN and FCIN are non-trivial and atomic. So,
by Lemma 4.2(ii) and the definition of inv2(·), we have inv1(PIN) =
inv1(FCIN) = inv2(PIN) = inv2(FCIN) = 0. Moreover, inv3(PIN) = w =
inv3(FCIN), since both lattices have infinitely many atoms. So, by The-
orem 4.6, they are elementarily equivalent.

By Proposition 1.1 and the above lemma we obtain:

Theorem 5.2. The class CBL is not elementarily axiomatisable.

Proof. The Boolean lattices PIN and FCIN are elementarily equivalent,
but the first one is complete and the second is not complete (see examples
11.1 and 11.4 from Appendix I). Thus, by Proposition 1.1, the class of
all complete Boolean lattices is not elementarily axiomatisable, since it
is not closed under elementary equivalence.

6. ‘Elementary completeness’ in the class of Boolean lattices

It is known that not all Boolean lattices are complete, i.e., we have
CBL ( BL (see Example 11.4 in Appendix I). Now we want to examine
the class of such Boolean lattices that are not complete, but satisfy
condition (cL) of completeness, if we limit it to e-definable sets in a given
Boolean lattice. Below we will prove that this limit can be increased to
all pe-definable sets (see Theorem 6.6). In the next section we prove
that this class is finitely elementarily axiomatisable (see Theorem 7.1).

To start, we will prove two lemmas.

Lemma 6.1. Let X = 〈X,≤〉 be a partially ordered set.
(i) X satisfies

∀S∈peP(X)∃x∈X x sup
≤
S . (pecX)

iff X satisfies
∀S∈peP(X)∃x∈X x inf≤ S . (epcX′)

If X satisfies the above conditions then it is a bounded lattice.
(ii) X satisfies

∀S∈eP(X)∃x∈X x sup
≤
S . (ecX)

iff X satisfies
∀S∈eP(X)∃x∈X x inf≤ S . (ecX′)

If X satisfies the above conditions then it bounded.
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Proof. Ad (i): Firstly, we use Lemma 3.2(i) and conditions (4.10) and
(4.11) from Appendix I. Secondly, the given conditions imply that each
finite subset of X has a supremum and a infimum, since such sets belong
to peP(X). So if X satisfies the above conditions then it is a lattice. It
is bounded. We have 0 sup

≤
∅ and 1 sup

≤
X , since ∅, X ∈ eP(X).

Ad (ii): As for (i).

Lemma 6.2. A partially ordered set X = 〈X,≤〉 satisfies (pecX) iff for
any L≤-formula ϕ such that for some k ­ 0 we have vf(ϕ) = {x1, . . . ,
xk+1}, the closure of the following formula5 is true in X:

∃xk+2
∀xk+3

(xk+2 ≤ xk+3 ≡ ∀x1
(ϕ → x1 ≤ xk+3)) (supk

ϕ)

Proof. ‘⇒’ Let X satisfy (pecX) and ϕ be any L≤-formula such that
vf(ϕ) = {x1, . . . , xk+1}, for some k ­ 0. If k > 0 then vf(supk

ϕ) =
{x2, . . . , xk+1}; otherwise, vf(sup0

ϕ) = ∅. If k > 0 then we take arbitrary
y1, . . . , yk from X ; otherwise, we do not select any object. Notice that
the following set

Sk
ϕ := {z ∈ X : B � ϕ[z/x1, y1/x2, ..., yk/xk+1]}

belongs to peP(X). If k = 0 then the set S0
ϕ := {z ∈ X : B � ϕ[z/x1]}

belongs to eP(X).
By virtue of our assumption, for some x0 ∈ X we have x0 sup

≤
Sk

ϕ.
Hence, by (4.5) from Appendix I, for any u ∈ X we have: x0 ≤ u iff
∀z∈Sϕ

z ≤ u. So the formula “∀xk+3
(xk+2 ≤ xk+3 ≡ ∀x1

(ϕ → x1 ≤ xk+3))”
is satisfied in X by the valuation [y1/x2, ..., yk/xk+1, x0/xk+2]. Hence the
formula “∃xk+2

∀xk+3
(xk+2 ≤ xk+3 ≡ ∀x1

(ϕ → x1 ≤ xk+3))” is satisfied in X

by the valuation [y1/x2, ..., yk/xk+1]. Since y1, . . . , yk+1 were arbitrarily
chosen, then the closure of (supk

ϕ) is true in X.
‘⇐’ Suppose that X fulfills the condition on the right-hand side. We

take an arbitrary S ∈ peP(X), i.e., for some k ­ 0, y1, . . . , yk ∈ X ,
and L≤-formula ϕ0 for which vf(ϕ0) = {x1, . . . , xk+1}, for any x ∈ X
we have: x ∈ S iff B � ϕ0[x/x1, y1/x2, ..., yk/xk+1]. By virtue of our
assumption, the closure of the formula (supk

ϕ0
) is true in X. Hence the

formula “∃xk+2
∀xk+3

(xk+2 ≤ xk+3 ≡ ∀x1
(ϕ0 → x1 ≤ xk+3))” is satisfied in

X by the valuation [y1/x2, ..., yk/xk+1]. Hence, by (4.5) from Appendix I,
there is an x ∈ X such that x sup

≤
S.

5 For k = 0 the following formula is a sentence which is its own closure.
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Of course, the above two lemmas also hold for all lattices, and so
for all Boolean lattices. All you need to do is take a suitable first-order
language. Then we will use Lemma 3.2(ii) or Lemma 3.2(iii) instead of
Lemma 3.2(i).

Let B = 〈B,≤, 0, 1〉 be a Boolean lattice. We call B elementarily
complete (or shortly: e-complete) iff each e-definable set in B has a
supremum, i.e., the following holds:

∀S∈eP(B)∃x∈B x sup
≤
S . (ecB)

Moreover, we call B parametrically elementarily complete (or shortly:
pe-complete) iff each pe-definable set in B has a supremum, i.e., the
following holds:

∀S∈peP(B)∃x∈B x sup
≤
S . (epcB)

Let ecBL (resp. pecBL) be the class of e-complete (resp. pe-complete)
Boolean lattices.. Directly from our definitions we have CBL ⊆ pecBL ⊆
ecBL, but we will prove that CBL ( pecBL = ecBL (see Theorem 6.7).

Directly from Lemma 6.2 we obtain:

Lemma 6.3. (i) A Boolean lattice B is pe-complete iff for any Ld
≤
-

formula ϕ such that for some k ­ 0 we have vf(ϕ) = {x1, . . . , xk+1},
the closure of the formula (supk

ϕ) is true in B.
(ii) A Boolean lattice B is e-complete iff for any Ld

≤
-formula ϕ such

that vf(ϕ) = {x1}, the sentence (sup0
ϕ) is true in B.

Proof. Ad (i): For a given Boolean lattice B as for Lemma 6.2, but
with using the language Ld

≤
.

Ad (ii): From (i) for k = 0.

Directly from the above lemma we obtain:

Proposition 6.4. The classes ecBL and pecBL are closed under ele-
mentary equivalence.

By using the above proposition we obtain:

Proposition 6.5. All atomic Boolean lattices and all atomless Boolean
lattices belong to the class pecBL; so also to ecBL.

Proof. All trivial Boolean lattices belong to CBL. So we suppose that
B is non-trivial Boolean lattice.

By Lemma 4.3, if B is atomic then inv1(B) = 0 = inv2(B). Thus,
we will consider two cases. First, assume that inv3(B) = n, for some
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n > 0. Since inv1(B) = 0, so inv3(B) relates to the same lattice B, i.e.,
it has n atoms. Therefore B is finite, and so it is complete. Hence B ∈
CBL ⊆ pecBL. Second, assume that inv3(B) = w, i.e., B has infinitely
many atoms. By Lemma 5.1 the Boolean lattice PIN has the elementary
invariants 〈0, 0,w〉. By virtue of Theorem 4.6, the lattices B and PIN

are elementarily equivalent. Since PIN ∈ CBL, so also B ∈ pecBL, by
virtue of Proposition 6.4.

In the light of Lemma 4.4, if B is non-trivial and atomless then
inv(B) = 〈0, 1, 0〉. In addition, the atomless complete Boolean lattice
RO(IR), considered in Example 16.1 from Appendix I, also has the ele-
mentary invariants 〈0, 1, 0〉. By virtue of Theorem 4.6, these lattices are
elementarily equivalent. Since RO(IR) ∈ CBL, so also B ∈ pecBL, by
Proposition 6.4.

Theorem 6.6. For any Boolean lattice B:

B ∈ ecBL ⇐⇒ E(B) = B ⇐⇒ B ∈ pecBL .

Thus, ecBL = pecBL.

Proof. ‘B ∈ ecBL ⇒ E(B) = B’ Assume that B ∈ ecBL. Because
At(B) ∈ eP(B), so there is an x ∈ B such that x sup

≤
At(B). Therefore

E(B) = B, by Lemma 17.4(i) from Appendix I.
‘E(B) = B ⇒ B ∈ pecBL’ Let E(B) = B. Then inv1(B) = 0,

by Lemma 4.2(i). Therefore, B has one of the following elementary
invariants:

1. 〈0, 0, n〉, for some n ∈ IN;
2. 〈0, 0,w〉;
3. 〈0, 1, 0〉;
4. 〈0, 1, n〉, for some n ∈ IN \ {0};
5. 〈0, 1,w〉.

In cases 1–3, as in the proof of Proposition 6.5, we can show that
B ∈ pecBL.

In case 4, let B1 be an arbitrary finite Boolean lattice with n atoms
and let B2 := RO(IR) (see Example 16.1 from Appendix I). Since B1 and
B2 are complete then the lattice B1 × B2 is complete, by Lemma 11.1
from Appendix I. Moreover, E(B1 × B2) = IN × IR, by Lemma 17.4(ii)
from Appendix I. Hence inv1(B1 × B2) = 0, by Lemma 4.2(i). Since B2

is atomless, so At(B1×B2) = {〈i, ∅〉 : i ∈ At(B1)} and 〈0, IR〉 belongs to
Atl(B1×B2). Thus, B1×B2 is not atomic and inv(B1 × B2) = 〈0, 1, n〉.



6. ‘Elementary completeness’ in the class of Boolean lattices 303

In case 5, we put B1 := PIN and B2 := RO(IR). The lattice B1 ×B2

is complete, E(B1 × B2) = IN × IR, and inv1(B1 × B2) = 0, as above.
Since At(B1×B2) = {〈i, ∅〉 : i ∈ IN} and 〈0, IR〉 belongs to Atl(B1×B2),
so inv(B1 × B2) = 〈0, 1,w〉.

Thus, also in cases 4 and 5, as in the proof of Proposition 6.5, we can
show that B ∈ pecBL.

‘B ∈ pecBL ⇒ B ∈ ecBL’ By definitions.

From Proposition 6.5 and Theorem 6.6 we obtain:

Theorem 6.7. CBL ( pecBL = ecBL ( BL.

Proof. First, in examples 11.4 and 15.1 from Appendix I show two
atomic Boolean lattice which are not complete. Thus, CBL ( pecBL, by
Proposition 6.5. Second, by Proposition 18.5 from [Koppelberg, 1998b],
there is a Boolean lattice B such that inv1(B) 6= 0. Hence E(B) 6=
B, by Lemma 17.1(ii) from Appendix I. And therefore B /∈ ecBL, by
Theorem 6.6. Thus, ecBL ( BL.

Although CBL 6= ecBL, in these classes the same elementary sen-
tences are true.

Proposition 6.8. Th(CBL) = Th(ecBL) = Th(pecBL).

Proof. Since CBL ⊆ ecBL, then Th(ecBL) ⊆ Th(CBL). To show the
converse, we take arbitrary ϕ ∈ Th(CBL) and B ∈ ecBL. We will show
that ϕ ∈ Th(B) which will prove the the inclusion in question.

Because B ∈ ecBL, then inv1(B) = 0, by Lemma 4.2(i). Therefore,
as in the proof of Theorem 6.6, we consider the following possibilities for
elementary invariants of B:

1. 〈0, 0, n〉, for some n ∈ IN;
2. 〈0, 0,w〉;
3. 〈0, 1, 0〉;
4. 〈0, 1, n〉, for some n ∈ IN \ {0};
5. 〈0, 1,w〉.

In case 1 in the proof of Proposition 6.5 we show that B ∈ CBL.
Thus, ϕ ∈ Th(B).

In cases 2–5 in the proof of Theorem 6.6 we showed that there ex-
ists a lattice B′ from CBL with the same characteristic. Hence, by
Theorem 4.6, we have Th(B) = Th(B′). Therefore, ϕ ∈ Th(B), since
ϕ ∈ Th(CBL) and B′ ∈ CBL.
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Remark 6.1. Consider the following three sentences of the language Ld
≤
:

∃x∃y(atc x ∧ atl y ∧ 1 = x + y) (eb1)

∃x(atc x ∧ atl − x) (eb2)

∀z∃x∃y(atc x ∧ atl y ∧ z = x + y) (eb3)

where the Ld
≤
-formulae “atc x” and “atc y” are given in the proof of

Lemma 3.1. They say: “x is atomic” and “y is atomless”, respectively.
Sentence (eb3) says that the condition “E(B) = B” holds. Sen-

tence (eb1) says that “1 ∈ E(B)” holds. In the light of Lemma 17.1(ii)
from Appendix I, these sentences are equivalent in the elementary the-
ory B of Boolean lattices. Moreover, by virtue of Lemma 17.2 from
Appendix I, sentences (eb1) and (eb2) are equivalent, too. Our analysis
shows that (eb2)–(eb2) belong to Th(ecBL) (= Th(CBL)). But there is
a Boolean lattice B such that E(B) 6= B (it follows, for example, from
Proposition 18.5 in [Koppelberg, 1998b]). Hence none of the sentences
(eb1)–(eb3) belongs to Th(BL). Thus, Th(BL) ( Th(CBL).

At the end of this section we will investigate a counterpart of The-
orem 11.2 from Appendix I in which we swap just the family P(L) for
the family peP(L) in condition (⋆). This new theorem yields a necessary
and sufficient condition for lattices with zero for them to be e-complete
Boolean lattices.

Theorem 6.9. Let L = 〈L,≤, 0〉 be a lattice with zero. Then for L to
be an e-complete Boolean lattice it is both necessary and sufficient that
the relation ≤ satisfies the following condition:

for any S ∈ peP(L) there is exactly one x ∈ L such that
(a) ∀z∈S z ≤ x and
(b) ∀u∈L

(
u ≤ x ∧ ∀z∈S u · z = 0 =⇒ u = 0

)
.

(⋆⋆)

Proof. ‘⇒’ Let L be an e-complete Boolean lattice. Take an arbitrary
S ∈ peP(L). Since L ∈ pecBL, we can put x := supS. From the
definition of supremum and by virtue of (7.5) from Appendix I, x satisfies
conditions (a) and (b) from (⋆⋆) for the set S. In a manner analogous
to that employed in the proof of Theorem 11.2 from Appendix I, we will
show that x is the only element in L satisfying conditions (a) and (b)
from (⋆⋆) for the set S.

‘⇐’ Let L be a lattice with zero in which (⋆⋆) holds. Observe that
by carrying out a proof analogous to the proof of Lemma 6.5 from Ap-
pendix I, it is possible to show that that sentence (sep) (p. 267) is true
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in L. In essence, in the proof of this lemma we made use of condition (⋆)
only for the sets S0, S1 ∈ P(L) which were pe-definable in L. Therefore,
we repeat the proof with the weaker condition (⋆⋆).

We show, analogously to the proof of Theorem 11.2 from Appendix I,
that the lattice L satisfies condition (epcB). Moreover, since L ∈ eP(L),
then the lattice L is also bound: 1 sup

≤
L.

We prove the distributivity of L by repeating the appropriate frag-
ment of the proof of the above-mentioned theorem, taking for arbitrary
u, v ∈ L the set S := {u, v}, which is pe-definable with parameters u
and v. Obviously, xS := sup{x · z : z ∈ S} = (x · u) + (x · v).

Finally, since the lattice L satisfies condition (epcB) and for any
x ∈ L the set {z ∈ L : x · z = 0} is pe-definable with the parameter x,
so this set has a least upper bound, which is  by virtue of Lemma 8.3
from Appendix I  the complement of x.

7. The class ecBL is finitely elementarily axiomatisable

By applying Lemma 6.2, we see that the class of partially ordered sets
satisfying (pecX) is finitely elementarily axiomatisable by the set com-
posed of sentences (b1)–(b3) and an infinite number of L≤-formulae of the
form (supk

ϕ) defined in the lemma. As we showed in Lemma 6.1, each
partially ordered set satisfying (pecX) is a bounded lattice. Therefore,
from Lemma 6.2 and the considerations of Section 3, it follows that
we can derive L≤-sentences (b4)–(b7) from the infinite set of axioms:
(b1)–(b3) and (supk

ϕ) defined in Lemma 6.2.6

As in Section 3, we can extend the language L≤ to the language Ld
≤

and the elementary theory above through definitions (d+), (d⋅), (d1),
and (d0). With them in hand, we can add the two axioms (b8) and
(b9), and definition (d−). Let AxpecB be the infinite set of specific axioms
(including definitions) of the theory discussed here: (b1)–(b3), (b8), (b9),
(d+), (d⋅), (d1), (d0), (d−), and (supk

ϕ), for any k ­ 0 and any formula ϕ
of Ld

≤
with k + 1 free variables.

We may also consider the following infinite set AxecB of specific ax-
ioms (including definitions): (b1)–(b5), (b8), (b9), (d+), (d⋅), (d1), (d0),
(d−), and sup0

ϕ, for any formula ϕ of Ld
≤

with one free variable. As shown

6 This can be easily checked directly by applying axioms (b1)–(b3) and (supk
ϕ)

in turn to the L≤-formulae “u = x ∧ u = y”, “u ≤ x ∧ u ≤ y”, “u = u”, and “¬ u = u”
(with appropriate changes to the variables).
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in Lemma 6.1(ii), we can derive L≤-sentences (b6) and (b7) from our
axioms.

We put pecB := CnLd
≤

(AxpecB) and ecB := CnLd
≤

(AxecB), i.e., pecB
(resp. ecB) is the elementary theory defined by the set of specific axioms
AxpecB (resp. AxpecB). From the facts presented above and in Section 3,
it follows that:

Mod(AxecB) = ecBL = pecBL = Mod(AxpecB) ,

and from Gödel’s theorem, we get

ecB = Th(ecBL) = Th(pecBL) = pecB . (7.1)

We may therefore call the theory pecB (resp. ecB) an elementary theory
of pe-complete (resp. e-complete) Boolean lattices. We have also:

ecB = pecB .

Proposition 6.8 gives: Th(CBL) = Th(ecBL) = Th(pecBL). Therefore
to the theory ecB (= pecB) belong those and only those Ld

≤
-formulae

which are true in all complete Boolean lattices, i.e., Th(CBL) = ecB.
From this perspective, we may simply call the theory ecB an elementary
theory of the class CBL and use “CB” to signify it.7

From Theorem 6.6 it follows that there exists a finite axiomatisation
for the theory CB, because because we have:

Theorem 7.1. The class ecBL is finitely elementarily axiomatisable.

Proof. We will give the finite axiomatisation for the class ecBL in the
extension of the language Ld

≤
. It is composed of the sentences of the set

AxB and and one of the three sentences (eb3)–(eb2).
Let us put AxCB := AxB ∪ {(eb1)}. From (3.1) and Theorem 6.6 it

follows that the given structure is a model of the set AxCB iff it belongs
to ecBL.

Moreover, in Remark 6.1 we show the Ld
≤
-sentence (eb3), (eb1), and

(eb2) are equivalent in the elementary theory B of Boolean lattices.

7 Obviously, CBL ( Mod(CB) = ecBL (cf. Theorem 6.7 and (7.1)).
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