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“Some years ego Leśniewski suggested the problem of
establishing the foundations of the geometry of solids
understanding by this term a system of geometry
destitute of such geometrical figures as points, lines, and
surfaces, and admitting as figures only solids—the
intuitive correlates of open (or closed) regular sets of the
three-dimensional Euclidean geometry. The specific
character of such geometry of solids—in contrast to all
point geometries—is shown in particular in the law
according to which each figure contains another figure as
a proper part.”

A. Tarski Foundations of the geometry of solids



First steps

After Tarski we will analyze structures of the form 〈R,B,v〉 such
that
(P0) (i) 〈R,v〉 is a mereological structure,

(ii) B ⊆ R.

I Elements of R will be called regions.
I Elements of B will be called mereological balls (or simply balls

in case it follows from the context that we refer to elements of
B).

I The notions of region, ball and being an ingrediens are
primitive notions of the analyzed theory.



Super-space and space

From the axiom of mereological sum existence it follows that
I there exists the unity of the structure 〈R,B,v〉, that is a

mereological sum (a supremum) of a set R (symb. ‘1’,
super-space);

I there exists a mereological sum of a set B (the space):

s B (ιx) x Sum B . (df s)

I s v 1.



Solids

Definition
By a solid in a structure 〈R,B,v〉 we will understand the
mereological sum of an arbitrary non-empty subset of a set B:

s ∈ S
df
⇐⇒ ∃Z⊆B(Z , ∅ ∧ s Sum Z). (df S)

Fact
Since s Sum B, then s is «the largest» solid, that is:

∀s∈Ss v s .



External tangency of balls

Definition
A ball a is externally tangent to a ball b iff

(i) a is external to b and

(ii) for any balls x and y such that a is ingrediens of both x and y,
while x and y are external to b, it is the case that x is an
ingrediens of y or y is an ingrediens of x.



External tangency of balls

a ET b
df
⇐⇒a, b ∈ B∧

a P b ∧ ∀x,y∈B(a v x P b ∧ a v y P b =⇒ x v y ∨ y v x).

a by xz



External tangency of balls

a ET b
df
⇐⇒a, b ∈ B∧

a P b ∧ ∀x,y∈B(a v x P b ∧ a v y P b =⇒ x v y ∨ y v x).

a b



External tangency of balls

a ET b
df
⇐⇒a, b ∈ B∧

a P b ∧ ∀x,y∈B(a v x P b ∧ a v y P b =⇒ x v y ∨ y v x).

a b

y

x



External tangency of balls – symmetry

I In case balls are balls of ordinary geometry then the relation
of external tangency is of course symmetrical.

I It is worth noticing that it does not follow from the above
definition and the axioms of mereology that ET has the
property of being symmetrical.



External tangency of balls – symmetry

Consider the mereological structure generated by four pairwise
disjoint non-empty sets A , B, C and D:

R B
{
S ∪ X ∪ Y ∪ Z | S,X ,Y ,Z ∈ {A ,B ,C ,D}

}
and

v B ⊆ and B B {A ,B ,A ∪ C ,A ∪ D}.

I Of course in this structure: X PY iff X ∩ Y = ∅.
I Clearly, B ETA , since B PA and there are no elements of B

different from B and such that B is their subset.
I But it is not the case that A ETB, since A v A ∪ C,

A v A ∪ D, B PA ∪ C, B PA ∪ D, A ∪ C @ A ∪ D and
A ∪ D @ A ∪ C.



Internal tangency of balls

Definition
A ball a is internally tangent to a ball b iff

(i) a is a part of b and

(ii) for any balls x and y, of which a is an ingrediens and which
are ingredienses of b, either x is an ingrediens of y or
conversely.



Internal tangency of balls

a IT b
df
⇐⇒a, b ∈ B∧

a @ b ∧ ∀x,y∈B(a v x v b ∧ a v y v b =⇒ x v y ∨ y v x).

ab y xz



Internal tangency of balls

a IT b
df
⇐⇒a, b ∈ B∧

a @ b ∧ ∀x,y∈B(a v x v b ∧ a v y v b =⇒ x v y ∨ y v x).

ab y x



External diametrical tangency of balls

Definition
Balls a and b are externally diametrically tangent to a ball c iff

(i) both a and b are externally tangent to c and

(ii) for any balls x and y external to c and such that a is an
ingrediens of x and b is an ingrediens of y, x is external to y.



External diametrical tangency of balls

ab ED c
df
⇐⇒ a, b , c ∈ B ∧ a ET c ∧ b ET c∧

∀x,y∈B(a v x P c ∧ b v y P c =⇒ x P y).

!

a b

c

x y



Internal diametrical tangency of balls

Definition
Balls a and b are internally diametrically tangent to a ball c iff

(i) both a and b are internally tangent to c and

(ii) for any balls x and y external to c and such that a is externally
tangent to x and b is externally tangent to y, x is external to y.



Internal diametrical tangency of balls

ab ID c
df
⇐⇒ a, b , c ∈ B ∧ a IT c ∧ b IT c
∧ ∀x,y∈B(x P c ∧ y P c ∧ a ET x ∧ b ET y =⇒ x P y).

c

a b

x y



Concentricity relation

Definition
A ball a is concentric with a ball b iff there holds one of the
following (mutually exclusive) conditions

(i) a is identical with b;

(ii) a is a part of b and for any balls x and y, which are both
externally tangent to a and internally tangent to b, x and y are
internally diametrically tangent to b;

(iii) b is a part of a and for any balls x and y, which are externally
diametrically tangent to b and internally tangent to a, x and y
are internally diametrically tangent to a.



Concentricity relation

a } b
df
⇐⇒ a, b ∈ B ∧

[
a = b

Y
(
a @ b ∧ ∀x,y∈B(xy ED a ∧ x IT b ∧ y IT b =⇒ xy ID b)

)
Y

(
b @ a ∧ ∀x,y∈B(xy ED b ∧ x IT a ∧ y IT a =⇒ xy ID a)

)]
.

a

b

x y

A

a

b

x0 y0

B



Definition of a point
Definition
By a point we mean the set of all those balls that are concentric
with a given ball.

β ∈ Π
df
⇐⇒ ∃b∈B β = {x ∈ B | x } b} . (df Π)

For any ball b, let πb be the point determined by b, i.e.

πb B {x ∈ B | x } b} . (dfπb )

By reflexivity of } we have:

∀b∈B b ∈ πb ∈ Π , (1)

∀β∈Π∃b∈B β = πb , (2)

Π , ∅ ⇐⇒ B , ∅ . (3)



Equidistance relation among points

Definition
Points α and β are equidistant from a point γ iff

(i) α = β = γ or

(ii) there exists a ball in γ such that no ball from α or β either is an
ingrediens of or is exterior to this ball.



Equidistance relation among points

αβ� γ
df
⇐⇒ α = β = γ ∨ ∃c∈γ¬∃a∈α∪β

(
a v c ∨ a P c

)
. (df �)

β

α

γ
c



First axiom

The first one of the specific axioms of the geometry of solids states
that:
I points defined as sets of concentric balls are points of an

ordinary point-based geometry,
I the relation � is an ordinary equidistance relation.

〈Π,�〉 is a Pieri’s structure. (P1)



First axiom – consequences

Lemma
〈Π,�〉 is isomorphic to 〈IR3,�IR3

〉, where for any x̄, ȳ, z̄ ∈ IR3:

x̄ȳ �IR3
z̄

df
⇐⇒ %(x̄, z̄) = %(ȳ, z̄).

By (P1) we have that the set of all mereological points has the
power of continuum, i.e. |Π| = c. Hence, it is the case that

c = |Π| 6 |B| 6 |S| 6 |R| .



Topology in the set of points

I Since, by (P1), 〈Π,�〉 is a Pieri’s structure, we can define the
family of all open balls BOΠ in 〈Π,�〉.

I By means of it we can introduce in Π the family OΠ of open
sets and three standard topological operations IntΠ, ClΠ and
FrΠ : 2Π −→ 2Π, where FrΠ A B ClΠ A \ IntΠ A , for any A ⊆ Π.

I Thus 〈Π,OΠ〉 is a topological space.
I Moreover, it has all topological properties of 3-dimensional

Euclidean space.



Topology in the set of points

I 〈Π,OΠ〉 has all topological properties of three-dimensional
Euclidean space.

I In 〈Π,OΠ〉 we introduce the family ROΠ of all regular open
sets (open domains), i.e. the family of sets that are equal to
the interior of their closure.

I Let RO+
Π
B ROΠ \ {∅}.

Lemma
If 〈R,B,v〉 satisfies (P0) and (P1), then 〈RO+

Π
,BOΠ,⊆〉 is

isomorphic to 〈RO+

IR3 ,BOIR3 ,⊆〉.



Interior points of regions

Definition
A point β is an interior point of a region x iff there exists a ball b ∈ β
such that b v x:

int(x) B {β ∈ Π | ∃b∈β b v x}. (df int)

β x

b



Fringe points of regions

Definition
A point β is a fringe point of a region x from R iff no ball in β is
either ingrediens of or is exterior to x:

fr(x) B { β ∈ Π | ¬∃b∈β(b v x ∨ b P x) }

= { β ∈ Π | ∀b∈β(b @ x ∧ b© x) }.
(df fr)

β

x



Equidistance – an intuitive explanation

αβ� γ ⇐⇒ α = β = γ ∨ ∃c∈γ

(
α ∈ fr(c) ∧ β ∈ fr(c)

)
. (df′ �)

β

α

γ
c



The second axiom

The set of interior points of any solid is a non-empty open domain
in Π:

∀s∈S int(s) ∈ RO+
Π
. (P2)



The third axiom

For any non-empty regular open subset of Π there exists a solid
such that this subset is the set of all interior points of this solid:

∀U∈RO+
Π
∃s∈S int(s) = U . (P3)



The fourth axiom

For any solids s1 and s2, if the set of all interior points of s1 is a
subset of the set of all interior points of s2, then s1 is an ingrediens
of s2, i.e.

∀s1,s2∈S(int(s1) ⊆ int(s2) =⇒ s1 v s2) . (P4)



The fifth (and last) axiom

Every region has a ball:

∀x∈R∃b∈Bb v x . (P5)



Axioms of geometry of solids – summary

I 〈R,v〉 is a mereological structure.
I 〈Π,�〉 is a Pieri’s structure.
I ∀s∈S int(s) ∈ RO+

Π
.

I ∀U∈RO+
Π
∃s∈S int(s) = U.

I ∀s1,s2∈S(int(s1) ⊆ int(s2) =⇒ s1 v s2).
I ∀x∈R∃b∈Bb v x.



Categoricity

Theorem
Any structure 〈R,B,v〉 satisfying axioms (P0)–(P5) is isomorphic
to 〈RO+

IR3 ,BOIR3 ,⊆〉.

Lemma
The mapping int : R −→ RO+

Π
is an isomorphism from 〈R,B,v〉

onto 〈RO+
Π
,BOΠ,⊆〉.

Theorem
For every b ∈ B, int(b) ∈ BOΠ.

Theorem
For every B ∈ BOΠ there is exactly one ball b ∈ B such that
int(b) = B.



Categoricity

I The structures 〈RO+

IR3 ,BOIR3 ,⊆〉 and 〈RC+

IR3 ,BCIR3 ,⊆〉 are
isomorphic.

I Thus 〈R,B,v〉 is isomorphic to both of them.
I So, from ontological point of view, «real» solids are neither

open nor closed (in the sense of topology).
I The notions of interior of solid and of border (fringing) of solid

are abstract—they do not refer to solids (first-order objects)
but to abstract sets consisted of abstract points.



The End
of
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