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The first notion of set

According to the first notion a set is an object that consist of parts.
It is a fusion of a conglomerate of objects. For example:
I a brick wall can be seen as a conglomerate that consist of

bricks and concrete,
I the territory of the United States of America can be seen as

vast physical object which is a fusion of territories of its states.

In both cases we can say that a brick is an element of the wall, and
that California is an element of the United States.

Sets as described above will be called by us fusions or
mereological sets.



Elements are parts

It is not hard to notice however that we use the notion of element in
a very peculiar sense, that is a brick is part of the wall and
California is part of the U.S.A.

Thus we use the term ‘is an element of’ in the sense of being a
part of some object. In this sense:
I my hand is an element of me,
I the Moon is an element of the Solar System,
I Capri island is an element of Italy,
I Italy is an element of Europe.



The second notion of set

The second notion of set is common for contemporary
mathematics. Let me remind that according to Georg Cantor:

a set is collection into a whole
of definite distinct objects of
our intuition or of our thought.



Two ways of creating sets in mathematics
The second notion of set

In mathematics we can create sets in two basic ways1:
I extensional notion of a set: in this case we have many objects,

all of those objects or some of them can be collected together
to form a set, and this process can be repeated ad infinitum;

I intensional notion of a set: the set is understood as the
extension of a concept or property, in a sense that it contains
as its elements all objects that have this property.

1Hao Wang What is logic?



Basic property for sets
Some properties of Cantorian sets

Sets as understood by mathematics are often called distributive
ones, I will also often call them Cantorian ones.

Cantorian sets satisfy the following basic property. Suppose that
letter ‘S ’ represents a place in which we can put a name. Then we
can say that:

∀x(x is an element of the set of S-es ⇐⇒ x is S) , (B)

or using standard set theoretical notation:

∀x(x ∈ {y | y is S} ⇐⇒ x is S) . (B)



Sets are abstract objects
Some properties of Cantorian sets

Using (B) we can argue after Quine2 that Cantorian sets must be
abstract objects, that is they do not occupy space-time.

Proof.

I Consider a heap of stones.
I According to (B):

the set of stones , the set of molecules.
I Suppose they are concrete objects.
I Thus:

the set of stones = the heap of stones = the set of molecules.
I In consequence the set of stones = the set of molecules.

�

2Logic and the reification of universals [in:] From a logical point of view



(B) does not hold for fusions
Comparing two notions

If we have some objects, then the process of gathering them to
form a fusion may be roughly compared to the act of «gluing»
these objects into a whole.

gluing

joining

a b

c d

a b

c d



(B) does not hold for fusions
Comparing two notions

And this is different process from that of forming a Cantorian set.

a b

c d

collecting
{a, b , c, d}



(B) does not hold for fusion
Comparing two notions

Let me introduce some notation now. If we have some objects
a1, . . . , an by means of:

~a1, . . . , an�

I will denote the object that is the result of «gluing» or «joining» this
objects. Similarly, in case ϕ(x) is a condition put upon x (where x
is a free variable), by

~x | ϕ(x)�

I will denote the object that is the result of joining all x-es satisfying
ϕ. Thus, for example:

~x | x is an American state� = U.S.A.



(B) does not hold for fusions
Comparing two notions

From the explanations above we can see that there is a substantial
difference in forming fusions and Cantorian sets.
I elements of elements of a, b , c, d (if there are any) are

elements of ~a, b , c, d�,
I elements of elements of a, b , c, d (if there are any) do not

have to be elements of {a, b , c, d}.

I of course use the term ‘element’ in two different meanings.



(B) does not hold for fusions
Comparing two notions

Fusions do not satisfy the principle (B). To explain this, suppose
that we are considering some group of S-es and their fusion
~x | x is S�. It is fairly obvious that:

∀x(x is S =⇒ x is an element of ~x | x is S�) . (1)

However the converse implication is not generally true, that is:

¬∀x(x is an element of ~x | x is S� =⇒ x is S) . (2)

For example:

Yellowstone is an element of ~x | x is an American state�

∧Yellowstone is not a state . (3)



First steps
Mereology as a theory of part of relation

As it could be seen from the characterizations given above the
term ‘is an element of’ was used meaning is part of. Theory of
parthood is usually called mereology from Greek meros which
means part.

I The creator of mereology: polish logician
and mathematician Stanisław Leśniewski
(1886-1939)

I mereology can be characterized as a
theory of fusions in opposition to the
Cantorian notion of set



Leśniewski’s nominalism
Mereology as a theory of part of relation

What was Leśniewski’s motivations for developing mereology?

I Leśniewski on Cantorian sets: I can feel in them smell of
mythical objects from rich gallery of figments of the
imagination.

I nothing like the empty set can exists
I his ontological stance admitted only concrete

(spatio-temporal) objects
I series of papers titled On foundations of mathematics.



Leśniewski’s nominalism
Mereology as a theory of part of relation

As it was said Leśniewski did not recognize existence of abstract
objects, like Cantorian sets for example. From ontological point of
view mereology as theory of fusions is better for nominalism. The
main reasons for this are:
I first, in the process of joining objects to form fusions

ontological status of fusion may be inherited from that of its
constituents, thus if we fuse concrete objects what we obtain
may be a concrete object; this is different from Cantorian sets
which are always abstract entities;

I second, from nominalistic point of view it is natural to talk
about parts of objects, while set theoretical ∈ has nothing to
do with any relationship between concrete objects.

The name ‘calculus of individuals’ is used as well to underline
nominalistic foundations of the theory.



Contemporary mereology
Mereology as a theory of part of relation

Contemporary mereology is far from Leśniewski’s intentions.
I It is usually done by means of set theoretical tools.
I It is used to build theories of abstract objects (point-free

geometry, point-free topology).



Basic properties of parthood
Mereology as a theory of part of relation

I Asymmetry: if x is part of y, then y is not part of x.
I Irreflexivity: nothing is part of itself.
I Transitivity: if x is part of y and y part of z, then x is part of z.



Weak supplementation principle
Mereology as a theory of part of relation

Weak Supplementation Principle
If x is part of y, then there must be some z which is part of x but is
exterior to y.

x zy



Strong Supplementation Principle
Mereology as a theory of part of relation

Definition
A mereological atom is an object that has no parts.

Strong Supplementation Principle
If x is not part of y neither it is identical with y, then there must be
some z which either is part of x or is identical with x but is exterior
to y.

x
yz

x = z

y



Short summary – basic properties of parthood
Mereology as a theory of part of relation

I irreflexivity
I transitivity
I asymmetry
I weak supplementation principle
I strong supplementation principle



Basic notation

I By means of letter ‘M’ I will denote the domain, letters ‘a’, ‘b ’,
‘c ’, ‘d’, ‘u’, ‘v ’, ‘w ’, ‘x ’, ‘y ’, ‘z’ will be used to denote elements
of M that I will call, in a standard way, objects.

I I will use symbol ‘@’ to denote parthood, thus ‘x @ y ’ is read: x
is part of y. So @ is a binary relation in M: @ ⊆ M ×M:

@ B {〈x, y〉 | x is part of y} .

I ‘x a y ’ is to mean ¬x @ y.



Asymmetry and transitivity
Basic axioms

∀x∈M∀y∈M(x @ y =⇒ y a x) , (A)

∀x∈M∀y∈M∀z∈M(x @ y ∧ y @ z =⇒ x @ z) . (T)

Fact
∀x∈Mx a x

Proof.
Suppose that there is some x ∈ M such that x @ x. Then by (A) we
have that x a x, a contradiction. �



Asymmetry and transitivity
Basic axioms

Neither Weak Supplementation Principle nor Strong
Supplementation Principle follow from (A) and (T).

Model
Weak Supplementation Principle does not follow from (A) and (T).

0

1
0 @ 1 but there is no object
which is part of 1 and exterior
to 0



Asymmetry and transitivity
Basic axioms

Model
Strong Supplementation Principle does not follow from (A) and (T).

0

1 2

012
1 is not part nor identical with
2 but there is no object which
is part of or identical with 2 but
exterior to 1



Auxiliary relations
Basic axioms

Definition
Object x is an ingrediens of object y if and only if x is part of y or x
is identical with y.

x v y
df
⇐⇒ x @ y ∨ x = y . (dfv)

Basic facts about ingrediens relation

∀x∈Mx v x , (4)

∀x∈M∀y∈M(x v y ∧ y v x =⇒ x = y) , (5)

∀x∈M∀y∈M∀z∈M(x v y ∧ y v z =⇒ x = z) , (Tv)

∀x∈M∀y∈M(x v y =⇒ ∀z∈M(z v x =⇒ z v y) . (6)



Auxiliary relations
Basic axioms

Extensionality for ingrediens relation
If objects have exactly the same ingredienses, then they are
identical:

∀x∈M∀y∈M(∀z∈M(z v x ⇐⇒ z v y) =⇒ x = y) .

Proof.

I This follows from reflexivity and antisymmetry of v.
I Take arbitrary x and y and assume that
∀z∈M(z v x ⇐⇒ z v y).

I Since x v x, we have that x v y.
I Similarly, since y v y it is the case that y v x.
I Thus by antisymmetry we have that x = y.

�



Auxiliary relations
Basic axioms

Notice that from axioms (A) and (T) does not follow that if objects
have the same parts, then they are identical. The following model
show that this is not the case.

1 2

12 21
Objects 12 and 21 have
exactly the same parts
(objects 1 and 2) but 12 , 21.
They have different
ingredienses of course.



Auxiliary relations
Basic axioms

Definition
Object x overlaps object y if and only if there is some z which is
ingrediens of both x and y.

x© y
df
⇐⇒ ∃z∈M(z v x ∧ z v y) . (df©)

Example
Two examples of overlapping objects.

zx y yx



Auxiliary relations
Basic axioms

Basic facts about overlapping

∀x∈Mx© x , (7)

∀x∈M∀y∈M(x© y =⇒ y© x) , (8)

∀x∈M∀y∈M(x v y ∨ y v x =⇒ x© y) , (9)

∀x∈M∀y∈M∀z∈M(x v y ∧ z© x =⇒ z© y) . (10)



Auxiliary relations
Basic axioms

Definition
Object x is exterior to object y iff they do not overlap, that is there
is no z which is ingrediens of x and y:

x P y
df
⇐⇒ ¬x© y (df P)

⇐⇒ ¬∃z∈M(z v x ∧ z v y) .



Auxiliary relations
Basic axioms

Example
A couple of situations in which objects are exterior to each other.

x y
x

y
x y



Auxiliary relations
Basic axioms

Basic facts about being exterior to

¬∃x∈Mx P x , (11)

∀x∈M∀y∈M(x P y =⇒ y P x) , (12)

∀x∈M∀y∈M(x P y =⇒ x @ y ∧ y @ x) , (13)

∀x∈M∀y∈M∀z∈M(x v y ∧ y P z =⇒ x P z) . (14)



Strong Supplementation Principle formally
Basic axioms

We take Strong Supplementation Principle to be the third axiom.

∀x∈M∀y∈M(x @ y =⇒ ∃z∈M(z v x ∧ z P y)) . (SSP)

In the theory of partially ordered sets (SSP) is usually called
separation condition.



SSP vs. WSP
Basic axioms

What about Weak Supplementation Principle?

I First, let me express it in a formal way.

∀x∈M∀y∈M(x @ y =⇒ ∃z∈M(z @ y ∧ z P y)) . (WSP)

I Second, we DO NOT have to take it as another axiom.



SSP vs. WSP
Basic axioms

Theorem
(WSP) is a consequence of axioms (A) and (SSP) and definitions
(dfv), (df©) and (df P).

Proof.

I Assume that x @ y.
I This means that: (a) x , y, (b) x© y, (c) y @ x.
I By (c) and (SSP) there is z such that (d) z v y and (e) z P x.
I But z , y (otherwise it would have to be the case that x© z).
I So z @ y and z P x.

�

Where did we use assymetry?



SSP vs. WSP
Basic axioms

Fact
(SSP) does not follow from (A), (T) and (WSP).

1 2

12 21
I (A), (T) and (WSP) hold in this

case.
I However (SSP) fails.
I Take objects 12 and 21.
I It is the case that 12 @ 21.
I However ¬∃z∈M(z v 12 ∧ z P 21)

since everything overlaps 21.



The smallest element usually does not exist
Basic axioms

Card M > 1 ⇐⇒ ∃x,y∈Mx P y .

Proof.

I Let Card M > 1.
I So there are x1 and x2 such that (a) x1 , x2.
I Either x1 P x2 or x1© x2.
I There is z ∈ M such that z v x1 and z v x2.
I By (a), either z @ x1 or z @ x2.
I Thus, by (WSP), there is z0 such that either z0 @ x1 and z0 P z

or z0 @ x2 and z0 P z.

�



The smallest element usually does not exist
Basic axioms

Corrolary
The domain M contains the smallest element (with respect to v) iff
M has only one element:

∃x∈M∀y∈Mx v y ⇐⇒ Card M = 1 . (@0)



Basic axioms
Short summary

Where are we now?

I We have adopted three axioms: (A), (T) and (SSP).
I Fundamental consequences of these are:

I irreflexivity of parthood,
I (WSP).
I Non-existence of the smallest element.



Mereological sum

I We are now going to formalize the notion of mereological sum
or fusion.

I Recall that what we are aiming at with these notions is to
model the process of joining objects into one single entity.



Mereological sum – definition

gluing

joining

a b

c d

a b

c d

x

I Every element a, b, c and d is part of x (the more so is
ingrediens of x).

I Whatever part (or ingrediens) of x we take, then it must
overlap at least one of objects a, b, c or d.

Definition (Mereological sum – informally)
An object x is a mereological sum of all elements of Z iff every
element of Z is an ingrediens of x and every ingrediens of x
overlaps some element z from Z



Mereological sum
Definition

x1 x2 x3 x4 x5

x

y

z

X



Mereological sum – definition

Definition (Mereological sum – formally)
We define a «hybrid» relation Sum ⊆ M × P(M):

x Sum Z
df
⇐⇒ ∀z∈Z z v x ∧ ∀y∈M(y v x =⇒ ∃z∈My© z) . (df Sum)

The definition of Sum is not a first-order formula.



Mereological sum
Basic properties

Fact
There is no sum of the empty set. This may be treated as strict
formulation of the following statement: there is no empty
mereological set.

Formally:
¬∃x∈Mx Sum ∅ . (15)

Proof.
We use (df Sum):
I ∀z∈∅z v x – trivially true but
I x v x, so ∃z∈∅z© x, which is obviously false.

�



Mereological sum
Basic properties

Fact

∀x∈Mx Sum {x} .

Proof.

I x v x
I ∀z∈M(z v x =⇒ z© x).

�



Mereological sum
Basic properties

Fact

∀x∈Mx Sum {y ∈ M | y v x} .

Proof.

I It is obvious that every element of {y ∈ M | y v x} is ingrediens
of x.

I Take arbitrary z from the domain for which z v x.
I So z ∈ {y ∈ M | y v x}
I Since z© z, so there is an element of {y ∈ M | y v x} which

overlaps z (that is, z itself).

�



Mereological sum
Basic properties

Fact
If x has any parts (it is not a mereological atom), then it is a sum of
its parts.

∀x∈M({y ∈ M | y @ x} , ∅ =⇒ x Sum {y ∈ M | y @ x}) .

Proof.

I Every element of {y ∈ M | y @ x} is ingrediens of x.
I Take arbitrary z from the domain for which z v x.
I We have two possibilities: either z @ x or z = x
I Consider the first one. In such case z ∈ {y ∈ M | y @ x} and

z© x.
I Consider the second one. In this case any element of
{y ∈ M | y @ x} will do.

�



Uniqueness of mereological sum

How many mereological sums of a given set exist?

It depends!

Depends on what?

It depends!



Mereological sum does not have to exist at all

It does not follow from (A), (T), (SSP) and (df Sum) that every
subset of the domain has its mereological sum.

Model

1 2 3

4 I Consider {1, 2}.
I 3 v 4 but 1 P 3 and 2 P 3, so
¬3 Sum {1, 2}.

I Nor any other object is a sum of
{1, 2}.

I Similarly, {1, 3} and {2, 3} does
not have its sums.



There may be more than one mereological sum

It does not follow from (A), (T) and (df Sum) that if a given set has
a sum, then this sum is unique.

Model

0

1 I 0 Sum {0},
I 1 Sum {0},
I 0 , 1.



There may be more than one mereological sum

Model

1 2

12 21

I 12 Sum {1, 2}
I 21 Sum {2, 1}
I 12 , 21.



Uniqueness of mereological sum
Lemma
By (T) and (SSP), for all a, b ∈ M and all X ∈ P(M) it is the case
that:(
∀z∈M(z v a =⇒ ∃x∈X x© z) ∧ X ⊆ Y ∧ ∀y∈Y y v b

)
=⇒ a v b . (16)

Proof.

I Assume (a) ∀z∈M(z v a =⇒ ∃x∈X x© z), (b) X ⊆ Y and (c)
∀y∈Y y v b.

I Take arbitrary z v a. Thus by (a) we have ∃x∈X x© z.
I Let x0 be that object: x0© z.
I Since x0 ∈ X , by (b) and (c) it is the case that x0 v b.
I Thus z© b. That is z v a =⇒ z© b.
I But z was arbitrary, so ∀z∈M(z v a =⇒ z© b).
I So from (SSP) we obtain that a v b.

�



Uniqueness of mereological sum

Theorem
It follows from axioms (A), (T), (SSP) and (df Sum) that if a given
set of objects has a sum, then it is unique:

∀a∈M∀b∈M∀X∈P(M)(a Sum X ∧ b Sum X =⇒ a = b) .

Proof.

I Assume (1) a Sum X and (2) b Sum X .
I From (1) and (df Sum) we get: ∀z∈M(z v a =⇒ ∃x∈X z© x).
I From (2) and (df Sum) we get: ∀x∈X x v b.
I Applying the lemma from previous side we get: a v b.
I We show similarly that b v a.
I Using antisymmetry of v we have that a = b.

�



Classical mereology

I We are going to assume the strongest axiom concerning
existence of mereological sum: every nonempty subset of the
domain has its mereological sum.

∀X∈P+(M)∃x∈Mx Sum X . (EM)

I Such a solution seems to be the best from the point of view of
applications mereology in point-free geometry and topology.

I By the classical mereology we mean any theory which is
equivalent to the theory whose axioms are: (A), (T), (SSP)
and (EM).

I Let CM be the class of all classical mereological structures,
that is

CM B
{
〈M,@〉 | 〈M,@〉 satisfies (A), (T), (SSP) and (EM)

}
. (df CM)



Existence of the unity

I Convention: for simplicity I will use the expression
‘mereological structure’ meaning classical mereological
structure.

I Suppose that 〈M,@〉 ∈ CM. By (EM) it is the case that there is
(the unique) mereological sum of the set M. We will call it the
unity of a structure.

I Formally, by means of the description operator, we define the
unity as follows:

1 B (ιx) x Sum M . (df 1)

I Trivially, ∀x∈Mx v 1.



A simple example of mereological structure

x y

1 I It is the simplest
non-degenerate structure.

I There is no structure with two
elements.

I More complicated structures to
follow.



Mereological sum vs. supremum
Fact
It follows from (Tv) and (SSP) that:

Sum ⊆ Sup . (17)

We will use the following (already proven) lemma:(
∀z∈M(z v a =⇒ ∃x∈X x© z) ∧ X ⊆ Y ∧ ∀y∈Y y v b

)
=⇒ a v b .

Proof.

I Suppose that x Sum X , that is (a) ∀y∈X y v x and (b)
∀a∈M(a v x =⇒ ∃y∈X y© a) .

I Take b ∈ M and let ∀y∈X y v b.
I Now apply the lemma in question and conclude that x v b.
I Thus x Sup X .

�



Mereological sum vs. supremum

The axioms (A), (T), (SSP) are to weak to prove that Sup ⊆ Sum.
Consider the model below.

Model

1 2 3

4
I Consider {1, 2}.
I 4 Sup {1, 2}.
I ¬4 Sup {1, 2}.
I Similarly, {1, 3} and {2, 3} do not

have sums but have suprema.



Mereological sum vs. supremum

Let me remind that:

a Sup X ∧ b Sup X =⇒ a = b . (Sup!)

Fact
If a given structure satisfies (Tv) and (SSP), then:

a Sup X ∧ b Sum X =⇒ a = b . (18)

Proof.

I We have proven that Sum ⊆ Sup.
I Thus it is enough to apply the fact above.

�



Mereological sum vs. supremum

Theorem
In every mereological structure:

x Sum X ⇐⇒ X , ∅ ∧ x Sup X .

Proof.

I The implication from left to right has already been proven.
I Assume X , ∅ and x Sup X .
I By (EM) there is y such that y Sum X .
I So it must be the case that x = y and x Sum X , as required.

�



Mereological sum vs. supremum

Conclusions

In every mereological structure:

∀X∈P+(M)(ιx) x Sum X = (ιx) x Sup X , (19)

Card(M) > 1 =⇒ ¬∃x∈Mx Sup ∅ , (20)

Card(M) > 1 =⇒ Sum = Sup . (21)



Algebraic operations

I The partial operation of merological sum
⊔
: P+(M) −→ M

such that: ⊔
X B (ιx) x Sum X . (df

⊔
)

I The binary operation t : M2 −→ M such that:

x t y B
⊔
{x, y} . (dft)

I Basic properties:

x t y = y t x , (22)

(x t y) t z = x t (y t z) , (23)

x = x t x , (24)

x v x t y . (25)



Algebraic operations

I The partial operation of merological product
u : {〈x, y〉 | x© y} −→ M such that:

x u y B
⊔
{a ∈ M | a v x ∧ a v y} . (dfu)

I Basic properties:

x u y B (ιz) z Inf {x, y} , (26)

x u y = y u x , (27)

(x u y) u z = x u (y u z) , (28)

x = x u x , (29)

x v y =⇒ x u y = x , (30)

x v y u z ⇐⇒ x v y ∧ x v z . (31)



Algebraic operations

I The partial operation of mereological complement
− : M \ {1} −→ M such that:

− x B
⊔
{y ∈ M | y P x} . (df−)

I Basic properties:

x , 1 =⇒ (x t − x = 1) , (32)

x , 1 =⇒ −− x = x , (33)

x , 1 =⇒ (x P y ⇐⇒ x v − y) , (34)

x , 1 ∧ y , 1 =⇒ (x v y ⇐⇒ − y v − x) . (35)



Algebraic operations

I The partial binary operation of relative mereological
complement such that:

y @ x =⇒ x − y B
⊔
{z ∈ M | z v x ∧ z P y} . (df−)

I Basic properties:

y @ x =⇒ x − y = x u − y , (36)

y @ x =⇒ (x − y) P y , (37)

x , 1 =⇒ − x = 1 − x . (38)



Classical mereology and Boolean algebras

Theorem (Tarski)
Let B = 〈A ,+, ·,−, 0, 1〉 be a non-degenerate complete Boolean
algebra and 〈A ,6, 0, 1〉 be the Boolean lattice for B. Let:

v B 6|A\{0} .

Then 〈A \ {0},v〉 ∈ CM.



Classical mereology and Boolean algebras

Theorem (Tarski)
Let 〈M,v〉 ∈ CM and let 0 be an arbitrary object such that 0 < M. Let 1 be
the unity of 〈M,v〉. For x, y ∈ M define:

x ⊕ y B x t y

x ⊕ 0 B 0 ⊕ x B x and 0 ⊕ 0 B 0

x© y =⇒ x � y B x u y

x P y =⇒ x � y B 0

x � 0 B 0 � x B 0 and 0 � 0 B 0

x , 1 =⇒ 	x B − x

	1 B 0 and 	 0 B 1.

Then, the structure 〈M ∪ {0},⊕,�,	, 0, 1〉 is a complete Boolean algebra
in which the standard order relation 6 satisfies the following condition:

x 6 y ⇐⇒ x v y ∨ x = 0.



The End
of

Part II


	Two notions of set
	Parts
	Basic axioms
	Mereological sum
	Classical mereology
	Some theorems of classical mereology

