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Quasi-separation structures
Definition

By a quasi-separation structure we mean any structure 〈R,v, )(〉

such that )( ⊆ R × R (it is called a separation relation) and

(S0) 〈R,v〉 is a mereological structure,

(S1) ∀x,y∈R
(
x )( y =⇒ x @ y

)
,

(S2) ∀x,y∈R
(
x )( y =⇒ y )( x

)
,

(S3) ∀x,y,z∈R
(
x v y ∧ z )( y =⇒ z )( x

)
.



Non-tangential inclusion of regions

Definition (of a relation of non-tangential inclusion)

x � y
df
⇐⇒ ∀z∈M(z P y =⇒ z )( x) . (df�)

If x � y we say that x is non-tangentially included in y.

Example
Region x touches the complement of y, but x1 is non-tangentially
included in y1, that is x1 � y1.

x

y

y1

x1



Non-tangential inclusion – elementary properties

x � y
df
⇐⇒ ∀z∈M(z P y =⇒ z )( x) . (df�)

Lemma

(i) x � y ⇐⇒ y = 1 ∨ (y , 1 ∧ x )( −y),

(ii) y = 1 ∨ (y , 1 ∧ x )( −y) =⇒ x v y,

(iii) x � y =⇒ x v y,

(iv) ∀x∈Rx � 1, so 1 � 1.



The connection relation

x C y
df
⇐⇒ ¬x )( y. (def C)

Since C is a complement of )( one can easily express counterparts
of the axioms (S1)–(S3) by means of the connection relation.

∀x,y∈R(x v y =⇒ x C y) , (S1′)

∀x,y∈R(x C y =⇒ y C x) , (S2′)

∀x,y,z∈R(x v y ∧ z C x =⇒ z C y) . (S3′)

The axioms above are counterparts of some of the axioms of the
so called connection structures.



Representatives of points

Definition (of a representative of a point)
We say that X ∈ P(R) is a representative of a point iff X satisfies
the following three conditions:

∀u,v∈X (u , v =⇒ u � v ∨ v � u) , (G1)

∀u∈X∃v∈X v � u , (G2)

∀u,v∈R
(
∀z∈X (z© u ∧ z© v) =⇒ u C v

)
. (G3)

Let Q be the family of all representatives of points:

Q B {X ∈ P(R) | X , ∅ ∧ X satisfies (G1), (G2) and (G3)} .
(df Q)



Representatives of points

Example

x1 x2

Y



Representatives of points

Example

x1 x2
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Representatives of points

Example

x1 x1 x1x2 x2 x2

Y



Representatives of points

Example
QUESTION: Suppose the whole slide is the space. Does the set of
regions below satisfy conditions of a representative of a point?



Representatives of points

Definition
A region x ∈ R is coherent iff for all y1, y2 ∈ R such that
x = y1 t y2, it is the case that y1 C y2 (i.e. ¬y1 )( y2).

x1

x2

Both regions x1 and x2 are coherent, but their sum x1 t x2 is not.



Representatives of points

Example

x1 x2



Grzegorczyk’s axiom

x C y =⇒ ∃Q∈Q

(
∃z∈Q(x© y =⇒ z v x u y) ∧ ∀z∈Q(z© x ∧ z© y)

)
. (G)

Any structure 〈R,v, )(〉 satisfying axioms (S0)–(S4),(G) will be
called Grzegorczyk’s structure or G-structure.

Fact
Q is not empty.

Proof.
It is the case that 1 C 1. That means that there exists a set X ∈ Q
satisfying all conditions listed in (G). �

Fact
∀x∈R ∃Q∈Q

(
∀z∈Q z© x ∧ ∃z∈Q z v x

)
.

Proof.
From the reflexiveness of C and v. �



Points in G-structures

Definition (of a filter)
A filter in a mereological structure 〈M,v〉 is any non-empty set
F ⊆ M such that

(f1) if x, y ∈ F , then x© y and x u y ∈ F ,

(f2) if x ∈ F and x v y, then y ∈ F .

Definition (of a point)
By a point in any G-structure we will mean any filter in 〈R,v〉
generated by some element of a family Q. Let us denote the set of
all points by ‘Π’; for any set β from P(R):

β ∈ Π ⇐⇒ ∃Q∈Q β = { x ∈ R | ∃y∈Q y v x } . (df Π)



Definition of a point – short explanation

Q1

Q2

Q1 and Q2 represent the same point.



Existence of points

Fact
Since Q , ∅, then from (df Q), (df Π) and properties of 1 it follows
that:

Π , ∅ ∧ ∀α∈Π 1 ∈ α . (1)

Fact
For any x ∈ R and α ∈ Π we have that:

x ∈ α ⇐⇒ ∃y∈α y v x

⇐⇒ ∃y∈α y � x .
(2)



Basic properties of points

Theorem
The following conditions are consequences of axioms
(S0)–(S3),(G):

∀x∈R ∃α∈Π x ∈ α , (3)

∀x,y∈R
(
x© y =⇒ ∃α∈Π x u y, x, y ∈ α

)
, (4)

∀x,y∈R∀α∈Π
(
x, y ∈ α =⇒ x© y ∧ x u y ∈ α

)
, (5)

∀x,y∈R
(
x C y ⇐⇒ ∃α∈Π∀z∈α(z© x ∧ z© y)

)
, (6)

∀x∈R\{1}
(
x C −x ⇐⇒ ∃α∈Π x < α ∧ −x < α

)
. (7)



Definition of the operation Irl

On the set R we introduce an operation that ascribes to an
arbitrary region x the set of all points α such that x ∈ α.

Formally we define the operation Irl : R→ P+(Π) such that:

Irl(x) B {α ∈ Π | x ∈ α } . (df Irl)

For a region x we will call Irl(x) the set of internal points of x.

Fact

α ∈ Irl(x) ⇐⇒ ∃y∈αy v x

⇐⇒ ∃y∈αy � x .



Definition of Irl – an example

x

α



Open sets

Definition (of an open set)

O = {U ∈ P(Π) | ∀α∈U ∃x∈α Irl(x) ⊆ U }. (df O)

Example (negative)

U

α



Open sets

Definition

B B {Irl(x) | x ∈ R} . (df B)

Fact

(a) B ⊆ O, that is for every x ∈ R we have Irl(x) ∈ O;

(b) ∀U∈O∀α∈U ∃V∈B α ∈ V ⊆ U;

(c) O = {A ∈ P(Π) | ∃F⊆B A =
⋃
F };

(d) B is a basis of 〈Π,O〉.



Open sets – an alternative way

Definition
A family of sets B ⊆ P(X) is a basis for the set X iff
I

⋃
B = X ,

I if B1,B2 ∈ B and x ∈ B1 ∩ B2, then there is B3 ∈ B such that
x ∈ B3 ⊆ B1 ∩ B2.

I Prove the following facts:

Irl(1) = Π =
⋃

x∈R Irl(x) ,

x© y
df
⇐⇒ Irl(x) ∩ Irl(y) , ∅ ,

x© y =⇒ Irl(x) ∩ Irl(y) = Irl(x u y) .

I It follows that B is a basis.
I Introduce O in the standard way.



〈Π,O〉 is a Hausdorff space

Lemma
∀β,γ∈Π

(
β , γ =⇒ ∃x∈β ∃y∈γ x P y

)
.

Corrolary
Topological space 〈Π,O〉 is a Hausdorff space, that is it satisfies
(T2).

Proof.

I Let β , γ.
I Thus there are regions x ∈ β and y ∈ α such that x P y.
I Consider the sets Irl(x) and Irl(y).

�



Uniqueness of points

Fact
∀α,β∈Π(α ⊆ β ∨ β ⊆ α =⇒ α = β).

Proof.
Use the contraposition of the Lemma from previous slide :

∀x∈α∀x∈βx© y =⇒ α = β .

�
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